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In this paper, we present two new preconditioners to solve the elliptic 

boundary value problems by Galerkin's method and discuss their qualitative and 

quantitative aspects. These preconditioners are constructed based on BPX 

(Bramble-Pasciak-Xu) preconditioners. We show that our preconditioners are 

optimal and also the convergence rates are lower than that of BPX preconditioner. 

Some numerical examples are given to show the effectiveness of the new 

preconditioners. 
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1. Introduction 

Solving the problems of partial differential equations with finite element 

methods would lead to large systems. Solving these systems usually is impossible 

by direct methods and even if some of these systems are solved by usual indirect 

methods (Jacobi, Gauss Seidel and so on), they either would not converge or 

converge slowly, since these systems are usually ill-conditioned. This problem 

can be solved efficiently using some preconditioners like preconditioned 

conjugate gradient method ([9]). Multilevel techniques are used for 

preconditioning linear systems arising from Galerkin methods for elliptic value 

problems [6]).  A class of additive Schwarz preconditioners including many well-

known preconditioners like hierarchical basis, BPX multilevel,  and domain 

decomposition preconditioners  are suitable for implementation in parallel 

computers [4].  The BPX- preconditioner has been theoretically verified in two 

and three dimensional local mesh refinement settings ([1,3]). Also, the BPX 

preconditioner is optimal with respect to both problem and discretization 

parameters ([2,8]). Hence, the BPX is a suitable preconditioner to solve the 

systems arising from discretization of elliptic boundary value problems by 

Galerkin's methods. 

The paper is organized as follows: In Section 2, we study some 

preliminaries on multiresolution space and introduce some operators  needed in 

the next sections. Then, in Section 3, we present the BPX preconditioner  along 
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with our proposed preconditioners , the optimality of which would be proved. 

After that, the quantitative aspects of these preconditioners are shown in Section 

4. Finally, in Section 5 some numerical experiments are given to confirm our 

theoretical results. The convergence factors and condition numbers of BPX 

preconditioner and our proposed preconditioners  are compared in this section to 

show the optimality of the preconditioned systems and the advantages of the new 

preconditioners. 

2. Preliminaries 

Let   be a polygonal domain in    (       ) and consider the problem :  

 
         

        
                                                                   (1) 

where 

    ∑
 

   
(    

  

   
)

   

     

such that (   ( ))
   

 is a symmetric uniformly positive definite matrix and 

 ( )    in  . In continue, we need to define the basic concepts of multi-scale 

methods for the space   ( ). A multi-resolution analysis (MRA) is a sequence of 

nested spaces  

                     ( )                                          (2) 

such that 

 •        ,  

 •    ̅̅ ̅̅ ̅    ( ),  

 •  ( )      (  )               
     

 

 • there is a function   such that the translates   (   )        forms a Riesz basis 

for   ( ), i.e. there exist         such that for all finitely supported sequences 

(  ), we have  

   ∑ |   |
  ‖∑    (   )   ‖     ( )

 
   ∑ |   |

 
    

            Let us denote by    ̃    ( ) a pair of functions that are refinable,  

i.e., there exist some masks  (  )    ,     ̃  ( ̃ )     such that 

  ( )  ∑        (    )      ̃( )  ∑      ̃  ̃(    ) (3) 

for    . Furthermore,   and  ̃ are called biorthogonal, i.e.  

( ( )  (   ))                 

                 The functions   and  ̃ are called dual scaling functions. Moreover, the 

scaled and translated version of a function       is defined by 

 
   

( )       (     )  

where        . The pair of dual scaling functions generate a sequence of nested 

spaces defined by          ( )         
            and  ̃        ( )      ̃   
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 which are referred to as biorthogonal multi-resolution analysis (see [11]). 

We now define a sequence of multi-resolution (MRA) spaces by rectangular mesh 

in the usual way. Let   be a scaling function with compact support in   and in- 

addition,  let      [     (   )   ]            . Also, suppose that 

 
   

( )       (     )          . 

              The multi-resolution space in level   on x-coordinate in the domain 

  [   ]     is defined as follows:  

   
        

   
 ⋃                         

We note that the unit square   ⋃                           . By tensor product, one can 

define the multi-resolution space in level   as      
    

 
, i.e. the basis 

functions in    are given by  

  
   
(   )   

   
( )   

   
( )          (   )|                  

Then, a sequence of nested finite dimensional spaces are generated:  

                       

 The aim is finding a solution for the following system: 

Given    , find     satisfying  
  (   )   ( )           

where 

 (   )  ∑∫ (    

  

   

  

       

    )   

 We assume that there are given symmetric positive definite forms   (   ) and 

(   )  defined on       for          . The norm corresponding to (   )  will be 

denoted by     .  

The operator          is defined for      by  

 (     )   (   )              (4) 

 We, moreover, need the following definitions for          : 

(1) The projection         is defined for     by  

  (     )   (   )              (5) 

 (2) The projection  
 
      is defined for     by  

 (     )  (   )              (6) 

 So we will have:  

  
 
           (7) 

  

  
 
 

 
  

 
 

 
  

 
                  (8) 

  

 (       )(       )       (9) 

 where  
 
  . 

We define  ( ), the condition number of  , to be  ( )      where   and   

are the largest and smallest eigenvalues of  , respectively. Now, for all      
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(    )

(   )
    

Hence, if we define numbers    and    such that  

   (   )  (    )    (   )    (10) 

 then      and      so that  ( )       .  

 

3. Preconditioners  
 

 In this section, we introduce the BPX preconditioner  moreover we 

present two new preconditioners that are optimal for elliptic problems. 

Throughout this paper, we assume that values       and    are positive constants 

and independent of level. In [3], the initial preconditioner has been introduced by  

   ∑   
     

  (       )   (11) 

 where    denotes the spectral radius of   . Moreover, in general case, the 

preconditioner is stated by  

  
 
 ∑  

 

       
    (12) 

where          is a symmetric positive definite operator. Also, in Remark 2.2 of 

[3] is given that for finite element applications with quasi uniform grid, it can be 

defined a suitable   , that for    ,  

     
    

  ∑  
 

   (   
 

 
) 

 

 
  (13) 

 where   
 

 
  denote the normalized nodal basis functions. Hence,     

 is 

computable without the solution of Gram matrix systems. In order to be optimal 

the preconditioner, following assumptions are needed [3]: 

Assumption 1: For          , there exists a constant      such that  

  (   
   

)        
   (   )        (14) 

 Assumption 2: Let    and    be constants independent of level   such that  

   

    

  

 (     )    (  
     )        (15) 

 holds. 

The following lemmas state the optimality of preconditioners (11) and 

(12):  

 Lemma 1 Suppose that the Assumption (A1) holds and   is given by (11). Then  

   
      (   )   (     )    (   )          

  Proof See [3].   

Lemma 2 Suppose that the Assumptions (A1) and (A2) hold. Then,  

   
     

   (   )   ( 
 
    )      (   )            

  Proof see [3].  
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3.1 Biorthogonal Preconditioner 

 In this subsection, the first new preconditioner that we call biorthogonal 

preconditioner is defined. In order to introduce the biorthogonal preconditioner, 

we need the following definition:   

Definition 3. A scaling function  ̃ in    is dual to a scaling function  , if it 

satisfies  

 ( (   )  ̃(   ))                      

where   is Kronecker delta.  Now, our first preconditioner is introduced by  

  ̃  ∑    ̃   
  ∑    

  
 ∑   (   ̃   

) 
   
                           (16) 

 where    is the maximum eigenvalues of    and the operator  ̃        is 

defined as • 

  ̃     
  ∑ (   ̃

   
) 

                                                               (17) 

 Remark 4.  We recall that for any    ,  

   
  (   )  (  

     )                                                                   (18) 

 On the other hand, by the preconditioner  ̃ defined by (16) and biorthonormality, 

it is readily seen that  

 ( ̃    )                                                                            (19) 

 Therefore, by (18) and (19), the Assumption (A2) is satisfied by        , i.e  

         ( ̃    )  (  
     )                                        (20) 

Moreover, in order to show the advantages of our preconditioner, we need the 

following definition ([5]).   

Definition  5. The convergence rate on the  th level is defined by a convergence 

factor    satisfying  

  ((   
 
  )   )     (   )        (21) 

 for some       .  The following lemma shows that our preconditioner  ̃ is 

optimal. 

  Lemma 6. Under Assumptions (A1) and (A2),  

   
     

   (   )   ( ̃    )      (   )       (22) 

  Proof. Let    . By Assumption (A2),  

 ( ̃    )   (∑  

 

   

 ̃       )  ∑  

 

   

 ( ̃       )

 ∑  

 

   

( ̃            )    ( )     ( )     ( )

   ∑ 

 

   

(         )    (  )

   ∑ 

 

   

 (       )      (   )    ( )     ( )

 

 Then, the upper inequality (22) holds. By (4), (5) and (16), we have:  
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  ( ̃    )  ∑   
   ( ̃            ) 

 Now, we can write:  
  

      (   )   (     )         ( )

 ∑  

 

   

  
          ∑ 

 

   

  
            ( )

   
  ∑ 

 

( ̃            )    (  )

   
  ∑ 

 

 ( ̃        )    ( )     ( )

   
  ∑ 

 

 ( ̃       )    
   ( ̃    ) 

 

3.2 Hierarchical Biorthogonal Preconditioner 

 

 In this subsection, we define our next preconditioner  called hierarchical 

biorthogonal preconditioner. To this end, the operator          is defined for 

     by  

 (     )   (   )                                                                    (23) 

 Let          
   
            . Then, we define the space  ̌  by  

   ̌      { 
      

           }  

Now, we give the following definitions: For           

(1): The projection        ̌  is defined for     by  

  (     )   (   )         ̌                                                        (24) 

 (2) The projection  
 
    ̌  is defined for     by  

 (     )  (   )         ̌                                                        (25) 

 So we will have:  

 ( 
 
    )  (       )     ̌                                            (26) 

                          
 
 

 
  

 
 

 
  

 
                                                                     (27) 

               (       )(       )                                                         (28) 

 where  
 
  . 

Now, our second preconditioner is introduced by  

  ̌  ∑    ̌  
 
  ∑     

  ∑   (   ̃
      

) 
      

                              (29) 

 where    is again the maximum eigenvalues of    and the projection  ̌   ̌   ̌  

is defined for    ̌  by:  

  ̌     
  ∑   (   ̃

      
) 

      
                                                       (30) 

 Assumption 3: Let    and    be constants independent of level   such that  

   

‖ ‖ 

  

 ( ̌    )    (  
     )     ̌                               (31) 

  Remark 7. We recall that for any    ,  
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  (   )  (  

     )                                                                   (32) 

 On the other hand, by the preconditioner  ̌ defined by (29) and biorthonormality, 

it is readily seen that  

 ( ̌    )  
‖ ‖ 

  
         ̌                                                       (33) 

 Therefore, by (32) and (33),  Assumption (A3) is satisfied by        , i.e.  

 
‖ ‖ 

  
 ( ̌    )  (  

     )         ̌                                            (34) 

               The following lemma shows that the preconditioner  ̌ is optimal.   

Lemma 8. Under Assumptions 1 and 3, there exist the constants       and    such 

that  

   
     

   (   )   ( ̌    )      (   )      (35) 

  holds. 

Proof. Let    . We have  

 

 ( ̌    )  ∑    ( ̌  
 
    )  ∑    ( ̌  

 
      )    (  )

 ∑   ( ̌  
 
        )    (  )

 ∑   ( 
 
    ̌      )  ∑   (       ̌      )    (  )

   ∑ (         )    (  )

 ∑    (       )      (   )              (  )     (  )

 

 Now, we can write  
  

      (   )   (     )         ( )

 ∑  

 

   

  
          ∑ 

 

   

  
             (  )

   
  ∑ 

 

( ̌            )    (  )

   
  ∑ 

 

 ( ̌        )    (  )     (  )

   
  ∑ 

 

 ( ̌       )    
   ( ̌    )    (  ) 

 

  

4  Quantitative Aspects 

 

                In this section, we give a quantitative comparison between the BPX 

( 
 
),  ̃ and  ̌ preconditioners by their convergence factors. First, by Remark (4) 

and Lemma (6),  

 (   ) (   )   ((   ̃ )   )  (    
     ) (   )                   (36) 

 Also, by Lemma (8),  

 (   ) (   )   ((   ̌ )   )  (    
     ) (   )                   (37) 
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 Now, the following lemma gives a comparison between the preconditioners  
 
 

and  ̃, quantitatively.  

Theorem 9. Let  
 
  ̃ and  ̌ be three preconditioners defined by (12), (16) and (29) 

in the level  , respectively. Moreover, suppose that     ̃  and  ̌  are the 

convergence factors related to the preconditioners  
 
  ̃ and  ̌, respectively. Then,  

  ̃               ̌     

holds.   

 Proof. First, we show that  ̃    . Since   ̌     is proved  similarly,  we don’t 

go through it. Let   be an arbitrary function in   . There occurs only two cases:  

 ( )          (     )   (  )          (     )  

 If ( ) occurs, then      but, if (  ) occurs,     . Obviously, the values of     

can be chosen according to Assumption (A2). Hence, for any     , we have 

    . On the other hand, the constant    is independent of level. Then, one can 

choose the finest level   such that   
        satisfies.  

Then,     
     

       
      and so according to Remark (4), Lemma(6) and 

Definition (5)  ̃      holds. 

5. Numerical Experiments 

 

 In this section, we present some numerical results with the new BPX-

preconditioners given in Section 3 and compare them with the one in [3]. Like 

what has been shown in [3], the hypotheses of the previous section are satisfied. 

Next we present some examples and show the condition numbers of the 

preconditioned system to confirm that the theories of the previous sections are in a 

good agreement with the numerical results. We will employ the finite element 

discretization of the following problems and produce the grids in a custom way.   

In the following examples, we consider the elliptic boundary value 

problems on a unit square and a slit domain (i.e. the set of points in the interior of 

a unite square excluding the line  (     )|  [     )  ), respectively. In the 

following examples, we compare the condition numbers and the convergence 

rates of preconditioned systems. In Tables 1, 2 and 3,     (   )     ( ̃ ) and 

    ( ̌ ) denote the condition numbers of the preconditioned systems with BPX- 

preconditioner and the  two new preconditioners defined in Section 3, 

respectively. Also,     ̃ and   ̌ denote the convergence rates of the preconditioned 

systems with  
 
  ̃ and  ̌ preconditioners, respectively.  

In all the following examples, let          
     be the second order B-spline 

(hat) functions in [   ] and          
   
            . We have ( see e.g. [11]):  

  
     

     
     

  
   

     
     

  

 Also, for the dual B-spline space  ̃ ,  

  ̃
     

      ̃
     

     ̃
     

     ̃
   

     ̃
     

     ̃
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 Example 1 Consider the Poisson's problem as follows:  

 
           [   ]  [   ]

        
                                          (38) 

 The aim is finding       
 ( ) such that  

 ∫  
 
       ∫  

 
              

  Table 1  

A comparison between the condition numbers and the convergence factors of the 

preconditioned systems 

 

      
    ( )     (   )     ( ̃ )     ( ̌ )     ̃  ̌ 

 2 3.1530 2.6951   2.0993 2.6502 0.7603 0.3480  0.4980 

3 12.8211 4.6962   3.8184  4.8120 0.8796 0.4653 0.6153 

4 51.7144 19.3627   7.0325 10.6267 0.9777 0.5340 0.76740 

5 207.3402 77.8565 14.0490 31.8941 0.9892 0.5992 0.84392 

   

 Table 1 shows a comparison between the condition numbers BPX 

(    (   )), biorthogonal (    ( ̃ )) and hierarchical biorthogonal (    ( ̌ )) and 

also the corresponding convergence factors     ̃ and  ̌. As it can be seen, the 

condition numbers increase when the levels increase. Moreover, this table shows 

the optimality of our preconditioners. In addition, the convergence factors of the 

preconditioned systems with  ̃ and  ̌ are lower than    and also we observe that 

the biorthogonal preconditioner  ̃ works better than  
 
 and  ̌. 

Example 2 We consider the following problem:  

 
             [   ]  [   ]

                                
  

 Table 2 

A comparison between the condition numbers and the convergence factors of the 

preconditioned systems 

   
      

    ( )     (   )     ( ̃ )     ( ̌ )     ̃  ̌ 

  2   2.4091   3.1495   2.2580   3.0912 0.4105 0.2221 0.3821 

3   9.2623   4.2137   3.7665   4.179 0.7790 0.4814 0.7014 

4   6.9324   13.8576   6.9680   9.6945 0.8386 0.5410 0.7810 

5   7.6741   55.4903   13.8970   37.3086 0.89790 0.6288 0.8088 

   

 Table 2 shows the optimality of the given preconditined system. We note 

that  ̃ and  ̌ are preferred over standard BPX preconditioner  
 
. 

 

Example 3 We consider the following problem:  

 
             [   ]  [   ]

       
                                         (39) 

 where   is a slit domain. • 
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  Table 3 
 A comparison between the condition numbers and the convergence factors of the 

preconditioned systems 

   
      

    ( )     (   )     ( ̃ )     ( ̌ )     ̃  ̌ 

 2  5.1987 3.2353 3.2344 3.2352  0.4437  0.3073   .3993 

3 42.7332 15.0379 9.68209 14.9408  .7942  0.5404   .7004 

4 145.9780   48.4062 21.5451 38.7047 0.8816   .6944 .79044 

5 307.9780   83.4062 40.5451 69.7047 0.9516   .7144  .9244 

 Table 3 shows the convergence factors of the preconditioned system in a 

slit domain. As we observe, the convergence factors of  ̃  and  ̌  are lower than 

 
 
 .  

6  Conclusion 

 Multilevel subspace decomposition provides tools for the construction of 

preconditioners. The aim of this paper was to improve the BPX preconditioner in 

the multiresolution space. We presented two preconditioners based on 

biorthogonal and hierarchical spaces. The optimality of these preconditioners was 

proved and their advantages were shown quantitatively and qualitatively. 
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