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FIXED POINTS OF WEAKLY CYCLIC TYPE GENERALIZED
CONTRACTIONS IN EXTENDED i-METRIC SPACE

by Hanaa Kerim!, Amina-Zahra Rezazgui?, Vlad Savenco®, Wasfi Shatanawi? and Abdalla Tallafha®

In the setting of extended b-metric space, we introduce new weakly cyclic gen-
eralized contraction conditions depending on continuous functions wg and altering dis-
tance functions &g for self mappings, called ”extended (Ep,wp)-weakly cyclic generalized
contraction conditions one and two”. Via these contractions, we prove existence and
uniqueness fixed points theorems. Moreover, we derive some results on b-metric spaces,
and some examples to focus the attention on the importance of our work.

Keywords: Extended b-metric space, fixed point, cyclic representation, altering dis-
tance function, contraction.

1. Introduction

The fixed point area research is one of the major areas of mathematics, which has
benefited from a systematic development in the last century; for the pioneer source, see
Caccioppoli [3], which established ”Banach Contraction Principle”. This one assures the
existence of a unique fixed point via contractions over a complete metric space. Since then,
due to the importance of this theorem, numerous generalizations have been demonstrated
in different directions.

By altering the distances between points, Khan et al. [9] brought an effective contri-
bution to the theory of fixed point for self-mappings on complete metric spaces. As altering
distance functions are monotone, increasing, and continuous, they became an attractive des-
tination for researchers who took advantage of this concept to work on fixed point problems.

In 1997, by employing the definition of weak contractive mappings, Alber and Guerre-
Delabriere [1] prolonged Banach contraction principle in Hilbert spaces. In 2001, Rhoades
[14] generalized the weak contraction principle in the ambit of metric spaces. Shatanawi et
al. [18] inspect new coincidence point theorems for a pair of weakly decreasing mappings
satisfying (v, p)-weakly contractive conditions in an ordered metric space, where 1 and ¢
are altering distance functions.

On other hand, in 2003, the notion of cyclic contraction was initiated by Kirk [10],
who demonstrated some fixed point theorems. Furthermore, many scholars have developed
this contraction. For more results, see [2, 17, 21].
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Other well-known extensions of the Banach fixed point principle is the generalization
of the notion of metric space in many varied directions [5, 6, 7, 8, 12, 13]. In 2017, Kamran
et al. [4] relaxed the triangle inequality of a metric space with the function 6 and formally
defined an extended b-metric space, which has contributed to the generation of many results.

In this work, we generalize [11], where we investigate some fixed point theorems
throw extended (&, wy)-weakly cyclic generalized contraction conditions one and two in the
framework of complete extended b-metric space.

2. Preliminaries

In this section, we remember some notions for extended b-metric spaces, which we
will need in the sequel.

Definition 2.1 ([4]). Let II be a non-empty set and 6: II x II — [1,00). An extended
b-metric is a function dg: II x IT — [0, 00) such that for all p,v,w € II, we have:

(1) do(ju,v) = 0 iff o= v,

(2) do(p,v) = do(v, ),

(3) do(p,w) < O(p,w)[do(p,v) + do(v, p)].

Then the couple (I1,dy) is called an extended b-metric space.

If O(p,w) = s, s € [1,+00), then (I, ds) is named a b-metric space with parameter s.

Definition 2.2 ([4]). Let (I, dy) be an extended b-metric space. A sequence (u,) in I is:
(i) Cauchy sequence: if for all e > 0, there exists N € N, with do(p.,py) < €, for all ¢,
n>N.
(ii) convergent: if exists u* € II, for all ¢ > 0, exists N € N, with dg(p,, u*) < €, for all
t> N.

The couple (IT, dy) is named complete extended b-metric space if every Cauchy se-
quence converges.
For our purposes, we demand to evoke the following definition,

Definition 2.3 ([9]). A function &: RT — R is named an altering distance function if &g
is continuous, strictly increasing on R™ and &(1) = 0 iff T = 0.

We adopt [4] and [10] to generate the following definition:
Definition 2.4. Let (II,dy) be an extended b-metric space. Let p € N, Ry, Nqg, ... R, be
p
subsets of 11, Z = U N, and T: Z — Z. Then Z is a cyclic representation related to T, if

i=1
N;, (i =1,2,...,p) are non empty, closed and T(N1) C Ro,...,T(R,_1) C R, T(N,) C Ry.

3. Main Results

P
Definition 3.1. Let (II,dy) be an extended b-metric space. Let Z = U N;, where Ry, No, ...,

i=1
R, are non-empty and closed subsets of I1, for p € N. A self mapping Y : Z — Z is called an
extended (&g, wq)-weakly cyclic generalized contraction condition one if these axioms hold:

P
1) 2= U N; is a cyclic representation of Z related to T.

i=1
2) For any (p,v) € R; X Nyjpq, where i =1,2,...,p and Ny = Ry,

&o <O}5d9(TM’TV)> < &o(Ar(p,v)) — wo(A2(p,v)), (3.1)
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where
Ay () = max {dofp,v), m (dots, T) + do(w, ) ), 5 (dolon, ) + o, Tw))
(3.2)
and
Ao(pv) = min {do(p, ), W (dop. 70) + do. ) }. (3.3)

As well, 8 is bounded by é, where a € (0,1), &: RY — RT is an altering distance
function, wg: RT — RY is continuous and wy(7) = 0 if and only if 7 = 0.

Theorem 3.1. Consider a complete extended b-metric space (I1,dy). If the self-mapping
Y:2Z — Z is extended (&, wp)-weakly cyclic generalized contraction condition one, then T
P

possesses a unique fixed point in m N;.
i=1
Proof. Let pug € Ry (where R; is non-empty for all 7). Consider the sequence (u,) in I given
by p,+1 =T, for all « € NU {0}.
o If 4,11 = p,, then p, is a fixed point of 7.
o If yu, 11 # p,, then we shall give a proof.
Step 1 nggo do(fiy, to+1) = 0: We have for all ¢, dg(p,, pr,+1) > 0. From the first

condition in Definition 3.1, we obtaini = i(¢), 7 = {1,2,...,p} for all ¢, (p,, pr,4+1) € Ny XN;41.
In the second condition of Definition 3.1, putting p = g, and v = p, 11, we get

1
Co(dg(Tp,, Trn+1)) < &g (aE)dO(TML)TIJ’L+1)> —59( de(ML+1,ML+2))
< gG(Al(ML>NL+1))_WO(AQ(ML7ML+1))7 (34)
where
Ay (e, purr) = maX{de(m,uLH) 200 uL,TuLH do(pies Ttiy1) +de(ub+1,TuL))

(
)}

d9 (ﬂLa /ffL+2 + dG (,U’L+17 ,U/L+1)>

(dG (,U’La T,Uw) + d0 MLJrlv T/«LLJrl

20(41,, Tptis1)

)

— max{de(uulhﬂ) 29 (10s pos2) (
)

1
(dG (,Ufm NL—Q—l) + d0 NL+17 Ho+2 } (35)

By the triangle inequality, we obtain

1
Ay (pos pg1) < max{de(u“um),i(do(uumﬂ)+de(m+17m+z))}, (3.6)

and
. 1
Az(#m #L+1) = mn {de(#u /J“L"rl)? m (df)(PJm T#L-H) + da(m+1, T/U‘L)) }7
. 1
= min {de(ﬂm MH—l)v m (de(ﬂm MH-Z) + d@(/-h-&-l; /J/L—&-l)) .
Thus
. 1
AQ(/J/M ML+1) = 1mn {de(u“ m+1), mde(lh, ML+2)}~ (3-7)

Now, we assume that

dﬂ(ﬂulh-&-l) < d9(NL+17NL+2)7 (3-8)
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By (3.4), we obtain

IN

o(do(ptit1, put2)) &o <O}5d9(l&+1,m+2)> < &o(Ar1(ps pt1)) — wo(Aa(pr, put1))

Eo (A1 (pres pir1))-

Since &y is strictly increasing, we get

IN

d@(ﬂb-ﬁ-lvﬂﬁ-?) < Al(uuﬂﬁ-l)- (39)

Presume that there exists ¢ so that dg(p,41, to+2) > do(pe,, tre+1)- Then, by (3.8) and
(3.6), we get

Ay (s puy1) < do(fugrs Hut2)- (3.10)
From (3.9) and (3.10), we conclude that

Al(ﬂb?ML+1) = d@(ML+17ML+2)' (311)

On the other hand, from (3.6), we get that dg(p,+1,ter2) < do(pe, frer1), so the
assumption was false, and then

do(trs1, ty2) < do(pu, pry1), for all ¢, (3.12)
Based on (3.12), (3.5), and (8.7), we obtain
Al(/lu/h+1) = d@(ﬂ’bv/"“k‘rl)v (313)
and
1
Ao(p, 1) = mda(ﬂuﬂwﬂ (3.14)

Substituting (3.13) and (3.14) in (3.4), we get

1
o (O;,de(m+1,m+z)>

IN

&o (da (ML+1» /'LL+2))

< &o(dy(pn, pusr)) — wo (Mde(#merQ)) . (3.15)

From (3.12), we get that the sequence decreases monotonically, thus there exists
r >0, such that lim dg(p,, p,.41) =7.
L—>00
Letting ¢« — oo, we get

1
lim wp [ —————dg(pty, prosa) )| =0, 3.16
i (29(M,m+2) opus +2)) (8.16)

and also 7 = =, which leads to r = 0.
So,
Llirgo do(fte, ft1) = 0. (3.17)

Step 2 (u,) is a Cauchy sequence: Now, we shall demonstrate that (p,) is a Cauchy
sequence in (IT, dy). Presume the converse, that (u,) is not a Cauchy sequence. Then there
exists € > 0 for which we can obtain two subsequences (i,()) and (p,()) such that n(c) is
the smallest index for which

M) > o) > S do(ty()s Hu(s)) = €. (3.18)
This means that
do(tn(c) -1, Hu(s)) < €. (3.19)
Now, from (3.18) and by triangle inequality, we get

€ < do(fu(e)s Hn(e)) < Ou(e)s b)) [do 1oy (o) —1) + do(fin(e)—15 Hin(e))]-
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From (3.19)7 we ﬁnd € S d@(lh(c)vﬂn(c)) < EQ(ML(C), ,un(g)) + 0(:“L(<)7Mn(c))dG(Mn(c)flaﬂn(c))-
Letting ¢ — oo, using (3.17) and recalling that 6 is bounded by é, we obtain that there
exists 7 so that

lim sup dg (1, (c), tn(c)) = 7€, (3.20)

G—00
and 1 <r <1
For any positive integer ¢, there exists j(¢) € {1,2,...,p} such that n(s) — () —¢(s) =
1[p]. Then pu,o)—, ) (for ¢ large enough n(s) > j(s)) and p,( lie in different adjacently
labeled sets N; and X;; for specific i € {1,2,...,p}.
Due to the triangle inequality, we obtain

do () Hn)-20) < Olkn(e)s Hn(6)=3(e) 1o (bnge) s Hne)—1) + do(Hn(e)~1s Hin()—5(5))]:
< 0o ) =200 (Hin(e)s ) =1) + O(tin(e) Hine) =5()
01t ()=15 (o)) 1o () 15 By —2) + do(tn(e)—25 Hn(e)—s(c) )5
< O(kne)s Hn(e)—a(<) ) o (K<) s (o)1) + -+ +
2(s)
Ho O(hn()=3()» Hns) =)o (Fn(s)=3(6)=1> Hin(s) =a() )

Since 6 is bounded by L, we obtain

1 1
d(tin(<)s Hn(o)—s(e)) < ad9(/‘n(<)7/‘n(<)*1) + ?de(/‘n(c)*h“n(c)*?) RIS
1
+ G o (b (6)=5(5)~ 15 Fin() —5(s) )
Letting ¢ — oo and using (3.17), we get
do (b (e)s Hn(e)—y(c)) = 0. (3.21)
Again by assumption (3.18) and by triangular inequality, we obtain
¢ < do(pino)s () < Otne)s tu(o))[do(tinge)s tinge)—(6)) + do(in(e)—5(6)s (o))
Since 6 is bounded by é, we get € < éd@(un(g),un(c)ﬂ(g)) + éd@(un(g)ﬂ(g), t(s))- By
(3.21) and letting ¢ — oo, we find

ae < limsup do(fy(e)—j(e)s Hu(s))- (3.22)

S— 00

Also, we have
do(n(s)—(5)s Fut) < Oln(o)—a(6)s tu())[do (tin(s) —5(5)s () + do(tim(e), bus))]-
By (3.20) and (3.21) and by letting ¢ — oo, we find
. Tre
lim sup do (1 (6)— 5(6)» () < —- (3.23)

§—00 (&%
From (3.22) and (3.23), we conclude that
(3.24)

. Te
ae < lim sup d@(l”"l’](g)*j(()?/"b(()) < —.
G—00 Q

Now, for do(fin(s)— () Hu(s)+1), We use the triangular inequality, and we obtain

do(Hp()—3(5)> uo)+1) < O(n(e)=5(5)> Huo)+1)1do () —5(5) s Buts)) + do(thuie)s Hu()+1)]-
Taking the upper limit as ¢ — oo and employing (3.17) and (3.23), we obtain
Te

do (pn(e)=()> Hute)+1) = 5 (3.25)
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Conversely, by (3.18), the triangular inequality and since 6 is bounded by é, we
obtain

1 1
€ < do(pn(e)s ue)) < ade(ﬂn(cyun(c)—g(c)) + —do(Hn()—5(6)s Has))

IN

1 1 1
o 40 (tn(6)s 1n©)=20) + 3 B0 (tin(6)=5(0)> Hu()+1) + 5 B0 (ka6 41 Hut)):

Taking the upper limit as ¢ — oo, utilizing (3.17) and (3.21), we obtain
ca® < Hmsupdy(pne)—s(e)s Ko +1)- (3.26)
¢—00

From (3.25) and (3.26), we conclude that

Te

o < limsup dg(K(c)—j(c)» Hu(e)+1) < —- (3.27)
G—00 Q@

Now, for dg(pin(c)—y(c)+15 Hu(c)), We use (3.18) and the triangle inequality. Since ¢ is
bounded by é, we obtain
1 1
€ < do(Hn(o)s () S o (Hn()s n()—s()+1) F = dolkn() ()1, Hu(o))-

Again by the triangle inequality and since # is bounded by é, we obtain

1 1
do(Kn () —g(s)+15 () < ad9(“n(<)—a(c)+1v“n(g)—J(C)) + ade(ub(€)—3(§)’uL(§))'
From (3.24) and (3.17), we obtain

re

lim sup do (£ (o) —s(s)+15 Hu(s)) < 5 (3.28)
g—00 (0%
From (3.28), we obtain
. re
ea < limsup dg(tin(e)—5(6)+1s a(s)) < —5- (3:29)
S¢—00 «
NOW, for dg(un(g),j(g)Jrl,/LL(C)Jrl), we find
1 1
do (Hn(e)—s(0)+15 Pu()+1) = = dolHn()—5(6)+15 Hute)) + —do (s Hut)+1)-
Taking the upper limit as ¢ — oo and utilizing (3.17) and (3.29), we obtain
. Te
lim sup do (fin()—y(c)+15 (o) +1) < —3- (330)
G—00 «

Also,
1 1
e < dG(/‘n(ovﬂa(c)) < Edﬁ(ﬂn(q),ﬂn(c)—1(<)+l) + ad9(ﬂn(<)—](<)+1vlh(<))
1 1 1
< S do(kn(), M) —s)+1) + 3 do(bn)—y0)+1 Hu(or+1) + 3 do(bu(o)+1, Huo))-
Taking the upper limit as ¢ — oo and utilizing (3.17), we obtain

ca® < Timsup do(fy () s(e) 115 Mu() +1)- (3.31)

¢— 00
From (3.30) and (3.31), we obtain

Te

ea® < limsup do (fin() — () 415 Hu(s)+1) < (3.32)

S—00 043
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Now, from the contraction condition, we find

1
§o(do(tn(e)—s(c)+1s Bu(e)41)) < Ee(ﬁde(un(c)—a(cﬂuML(<)+1))

< &A1 (Hn(e)—g(e)s Hu(e))) — Wo(A2(hy(e)—y(c)s Hes)))

< ge(Al(Mn(c)—J(s‘)a /‘L(<)))a (3‘33)
where

A =s(0)s u(s)) = max {d9(“n(<)ﬂ(<)7 Hao)s 1
201 ()—5() > Hu(s)+1)

(d9 (/’LL(C)—](<)7 ML(<)+1) +dg (/”LL(C)’ /1‘77(<)—J(<)+1)> ’

1

5 (d0(tn( 500 Hof-a(61+1) + dopors 1)) - (3:34)
and

1
Hin()=(s)> Hu(s)+1)
(de (Bn()=(e)s Bu(e)+1) T do(fruo)s N7)(<)—J(§)+1)) } (3.35)

Taking the upper limit as ¢ — oo in (3.34) and (3.35) as well using (3.17), (3.24),
(3.27) and (3.29), we get

Ba(pn(o) () u(e) = min{de(un&)ﬂ(c)aM(c))’29(

ae < limsup d@(p‘n(C)*](C% /h(c)) < limsup Ay (:un(c)fj(c)v /h(c))
s—00 —00
< max { tim Sup dy (4 6) () Has) )
¢—00

1/, .
3 ( lim sup do (fn(s)— () Hu(e)+1) + hnlsup do(1hu(<)s Hap()—p(o)+1 )) ) 0}
S—00

¢—00

< {re l(re TE)O} T€
max{ —, - (— + — = —.
e P A P I a?
Hence,
. T€
ae < limsup Aq (o) —y(e)s Hu(e)) < —5- (3.36)
s—o0 «

Now, taking the upper limit as ¢ — oo in (3.33) and utilizing (3.32) and (3.36), we
obtain

§(—5a%) < €(5). (8.37)

We get a contradiction, (since we have 1 < r < é and -5 < é and 5 < -5 where € > 0).
Thus (p,) is a Cauchy sequence.

Step 3 Existence: By the completeness of (II,dy), there exists some p* € II, such
that

lim p, = p*. (3.38)

L— 00
Now, from the first condition of cyclic representations in Definition 3.1, and from the
closedness of sets N;, from (8.38), we obtain u* € N3. Continuing this process, we obtain

p
pee (N (3.39)
=1

Now, we show that p* is fixed point for 7.
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From (3.39), we get that for all « there exists i(¢) € {1,2,...,p} such that u, € ¥;(,).
Putting p = p, and v = p* in (3.1), we obtain
(o (T, 1)) < €l do(F 1 %)) = oz, Tet)
< Go(Au(pe, 1)) — wo(Da(pe, 1)) < Lo (A, 1)),
where
Aq(pu, p7) = max {de(uuu*),

1
20(p1,, T i)
Since O(p,, Tp*) > 1, we get

(do (g, Ti*) + do (1™, T i), %(de(m, Th,) + da(u*yfu*))}-

* * 1 * * 1 * *
Aq (g, p*) < maX{de(uL,u ),§(de(uL,Tu ) +do(p a,UL—H))»g(dﬁ(ﬂmﬂb+l)+d9(ﬂ g ))},
and

Ao (e, ) = min {de(ﬂuﬂ*)

Letting ¢ — oo,

1 N X
Sy e T) + da V)

Eds(it, 1)) < Eolgda(u®, ")) — wo(0) < Eo(Gdou*, Ti*)).

Since &y is monotonically increasing, we get dp(u*,Tp*) < 2dg(p*, Y p*), which im-
plies dg(p*, Tp*) = 0, thus T'p* = p*.

Step 4 Uniqueness : Related to the uniqueness, suppose that there exists another
fixed point v* for 7. Then by the cyclic representation condition in Definition 3.1, we obtain

p
that v* € ﬂ N;.

i=1
As well, putting p = p* and v = v* in (3.1), we get

(o (T, 7)) = Eold (", 7)) < &0 5o, v7) ) < E0(Ba (1", 7)) — (o, 7))

where
Aq(p*,v*) = max {dg(u*, V),

(Ao T0") ", Y1), 5 (do*, Y1) + do(0, 7)) ),

20(p*, Yv*)
and
Ao, v*) = min {dg(1*,14), S (g, T0*) (", Tu)) )
2(f, V) = mi o\ V 729(,&*,TV*) o\, LV o\v , L[ .
Since Tp* = u*, Yv* =v*, and 0(u*,Yv*) > 1, we get
1
A * * :d * *\ . A * * — d * *
1(#’ v ) 9(# vV )7 2(/1’ v ) Q(M*,TV*) 9(/-1‘ v )7
and

&0 (dalu" ) < alda 1)) — o (G dou70))

which implies that wQ(WdQ(u*,V*)) = 0, then dg(p*,v*) = 0. As a result, pu*
vr. ]
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P

Corollary 3.1. Consider the complete b-metric space (I, dg). Let II = UN“ where
i=1

Ry, Ny, ..., N, are non-empty and closed subsets of I1, for p € N. Assume that

P
1) 2= U N; is a cyclic representation of Z related to T .

i=1
2) For any (pu,v) € R; X Niyq, wherei=1,2,...,p and Rypq1 =Ry,
Es(s°ds (T, Tv)) < E(Ar (1)) — ws(Aa(p,v)),

where, A (n,v) = maxx {dy (), 34 (s, T0) + dy (v, T0) ), 3 (do0, T10) + do(0, 7)) },
As(p, V) = min {ds(,u, v), % (ds(u, Tv)+ds(v, T,u)) }, &: RY — RT is an altering distance
function, w, : RY — RT is continuous and w,(7) = 0 if and only if 7 = 0.
P
Then the mapping T possesses a unique fized point in ﬂ N;.
i=1

Proof. We achieve the result from Theorem 3.1 by putting 8 = s, s > 1. O

P
Corollary 3.2. Consider the complete extended b-metric space (II,ds). Let Z = U N,
i=1

p
where Ny, Ra, ..., R, are non-empty closed subsets of I, for p € N. Assume that 1) Z = U N;
i=1

18 a cyclic representation of Z related to T .
2) For any (pu,v) € R; X Niyq, wherei=1,2,...,p and Rppq1 =Ry,

1
gdG(T% TV) < Al(:uv V) - AQ(N: V)a
where Ay and Ay are defined in Definition 3.1, 0 is bounded by é and o € (0,1).

P
Then the mapping T possesses a unique fixed point in ﬂ N;.
i=1
Proof. We achieve the desired result from Theorem 3.1 by setting & = wy = I, identity
mapping. O

Example 3.1. Let IT = [0, Z] endowed with the metric dg: IIxXIT — RT, dg(p, v) = (n—v)?

and let 6: IT x IT — [1,00), O(p,v) = i+ v+ 2. Let Ry = [0, 35], Ro = [0, %], N3 = [0, 5],

Ny = [0, 3%], X5 = [0, 2], Rs = [0, Z]. Define T: 2 — 2, 1) = log(¥ + 1), Then:
(1) (I, dp) is a complete extended b-metric space.
6

(2) 2= U N; is a cyclic representation of Z regarding to 7, since

=1
e N, i={l,...,6} are non empty closed sets.
° T(Nl) C NQ,T(NQ) C Ng,T(Ng) C N47T(N4) C N57T(N5) C N&T(Nﬁ) C Ny.
(3) We have 0(u,v) bounded by *, where a = 2=, a € (0,1),
4 1
%and O§u§2:2§u+y+2§%:9(u,y)§ 5
1

0<p<

s

+

and some

(4) T satisfy the inequality of Theorem 3.1 by taking v = £, for n € [4, 400
p € [0, §], because
4

do(Tp, Yv) = (1og (% + 1) — log (% (%)4 + 1))2; do(p,v) = (u - %)2
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m (dg(p, Yv)+do(v, T,u))

R 10g(1(1”>4 +1)+2) (- log%(%y + 1)>2 + (& 1085 + 1))2)),

and
1 1 H4 2 U 1 /p\4 2
(ot ) = (o )+ (- (2) )’
5 (Ao, T) + do(v. 1) ) = 5 (1= tos(55 + 1)+ (£ —108(55(£) +1)
Now, from Figure 1 and Figure 2, we get
5 0.5—7(‘]7&@)2
0.30 _(“_;‘) y
025k - s 2 (slog( 5 (g +1)+2)
\ , {(=toa(s 1)) « (s - ton(3 () 1))
ot 2((a-toa(s5 + 1))+ (4o (4)* +1)f) osf
FIGURE 1. Comparison be- FIGURE 2. C(.)mparison
tween functions when n < between functions when
n >>.
2
Ai(pv) = do(uv)= (=LY,
1
Ao(p,v) = 7@ TV) +do(, T )
2(p,v) 200070 o(p, Tv) + do(v,Tp)
1 1 /p\4 2 L ,u4 2
- (1) 1) (2wt ).
M ((M 0g(12 n )+ n og(12—|— )

2(p + log(5 (5)4 +1)+2)

5
Let &y(1) = 6(%+4> 7% and wy(7) = 74 with we(0) = 0. Then from Figure 3 and Figure 4,
we get

M)

0.0025 - 0.005 -
— 6 ((Iog(‘é +1)-tog(L () + 1))2)

2.5 (1, _ 25/4_—0‘“+2+“
6(s) ((” Aoneo)) ( 2(pelog( % (5)+1)42)

0ol o (log(t + 1) -tog( (4" 1) 000

0.0015 0.0031

0.002
0.0010 -

0.001
0.0005 -

L |
0.2 0.4 06 08

02 0.4 06 08

Ficure 4. Comparison
between functions when
n >>.

FiGure 3. Comparison be-
tween functions when n <
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&o ((é)sde(ﬂh TV)) = 6

IA
=)

(

(- 2)
<7T+4) ( n)) ( (,u+log(i2(%)4+l)+2)
( 4

4 2 24\ 4
2 0
( —log(— ( ) +1)) +<H log(1 +1) ))
= &(Ar(p, )) — wp(Aa(p, v)).
The example satisfies all the hypotheses of Theorem 3.1. Hence, 0 is the unique fixed
P

point of 7" in ﬂ N;.
i=1

p

Definition 3.2. Let (I, dy) be an extended b-metric space. Let Z = U N, where Ny, Ny, ...,

=1
R, are non-void and closed subsets of II, for p € N. A self mapping T: Z — Z is called
an extended (&g, wp)-weakly cyclic generalized contraction condition two, if the following
conditions holdz:)

1) 2= U N; is a cyclic representation of Z related to T.

i=1
2) For any (pu,v) € R; X Niyq, wherei=1,2,...,p and Rppq1 =Ry,

Eo(do (T, T)) < &9 (1)) — wo (Dot 1), (3.40)
where
Ay () = max {do(p,v), W (don, 1) + o0, 7)) 5 (o, ) + o, 7))
’ (3.41)
. 1
As(p,v) = min {d@ (u,v), 000 T0) (dg (1, Yv) + dg(v, T,u)) } (3.42)

As well, &: RT — RT is an altering distance function, wy: RT — R is continuous
and we(T) = 0 if and only if T = 0. Assume for pg € 11, where pux = T*uo, and 1,0,k €
NuU {0}, we have

im0 ) = 1. (3.43)
Theorem 3.2. Consider an extended b-metric space (I1,dy), where II is a non empty set.
Assume that I1 is complete and p € N such that Ri,Rq,... N, are non-void subset of 11

and Z = U N,. If the self-mapping T: Z — Z is extended (£p,wp)-weakly cyclic generalized

i=1
p

contraction condition two, then the mapping T possesses a unique fized point in m N;.
i=1

Proof. Let pug € Ry (where R; is non-empty for all 7). Consider the sequence (u,) in II given
by, p+1 =T, for all . € NU{0}.

o If 11,11 = p, then p, is a fixed point of 7.

o If 11 # u,, then we shall prove.

Step 1 lim, oo dg(p,, pto1) = 0: We have for all ¢, do(p,, pt,+1) > 0. From the first

condition in Definition 3.2, we obtaini = i(¢), 7 = {1,2,...,p} forall ¢, (p,, pt,4+1) € Ny XN;41.
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In the second condition of Definition 3.2, putting p = g, and v = p, 41, we get

59(d9(T/~LLaT/‘L+1)) = €a(d0(m+1,m+2))
< So(Ar (e, put1)) — wo (Dot put1)), (3.44)

A

where

B (s ) do(p Tpin) + do (i, T )

j

max {d0(/~LLv Put1)s )
)
(d9(.ub7,ub+2 +d9(ul+1,u,+1))
)

29(Mw TMH—I

(dé (s Th) + dg (/LL+17 i1

= ma’X{dQ(.uLhuL-‘rl) 29 ,u /1/+2
vy M

1
(dG (/-‘LL’ ,LLL-‘rl) + dO /’l/b+17 M2 } (345)

By the triangle inequality, we obtain

1
Ax (s 1) < max {dG (o put1)s 3 (d9 (toes pov1) + do(put1, /~LL+2)) } (3.46)

Since
. 1
Az(/b 1/) = min {de(/lm Mwl)» m (de(ﬂm TML+1) + dG(,U/H»la T/J’L))}
Ly L
= min {de(m, Ht1)s . (da(ub, Puy2) + do (s, uL+1)),
20(Mb7 ML+2)
thus
. 1
Az(,uu ,UL+1) = min {de(,uu ,UL+1)7 mde(ﬂu lh+2)}~ (3~47)
Ly L

Now, we assume that
do (s 1) < do(fogrs puta), (3.48)
By (8.44), we obtain

< &o(Ar(pe, tur1)) — wo(Da(ps fry1))
< 69(A1(.UL7,L"L+1)>'

Since &y is strictly increasing, we get

Eo(do(thug1, foy2))

do(thut1s poy2) < Av(p, pogr). (3.49)
Another hand, by (3.46) and (3.48), we get
Av(pey 1) < do(futrs puta)- (3.50)

From (3.50) and (3.49), we conclude that

Al(ﬂm/h+1) = d@(ML+I7ML+2)~ (351)

Another side, (3.48) gives dgp(u,, tti+2) > 0,( since if dg(p,, pro+2) = 0, we get p, =
12, that contradicts with our assumption), and since u, # 1,41, we obtain

AQ(ML,‘[LH_l) > 0. (352)
Substituting (3.51) and (3.52) in (3.44), we get
Eo(do(pir1, pur2)) < Eo(do(putt, por2)) — wo(Da(phes prur1)) < Eoldo(phurrs ut2)),
and this is a contradiction, so our assumption is not true. Then, for all : € NU 0, we have

d9(,“/,+1,ﬂ11+2) S dg(,u“ ,LLL+1)' (353)
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From this result, (3.45) and (3.47), we obtain
A, 1) = do(phu, futr)- (3.54)

1
Aoy flog1) = mde(MuML+2)~ (3.55)

Substituting (3.54) and (3.55) in (3.44), we get

Eo(do(Titiy1, Yivra)) < Eo(do(phes prir1)) — wo (Mdo(uL,erg)) ) (3.56)

From (3.53), we get that the sequence decreases monotonically, thus there exists
r > 0, such that lim dg(u,, y41) = 7.
L—>00

Now, from the relation
do(ftes put2) < O, fris2) (de(uu Haot1) + do(putas ML+2)),
we get limsup dg (e, pota) = 2r0(p,, prt2).

L— 00
Using the continuity of £y and wy, we obtain  &y(r) < &(r) —wy(r). Thus, wy(r) =0
and by definition of wy, we get r = 0. As a result

lim dg(p,, proy1) = 0. (3.57)
n—roo

Step 2 (u,) is a Cauchy sequence : Now, we shall prove that (u,) is a Cauchy
sequence in (II,dy). Presume the converse, that is (p,) is not a Cauchy sequence. Then
there exists € > 0 for which we can obtain two sub-sequences (pi,()) and (p,(s)) such that
n(s) is the smallest index for which

Ny > o) > S do(ly()s Hu(s)) = €. (3.58)

This means that
do(tin(c)—15 Hu(s)) < € (3.59)
Now, from (3.58) and by triangular inequality, we get
€ < do(fu(e)s Hn(e)) < Ou(e)s b)) [do(tru(c)s (o) —1) + do(fin(e)—15 Hin(e))]-

From (3.59), we find € < do(1,(c), b)) < €0(1u(c)s b)) FO(thas) s () ) o (B() —15 Hings) )-
Letting ¢ — oo, using (3.57) and recalling that Lim 0(u,(), ity(s)) = 1, we obtain
G—00

lim sup dy (/Lb(q), MW(C)) =€ (3.60)

¢— 00

Putting p = piy)—1 and v = pi, (o1 in (3.40)

Eo(do(Tpn(e)—1:Thuo)-1)) = Eoldo(n(o), tu(s)))
< Go(Ar(fn(e)—1s () —1)) — w(D2(fiy(e)—15 () -1))
< gG(Al(Mn(g)—lwub(g)—l))a (361)
where
1
Al(ﬂn(g)—laﬁ%(c)—l) = max{da(/‘n(g)—laﬂL(g)—l% 20(‘u 1 g )) (dG(,U*n(g)—lvlfq(g))
nis)—L1» (s

+do(pu(s)-1 Mn(g))>7 % (de(un(g)q, Fin(e))s do(pu(e) -1 ML(g))) }7
(3.62)
1
Fin(9) =15 (<))

(de(un«-)—la Pu(e)) + do(tu(e)—1, Mn(c))) } (3.63)

Do(n(e)=1, Pu()—1) = min{dg(,u’n(q)—lvﬂb(q)—l)a29(
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Now, give the estimations of dg (fty(¢)—1, tu(s)—1), do(kn(e)—1, tu(s)) and do(th,(c)—1, Hn(s))-
By applying triangle inequality in (3.58) using (3.43) and letting ¢ — oo, we find

e < limsupdy (@)1, fu(s))- (3.64)
G—00
Following the same method,we get
e < limsupdo(pn(e)—1s Hu(s)+1)- (3.65)
S— 00
Now, by the triangle inequality, we have
do(tn(e)—1> Hu(e)—1) = O(kn(o)—15 uio)—1)[do (ko) 15 () + do(Bno)s () —1)],
< 9(/"77({)—1’ NL({)—l)de (ﬂn(g)—lv Mn(c)) + g(ﬂn(c)—lv ML(<)—1)
9(“?7(()7 Mb(i)fl)[dﬁ’ (Mn(c)a UL(@)) +dg (:U’L(C)’ ML(()fl)]'
Letting ¢ — oo and using (3.57), (3.60) and (3.43), we get
limsup do (piy(o)—1, Hu(e)—1) < € (3.66)

S—00

Therefore from (3.64) and (3.66) we obtain
lim sup d@(ﬂn(c)fhlh(g)fl) = e (3.67)

—00

AISO, dg (NL(<)—1; /‘n({)) < g(ﬂe(c)—lv Nn(c))[dG (/’LL(§)—17 FLL(c)) +dy (/ffL(c)a :U'n(c))]'
Letting ¢ — oo and using (3.57), (3.60) and (3.43), we get

lim sup dG(/‘L(O—lvﬂn(g)) < € (3.68)

—00

Therefore from (3.65) and (3.68) we obtain
lim sup d&(ﬂL(()—laNn(c)) = € (3.69)
G—00

Taking the upper limit as ¢ — oo in (3.62) and (3.63) and using (3.60), (3.67) and
(3.69)

1
lim sup A1 (fhy(cy—1, Mo(c)— :max{limsupda Lo () —15 Ho(c)— ,limsup(
mSUP A (fn() 15 H(s) 1) mSUp dy (fin() -1, H(s) 1), im su i1 i)

. 1
(do (Ha()=1> (o)) + do(pu(e) -1, un(g)))) lim sup 5 (dO(Mn(c)fh fin()) + do(puo)-1, ML(g))) }

c—
1
= max{e, 5(6 +¢),0}.
Hence

limsup Aq (py(¢)—15 Hu(e)-1) = € (8.70)
c—00

lim sup Ag (4 (¢)—15 Hu(c)—1) = min { lim sup do (fy(¢)—15 Hu(e) 1),
c—00 S—00
lim sup ( L
§—00 2‘9(/177(071, Hu(s)
and

] (de(un(g)—l, fu()) + do(pu(o)-1, un@)))} = min {6, %(6 + 6)}~

lim sup Ag (py ()1, Hu()-1) = € (3.71)
¢—00

Now, taking the upper limit as ¢ — oo in (3.61) using (3.60), (3.70) and (3.71), we
get
€o(€) < &ole) —wole) < &ale),

which is a contradiction. Thus (p,) is a Cauchy sequence.
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Step 3 Existence: By completeness of (II, dy), there exists some p* € II, such that
lim p, = p*. (3.72)

L—>00

Now, from Definition (3.2) and as po € Ry, we have (u,,),>0 C Ry, since ¥y is closed
and by (3.72) we get p* € Ro. Also, from Definition 3.2, we have (p,p+1),>0 C Ra. Since No
is closed, from (3.72), we obtain p* € R3. Continuing this process, we obtain

P
pre [N (3.73)
1=1

Now, we demonstrate that p* is fixed point for 7". From (3.73), we get that for all ¢
there exists i(¢) € {1,2,...,p} such that p, € N;,).

Putting i = p, and v = p* in Definition 3.2, we obtain
So(do(Yp, Tp*)) = &oldo(pur1, Ti*)) < §o(Ar(p, 7)) — wo(Da(pe, 1*)) < Eo(Ar (s 7)),

where

Aq(p, p*) = max {de(m, ©) (do (g, Y*) + do(p*, Tpas)),

720/ (g, )
1 * *
5 (o Tyu) - dp(u* ) }.

1
* — : * T * * T X
Ao (pte, 1) min {de(uuu ),729(%1%*)(%(#” )+ do(p*, m))}

Letting ¢ — oo, we find &y(dg(u*, T *)) < &o(5do(w*, Ti*)) — wp(0). Since, & is
monotonically increasing, we get dg(u*,Tp*) < Ldg(p*,Tp*), which gives dg(u*,Tp*) = 0
and Tp* = p*.

Step 4 Uniqueness: Regarding the uniqueness, suppose that there exists further
fixed point v* for 7. Then by the cyclic representation condition in Definition 3.2, we

P
obtain that v* € ﬂ N;. As well, putting p = p* and v = v* in (3.40), we get

i=1
o(do(Tp™, Tv")) = &o(do(u™, ")) < &o(Ar(p™, ")) — wo (Do (p”,v7)),
where
1
Ar(p*,v*) = max {de(,u*,y*),w(dg(u*,TV*)—|—d9(u*,T,u*)),
1
5 (o, T0) + do(v", Tv)) |
Ag(p*,v") = min de(u*,l/*),%(de(u*vff) +dog(v*, Tp")) -
20(p*, Tv*)
Since T'p* = p* and Y'v* = v*, thus
de(ﬂ*aV*)
A * %) * %\, A * %) ]
I(M v ) de(u vV >, 2<M y V ) Q(H*aV*)

and &g(dp (1", v*)) < &o(da(p*,v*)) — we (dge((,jitf:)))- Which implies that wp (%) =0,
)

then dg(u*,v*) = 0. As a result, we get p* = v*. O

p
Corollary 3.3. Let (I, dy) be a complete extended b-metric space. Let Z = U N, where
i=1
Ny, Ro, ..., N, are non-empty and closed subsets of 11, for p € N. Assume that:
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1) 2= U N; is a cyclic representation of Z regarding to 1.
i=1
2) For any (p,v) € 8, X N;pq, where i =1,2,...,p and R,11 = Ny,

d9(T/’L’ TV) < Al(:u? V) - WG(AZ(/% I/))’
where, Aq(p, V) = max {d@(u, V), W (dg(,u, Yv)+dy(v, Tu)), %(dg(,u, Yu)+dy(v, TV)) },
Ao(p,v) = min{dg(u, v), m(d(y(u,ﬂz) + dy(v, Tu))}, we: RT — RT is continuous
and we(1) = 0 if and only if T = 0. Assume that for pg € II, we have py, = T*uo and
lim O(u,, p1y) = 1.

L;1N—00

Then the mapping T possesses a unique fixed point in ﬂ N;.
i=1

Proof. We obtain the result from Theorem 3.2 by setting &y = I. O
Example 3.2. Let IT = [—1, 1] endowed with dg: IT x IT — R™, dg(p,v) = | — v| and let

0: TIx I — [1,00), 6(1,v) = |l +[v]+1. Let Xy = [543, 1], Rp = [=f2, L], 8 = [=2, 7],
N4:[#7§]7N5_[ 1 2] NG_[_ng] N7_[ 4 7\2[} Ng = [;\/5»73]’}29:[%\/5;%]7
[#ﬁ,%] and Ny; = [—1,1]. Define T": Z — Z, T(n) = sin . Then:
1. (I1, dp) is a complete extended b-metric space.
11

2. 2= U N; is a cyclic representation of Z regarding to 7, since

i=1
a) N;, i ={1,...,11} are non empty closed sets.
b) T(Nl) C NQ,T(NQ) C Ng,T(Ng) C N4,T(N4) C N5,T(N5) C NG,T(NG) C N77
T(N7) C Ng,T(Ng) C NQ,T(NQ) - N107T(N10) C Nu,T(NH) C Ny
3. Let po € Ry, we have lim 6(p,,p,) = 1, taking into account that for uy € Ny,

;100
p, = sin’ pip and p,, = sin” pg

im0, ) = Tim (|sin’ (uo)| + [sin” (o) | + 1)
= Jim (Jsin(uo)|" + [sin(uo)|" +1) = 1,

because lim |sin(pg)|* = lim et™Isin(roll = g,
L—00 L—00
4. T satisfies the inequality of Theorem 3.2 by taking v = &, for n € [2, oo and some
e [-1,1].

do(Tpa, Tv) = | sin(p) — sin(v)] = [sin(w) = sin(5); do(p,v) = [n—E1.

m(de(ﬂﬂ'u) + dp(v, T,u)) e |311n( 5 1) <|u sin \ + ‘— — sm(u)D,
%(de(/%fﬂ) +dg(v, TV)) = 5(‘# - sin(u)‘ + ‘% - SIH(Z)D.

Now from Figure 5 and Figure 6, we get

Ar(,v) = dol,v) = |- 5|

Azm,u)=m(de<mu>+d9<u,m>) <|,L|+|an< s (lsin() [ E—sinin))

Let &(7) = n°7 and wy(7) = 5 with wy(0) = 0, then from Figure 7 and Figure 8,
we get



Fixed point results via weakly cyclic type generalized contractions 47

05-
|y

: 4= 2o |
posin{zhr) | +| Losinge)
2(1u1+|sin(z)[+1)

2 ([p=sine)] + | 75655 ~sin(zge) 1)

3 ([u=sin()] + | £ -sin(3)])

FiGURE 5. Comparison be- FIGURE 6. Comparison
tween functions when n < between functions when
n >>.
o d— \sm(u}—sin(;ﬁ” wl
s =sn(3)l Ll B ey
FIGURE 7. Comparison be- Ficure 8. Comparison
tween functions when n << between functions when
n >>.
3| .M
E(do(Tp, Tv) = 7|sin() — sin(2))
I 1 .M 12 .
< 7r3‘ —f‘— - p—sin(—=)| + |= —sin(u
Bl T 22l + [sin(B) + 1) | Gl |5 —sin(w)

= fG(AI(M7 V)) - w@(AQ(Ma V))

This example shows that all hypotheses of Theorem 3.2 are satisfied. Hence, 0 is the unique
11

fixed point of T in ﬂ N;.

i=1
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