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NEW PRECONDITIONERS FOR ELLIPTIC PROBLEMS IN
MULTIRESOLUTION SPACE

Ali TAVAKOLI, Somayeh JAFARI?

In this paper, we present two new preconditioners to solve the elliptic
boundary value problems by Galerkin's method and discuss their qualitative and
guantitative aspects. These preconditioners are constructed based on BPX
(Bramble-Pasciak-Xu) preconditioners. We show that our preconditioners are
optimal and also the convergence rates are lower than that of BPX preconditioner.
Some numerical examples are given to show the effectiveness of the new
preconditioners.
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1. Introduction

Solving the problems of partial differential equations with finite element
methods would lead to large systems. Solving these systems usually is impossible
by direct methods and even if some of these systems are solved by usual indirect
methods (Jacobi, Gauss Seidel and so on), they either would not converge or
converge slowly, since these systems are usually ill-conditioned. This problem
can be solved efficiently using some preconditioners like preconditioned
conjugate gradient method ([9]). Multilevel techniques are wused for
preconditioning linear systems arising from Galerkin methods for elliptic value
problems [6]). A class of additive Schwarz preconditioners including many well-
known preconditioners like hierarchical basis, BPX multilevel, and domain
decomposition preconditioners are suitable for implementation in parallel
computers [4]. The BPX- preconditioner has been theoretically verified in two
and three dimensional local mesh refinement settings ([1,3]). Also, the BPX
preconditioner is optimal with respect to both problem and discretization
parameters ([2,8]). Hence, the BPX is a suitable preconditioner to solve the
systems arising from discretization of elliptic boundary value problems by
Galerkin's methods.

The paper is organized as follows: In Section 2, we study some
preliminaries on multiresolution space and introduce some operators needed in
the next sections. Then, in Section 3, we present the BPX preconditioner along
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with our proposed preconditioners , the optimality of which would be proved.
After that, the quantitative aspects of these preconditioners are shown in Section
4. Finally, in Section 5 some numerical experiments are given to confirm our
theoretical results. The convergence factors and condition numbers of BPX
preconditioner and our proposed preconditioners are compared in this section to
show the optimality of the preconditioned systems and the advantages of the new
preconditioners.

2. Preliminaries

Let o be a polygonal domain in R*(n = 1,2,3) and consider the problem :
Lu = f inQ, 1)
u = 0 onodQ, (
where

a du
Lu = _Za_xi(ai’ja_xj) + au
L

such that (aij(x))' _is a symmetric uniformly positive definite matrix and
Lj
a(x) = 0 in Q. In continue, we need to define the basic concepts of multi-scale
methods for the space L,(©). A multi-resolution analysis (MRA) is a sequence of
nested spaces
VocVyccVycViy e cl(R) (2)
such that
*nV; ={0},
*UV; = L,(R),
*fx) eV, e f(2x) €Vjyy, xER
« there is a function ¢ such that the translates {¢(x — k)},c; forms a Riesz basis
for L,(R), i.e. there exist 0 < ¢, < ¢, such that for all finitely supported sequences
(cr), We have
C1 Sieal cil® < I Zezcid @ = NI gy < C2 Teal cil?
Let us denote by ¢, ¢ € L,(R) a pair of functions that are refinable,
I.e., there exist some masks = (a;)rez. @ = (@,),ez SUCh that
(%) = ez @ (2x — k), (%) = Yez tPRx —k)  (3)
for x € R. Furthermore, ¢ and ¢ are called biorthogonal, i.e.
(0G0, p(x—K)) =6y, keZ
The functions ¢ and ¢ are called dual scaling functions. Moreover, the
scaled and translated version of a function f: R - R is defined by
00 =2"f@x -k,
where j,k ez. The pair of dual scaling functions generate a sequence of nested
spaces defined by v; = clos,,mspan{e;,, k€ 7} and V; = clos,)span{@,,, k € Z}
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which are referred to as biorthogonal multi-resolution analysis (see [11]).
We now define a sequence of multi-resolution (MRA) spaces by rectangular mesh
in the usual way. Let ¢ be a scaling function with compact support in R and in-
addition, lets;, = [m27,(m+ 1)277], m € Z,j € N. Also, suppose that
<p}.‘m(x) =22¢p(2x-m), meL.
The multi-resolution space in level j on x-coordinate in the domain
I =[0,1] c R is defined as follows:

V;c = Span{q)j,m' UmE{O 21} I}"m = I}'

.....

.....

define the multi-resolution space in level j as v,=Vvi® V), i.e. the basis
functions in v, are given by
¢ () =0, (D xe, (), k={mnmne,...,2 -1}
Then, a sequence of nested finite dimensional spaces are generated:
VicV,ccV, =V, J=2
The aim is finding a solution for the following system:
Given f e v, find u € v satisfying
A(w,v) = f(v), YveV.
where

A(u,v) = Z]: fn (ai,jg—;:—; + auv)dx

We assume that there are given symmetric positive definite forms 4,(.,.) and
(.,-)x defined on v, x v, for k = 1,2,---,J. The norm corresponding to (.,.), will be
denoted by 1. Il
The operator 4,:v, - V, is defined for u € v, by

(A, v) = A(u,v), Yv €V, 4)
We, moreover, need the following definitions for k = 1,2, -+, J:
(1) The projection p,:v - v, is defined for u € v by

A(Peu,v) = A(u,v), Yv €V, (5)
(2) The projection @,: v - v, is defined for u e v by
(Qxu,v) = (u,v), Vv €V,. (6)
So we will have:
QA = APy, (7)
Q.0,=0Q0,=0Q, for I<k (8)
(Qk — Qk-1)(Q; — Q1) =0, (9)

where @, = 0.
We define x(4), the condition number of 4, to be «x(4) = 1/A where 1 and A
are the largest and smallest eigenvalues of 4, respectively. Now, for all ¢ € v
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< (49, 9) <2
(@, ¢)
Hence, if we define numbers ¢, and ¢, such that

co(P, @) < (Ad, P) < c1(d, P), (10)
then ¢, < Aand A < ¢, so that k(4) < ¢, /c,.

A

3. Preconditioners

In this section, we introduce the BPX preconditioner moreover we
present two new preconditioners that are optimal for elliptic problems.
Throughout this paper, we assume that values ¢,, ¢, and ¢, are positive constants
and independent of level. In [3], the initial preconditioner has been introduced by

B =Y7_; 4 (Qx — Qe-1) (11)
where 1, denotes the spectral radius of 4,. Moreover, in general case, the
preconditioner is stated by

30 = {¢=1 Rka' (12)
where R,:V, - V, is a symmetric positive definite operator. Also, in Remark 2.2 of
[3] is given that for finite element applications with quasi uniform grid, it can be
defined a suitable r,, that for u e v,

RQu = 4 Ty (@), (13)
where {Jl} denote the normalized nodal basis functions. Hence, R,Q, is
computable without the solution of Gram matrix systems. In order to be optimal
the preconditioner, following assumptions are needed [3]:

Assumption 1: For k = 1,2,---,], there exists a constant ¢, > 0 such that
had-Q,_DvI* < CAMAwv) VvEev. (14)
Assumption 2: Let ¢, and ¢, be constants independent of level k such that

llull?

o< Ruw < C3(Ay'w,u) Yuev, (15)

holds.
The following lemmas state the optimality of preconditioners (11) and
12):
(Le)mma 1 Suppose that the Assumption (A1) holds and B is given by (11). Then
Cflj_lA(v, v) < A(BAv,v) < JA(v,v) Vv EeV.
Proof See [3].
Lemma 2 Suppose that the Assumptions (A1) and (A2) hold. Then,
cric (v, v) < A(B,Av,v) < CyJA(v,v) Vv EV.
Proof see [3].
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3.1 Biorthogonal Preconditioner

In this subsection, the first new preconditioner that we call biorthogonal
preconditioner is defined. In order to introduce the biorthogonal preconditioner,
we need the following definition:
Definition 3. A scaling function ¢ in L* is dual to a scaling function ¢, if it
satisfies

((p(x -m),o(x — n)) =0y, MNEL
where § is Kronecker delta. Now, our first preconditioner is introduced by
pv = Xk RkaU = Xl 2 (U' ak_l)%(_l VvevV (16)

where 1, is the maximum eigenvalues of 4, and the operator R,:v, -V, is
defined as

R = 2 Xi(w 8, )9, 17
Remark 4. We recall that for any u e v,
L) < (471w, w). (18)

On the other hand, by the preconditioner g defined by (16) and biorthonormality,
it is readily seen that

Rew, ) =l w 12/ 4. (19)
Therefore, by (18) and (19), the Assumption (A2) is satisfied by ¢, = ¢; = 1, i.e
lull?/4 < (Rew,w) < (Axtu,u) Vu € V. (20)

Moreover, in order to show the advantages of our preconditioner, we need the
following definition ([5]).
Definition 5. The convergence rate on the kth level is defined by a convergence
factor ¢, satisfying
a((l =B Apwu) < Sa(wu) VueV, (21)
for some 0 < 8, < 1. The following lemma shows that our preconditioner g is
optimal.
Lemma 6. Under Assumptions (Al) and (A2),
Ci'CJ "A(w,v) < A(BAv,v) < CJA(v,v) Vv e V. (22)
Proof. Let v € v. By Assumption (A2),
J ]

A(BAv,v) = A(Z R QuAv, v) = Z A(B, 0, Av, v)
; k=1 k=1
- 2 (R APy, A Pov) by (5) and (7) and (4)
k=1 ;
< C (Pyv, A Pyv) by (20)
J
— 2 A(Pev, Pov) = CiJ A1, v). by (5) and (4)

k=1
Then, the upper inequality (22) holds. By (4), (5) and (16), we have:
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A(BAv,v) = Z{;:l (R AP, A Pev)
Now, we can write:

CiY'A(w,v) < A(BAv,v) by Lemma(1)
] J
< > A NQAvIP= Y A NARD L by ()
k=1 k=1

< G') (ReAePov, Agh) by (20)
k

= Gt Z AR, APy, ) by (5) and (4)
k

- ot Z AR, 0, Av, v) = C;LA(BAv, v).
k

3.2 Hierarchical Biorthogonal Preconditioner

In this subsection, we define our next preconditioner called hierarchical
biorthogonal preconditioner. To this end, the operator 4,:v, - v, is defined for
u €V, by

(Ayu,v) = A(w,v) Vv EV,. (23)
Letv; = span{p,, 1=12,}. Then, we define the space \7J by

~

Vi = span {90,',21—1' =12, }
Now, we give the following definitions: For k = 1,2,---,]
(1): The projection p,: vV - V, is defined for u € v by

A(Peu,v) = A(u,v), Vv €V, (24)
(2) The projection Q,:V - V, is defined for u e v by

(Qew,v) = (w,v), Vv e V. (25)
So we will have:

QAu,v) = (APu,v), VvE Ve. (26)

QQ =0QQ,=0Q, for 1<k (27)

(Qk = Qu-1)(@: = Q1) =0 (28)
where @, = 0.

Now, our second preconditioner is introduced by
BV =Dk ﬁkaU =2 A 2 ‘7’,(,21_1)‘10,(,21_1 (29)

where 1, is again the maximum eigenvalues of 4, and the projection R, : V,, - V,
is defined for u € V,, by:

Rku = /11:1 Zl (u' zpk_y_l)(pk_y_l' (30)
Assumption 3: Let ¢, and ¢, be constants independent of level k such that
ul|? =S 7
C, % < Rruww < CA'wu) vueVy (31)
k

Remark 7. We recall that for any u € v,
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L) < (471w w). (32)
On the other hand, by the preconditioner B defined by (29) and biorthonormality,
it is readily seen that

(Reu,u) = % vu e Vy (33)
Therefore, by (32) and (33), Assumption (A3) is satisfied by ¢, = ¢; = 1, i.e.
% = (Rku' u) < (Aﬁlu, u) Vue vk- (34)

The following lemma shows that the preconditioner { is optimal.
Lemma 8. Under Assumptions 1 and 3, there exist the constants ¢, ¢, and ¢, such
that

CilC AW, v) < APAv,v) < JCAwv) vvev  (35)

holds.
Proof. Let v e v. We have
ABav,y) = 3, ARkQ AV, v) = T, ARQ,Av, Pv) by (24)
= X ReQAv,4Pyv) by (23)
= X (QAv, Red ) = ¥ (APv, Rp4,Pv) by (26)
< C3 2 (Pyv, AP) by (31)

= Dk C3A(ka, Pv) = C3]A(v, v) by (24) and (23)

Now, we can write

CiY'A(wv) < A(BAv,v) by Lemma(1)
J J
< ) A NQAvIP= ) At I AP 1P by (26)
k=1 k=1
< Cz—lz (RyAyPev, A Pyv) by (34)
k
= C; 12 A(RyAPyv,v) by (24) and (23)
k

c;lz AR QrAv, v) = CA(BAv, v) by (26).
k

4 Quantitative Aspects

In this section, we give a quantitative comparison between the BPX
(8,), B and B preconditioners by their convergence factors. First, by Remark (4)
and Lemma (6),
(1= DA, v) < AU - BA)v,v) < (1 - CTY HAW,v). (36)
Also, by Lemma (8),
(1-DAW,v) < AU - BAY,v) < (1 - CTYHAW,v). (37)
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Now, the following lemma gives a comparison between the preconditioners g
and 3, quantitatively.
Theorem 9. Let g , § and B be three preconditioners defined by (12), (16) and (29)
in the level k, respectively. Moreover, suppose that 5,3, and §, are the
convergence factors related to the preconditioners g _, 5 and B, respectively. Then,
5,<6, and 8, <6,

holds.
Proof. First, we show that 3, < 6,. Since §, < 6, is proved similarly, we don’t
go through it. Let « be an arbitrary function in v,. There occurs only two cases:

D: 1/2, N u I’< Ryww) or  (id): 1/4, Il u I*=> (Ru, w).

If (i) occurs, then ¢, = 1 but, if (ii) occurs, ¢, < 1. Obviously, the values of ¢,
can be chosen according to Assumption (A2). Hence, for any u € V,, we have
C, < 1. On the other hand, the constant ¢, is independent of level. Then, one can
choose the finest level j such that ¢; 17! < 1 satisfies.

Then, 1-c¢rc,j ' =1 - ¢y~ and so according to Remark (4), Lemma(6) and
Definition (5) &, < &,. holds.
5. Numerical Experiments

In this section, we present some numerical results with the new BPX-
preconditioners given in Section 3 and compare them with the one in [3]. Like
what has been shown in [3], the hypotheses of the previous section are satisfied.
Next we present some examples and show the condition numbers of the
preconditioned system to confirm that the theories of the previous sections are in a
good agreement with the numerical results. We will employ the finite element
discretization of the following problems and produce the grids in a custom way.

In the following examples, we consider the elliptic boundary value
problems on a unit square and a slit domain (i.e. the set of points in the interior of
a unite square excluding the line {(1/2,y)|y € [1/2,1)} ), respectively. In the
following examples, we compare the condition numbers and the convergence
rates of preconditioned systems. In Tables 1, 2 and 3, cond(B,A),cond(fA) and
cond(BA) denote the condition numbers of the preconditioned systems with BPX-
preconditioner and the two new preconditioners defined in Section 3,
respectively. Also, 5,,3 and & denote the convergence rates of the preconditioned
systems with g_, 5 and B preconditioners, respectively.

In all the following examples, let {wj,l}%igl be the second order B-spline
(hat) functions in [0,1] and V; = span{g, L = 0, -+, 2713, We have ( see e.g. [11]):

P = 1/2‘/’1',1—1 te,t 1/2“";,1+1'

Also, for the dual B-spline space 7.,

Py = —1/4(70].’1_2 + 1/2(’,61.'1_1 + 3/2(’,61.'1 + 1/2¢j,l+1 - 1/4{6}.’”2.
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Example 1 Consider the Poisson's problem as follows:

A = f, inQ=1[01]x][0,1] (38)
u = 0 on 0().
The aim is finding u € Vv < H}(Q) such that
fQ VuVvdx = fQ fvdx VYveEV.
Table 1

reconditioned systems

A comparison between the condition numbers and the convergence factors of the

<

cond(4) | cond(B,A) | cond(BA) | cond(PA) 5, 5 5
level
2 3.1530 2.6951 2.0993 2.6502 | 0.7603 | 0.3480 | 0.4980
3 12.8211 4.6962 3.8184 48120 | 0.8796 | 0.4653 | 0.6153
4 51.7144 19.3627 7.0325 10.6267 | 0.9777 | 0.5340 | 0.76740
5 207.3402 | 77.8565 14.0490 | 31.8941 | 0.9892 | 0.5992 | 0.84392

Table 1 shows a comparison between the condition numbers BPX
(cond(B,4)), biorthogonal (cond(#4)) and hierarchical biorthogonal (cond(B4)) and
also the corresponding convergence factors §,,5 and &. As it can be seen, the
condition numbers increase when the levels increase. Moreover, this table shows
the optimality of our preconditioners. In addition, the convergence factors of the
preconditioned systems with 7 and & are lower than 5, and also we observe that
the biorthogonal preconditioner 5 works better than g_and 3.

Example 2 We consider the following problem:
—Au+u = f inQ=1]01]x][01]
u = 0 on a0
Table 2
A comparison between the condition numbers and the convergence factors of the
preconditioned systems

cond(A) | cond(BA) | cond(BA) | cond(PA) 86 § 5
level
2 2.4091 3.1495 2.2580 3.0912 | 04105 | 0.2221 | 0.3821
3 9.2623 4.2137 3.7665 4179 0.7790 | 0.4814 | 0.7014
4 6.9324 13.8576 6.9680 9.6945 | 0.8386 | 0.5410 | 0.7810
5 7.6741 55.4903 13.8970 | 37.3086 | 0.89790 | 0.6288 | 0.8088

that 7 and B are preferred over standard BPX preconditioner B,

Example 3 We consider the following problem:
—AM+u =

u =
where Q is a slit domain.

f
0

in Q =1[0,1] x [0,1]
on dQ

Table 2 shows the optimality of the given preconditined system. We note

(39)
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Table 3
A comparison between the condition numbers and the convergence factors of the
preconditioned systems
cond(4) | cond(B,A) | cond(BA) | cond(BA) 8, ) §
level
2 5.1987 3.2353 3.2344 3.2352 0.4437 | 0.3073 .3993
3 42.7332 15.0379 9.68209 14.9408 7942 0.5404 7004
4 145.9780 48.4062 21.5451 38.7047 0.8816 .6944 .79044
5 307.9780 83.4062 40.5451 69.7047 0.9516 7144 .9244

Table 3 shows the convergence factors of the preconditioned system in a
slit domain. As we observe, the convergence factors of g4 and B4 are lower than
B A.

6 Conclusion

Multilevel subspace decomposition provides tools for the construction of
preconditioners. The aim of this paper was to improve the BPX preconditioner in
the multiresolution space. We presented two preconditioners based on
biorthogonal and hierarchical spaces. The optimality of these preconditioners was
proved and their advantages were shown quantitatively and qualitatively.
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