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CHARACTERIZATION OF *-VARIETIES AND THEIR CORES

Ghorban Khalilzadeh Ranjbar1, Tooraj Amiri 2

Dixon has proved that each semivariety can be characterized by homoge-

neous polynomials [6]. Also, it has been proved that each variety of Banach algebras
between the variety of all IQ-algebras and the variety of all IR-algebras can not be char-
actrized by homogeneous polynomials alone [7]. In this paper, according to the structure
and definition of varieties, *-varieties of C*-algebras have been introduced. In addition,

it will be see that each *-variety of C*-algebras can be characterized by homogeneous
polynomials alone. It is shown that each *-variety of C*-algebras has a unique core.
Also, we shall introduce the cores of some well-known *-varieties.
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1. Introduction and Preliminaries

Let A be a Banach algebra and δ > 0. Then,

∥p∥A,δ = sup{∥p(x1, ..., xn)∥ : xi ∈ A, ∥xi∥ ≤ δ, 1 ≤ i ≤ n}.

When δ = 1, ∥p∥A,δ is denoted by ∥p∥A , where p = p(X1, ..., Xn) is a polynomial [8].
However, a polynomial in this paper is non-commuting and there is no constant term for it.
A product ( or direct sum ) of a family {Ai}i∈I of Banach algebras, is defined as follows

⊕i∈IAi = {(ai) ∈
∏
i∈I

Ai : ∥(ai)∥ < ∞}

where ∥(ai)∥ = sup{∥ai∥ : i ∈ I} [6].
Obviously, ⊕i∈IAi is a Banach algebra under these pointwise operations
i) (ai) + (bi) = (ai + bi)
ii) µ(ai) = (µai)
iii) (ai)(bi) = (aibi).

A formal expression ∥p∥ ≤ K is called a law, where K ∈ R and p is a polynomial. A
Banach algebra A satisfies the recent law if ∥p∥A ≤ K and ∥p∥A ≤ K is a homogeneous law
if p is a homogeneous polynomial.
When we talk about universal algebras, a non-empty class V of complex associative alge-
bras is a variety if it is closed under taking subalgebras, quotient algebras, direct sum and
isomorphic images. Regarding [1] (or [3], p.169-170, Theorem1.3), Birkhoff has proved that
a non-empty class of complex associative algebras V is a variety if and only if there is a set
L of polynomials such that,

V = {A : p(x1, ..., xn) = 0, (x1, ..., xn ∈ A), ∀p ∈ L}.

1Mathematics Department, Bu-Ali Sina University, 65174-4161, Hamadan, Iran, e-mail:
gh khalilzadeh@yahoo.com

2Mathematics Department, Bu-Ali Sina University, 65174-4161, Hamadan, Iran,e-mail:
amiri takin@yahoo.com

41



42 Ghorban Khalilzadeh Ranjbar, Tooraj Amiri

Now, we talk about varieties of Banach algebras and introduce some useful results.
Dixon defined varieties of Banach algebras and proved an analogue of Birkhoff’s Theorem
for Banach algebras.
If there exists a non-negative real-valued function on the set of all polynomials P as p 7−→
f(p) and V is precisely a class of Banach algebras A such that ∥p∥A ≤ f(p), then V is said
to be a variety where p ∈ P [6]. A non-empty class V of Banach algebras is a variety if and
only if it is closed under taking closed subalgebras, quotient algebras, products (or direct
sums) and images under isometric isomorphisms [6].

Supose V is a varity and p a polynomial. Then, |p|V has been defined by [10] as
follows

|p|V = sup{∥p∥A : A ∈ V }.
Also, for a variety V and each polynomial p, there is found the following definition

|p|V = inf{Kp : V can be obtained by the laws {∥p∥ ≤ Kp}p }
where {|p|V }p is a family of laws which determine V .[10]

These results have been provided in [7]. An H-variety is a variety that is generated
by a family of homogeneous laws. There exists an A ∈ V such that for all polynomial p, we
have |p|V = ∥p∥A where V is a variety and this theorem shows that |p|V is always obtaind
and also, we have each variety of Banach algebras is singly generated. Let V1, V2 be two
varietirs. Then, V1 ⊆ V2 if and only if |p|V1 ≤ |p|V2 for all polynomials p.

We note that, partially ordered by inclusion, the class of all varieties is a complete
lattice.
Each variety is determined by a family of laws, but among such families one is particularly
noteworthy; namely, the family of laws with minimal right-hand sides K. The function giving
these right-hand sides is,

p 7−→ |p|V
we can compare the elements of the lattice of all varieties,

V = {A : ∥p∥A ≤ Kp, for all polynomial p}.
which is an analogue of Birkhoff’s Theorem. We shall denote the unit ball of A by A1, where
A is a Banach algebra. The class of all varieties is a complete lattice, and we shall denote
the variety of all Banach algebras by 1. So, it is clear that if V is a variety of algebras, then
V ∩ 1 is a variety of Banach algebras. Take C as a class of Banach algebras, the intersection
of all varieties containing C is called the variety generated by C and denoted by V (C) . If
C has exactly single member as A, then V (C) is singly generated and denoted by V (A) .

If {Aα}α is a family of Banach algebra and A =
∏

α∈I Aα Then, the supremum of
{V (Aα) : α ∈ I} in the lattice of varieties is V (A).

A Banach algebra which is bi-continuously isomorphic with the quotient of a uniform
algebra by a closed ideal of it, is a Q-algebra. If the isomorphism is isometric, then it is said
to be an IQ-algebra. An R-algebra is a Banach algebra which is bicontinuously isomorphic
to a closed subalgebra of B(H), where H is a separable infinite dimentional Hilbert space.
When the isomorphic is an isometriy, it is said to be an IR-algebra.

Let A be a closed subalgebra (regarding the uniform norm) of the C*-algebra C(X)
where X is a compact Hausdorff topological space and C(X) is the set of all continuous
complex functions on X. If all of the constant functions are contained in A and for every
distinct x, y ∈ X there is f ∈ A with f(x) ̸= f(y) (in the other words,A separate points in
X), then A is a uniform algebra.
As a closed subalgebra of the commutative Banach algebra C(X), a uniform algebra itself
is a unital commutative Banach algebra (when equipped with the uniform norm). Hence, it
is a Banach function algebra. A considerable property about varieties is that they can be
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compared by their laws. Also, it has been proved that each variety V has a Banach algebra
A ∈ V as a generator such that for any polynomial p we have ∥p∥A = |p|V . So, V is singly
generated meaning that each element of V is a quotient of a closed subalgebra of a direct
sum of some copies of A, up to isometric isomorphic). Each variety has many generators,
but just one of them has maximum property, that is, a maximal algebra of the variety by
the name core .
If C is a class of Banach algebras, then S(C), Q(C) and P (C) are the classes of all Banach
algebras which are isometrically isomorphic to closed subalgebras of Banach algebras in C,
quotient algebras of Banach algebras in C and products of families of Banach algebras in C.
Let C be a non-empty class of Banach algebras. Then, V (C) = QSP (C).

For a non-empty class of Banach algebras as U , we denote the class of all Banach

algebras which are bi-continuously isomorphic to members of U by Û [10].
The variety of all IQ-algebras and IR-algebras are generated by complex numbers

(C)and B(H), respectively where H is a separable infinite dimensional Hilbert space [6]
(p.483–484).

The following concepts are required for our work, so they’ve been listed from[11]. For
a conjugate-linear map a 7→ a∗ on A such that for all a, b ∈ A we have,

a∗∗ = a

and

(ab)∗ = b∗a∗.

where A the pair (A, ∗) is called an involution algebra, or *-algebra. A Banach *-algebra is
a *-algebra A with a complete sub-multiplicative norm such that,

∥a∗∥ = ∥a∥ (a ∈ A).

A C*-algebra is a Banach *-algebra A with this property that,

∥a∗a∥ = ∥a∥2 (a ∈ A).

A closed *-subalgebra of a C*-algebra is obviously a C*-algebra. So, we shall call it a C*-
subalgebra.
If {Ai}i∈I is a family of C*-algebras, then the direct sum ⊕i∈IAi is a C*-algebra with the
pointwise-defined involution. Let V be a family of C*-algebras. We say that V is a *-variety
( variety of C*-algebras), if it is closed under taking direct sums, C*-subalgebras, quotients
(by closed ideals) and *-isomorphisms. These results are chosen from [10]. Let V ∗ be a
non-empty class of C*-algebras. Then, V ∗ is a *-variety if and only if there exists a family
of laws {∥p∥ ≤ Kp}p such that

V ∗ = {A : A is a C∗-algebra and ∥p∥A ≤ Kp for all p}.
Let V ∗,W ∗ be two *-varieties. Then,
(i) V is the smallest variety of Banach algebras such that V ∗ = V ∩ 1∗ where 1∗ is the
*-variety of all C*-algebras.
(ii) V ∗ ⊆ W ∗ if and only if V ⊆ W . Let A be a C*-algebra and W be a variety of Banach
algebras such that W ⊆ V (A) but W ̸= V (A). Then, there exists a C*-algebra B such that,
B ∈ V (A)\W . Hereinafter, even we say *-variety it means a variety of C*-algebras.

2. Characterization of *-varieties

Definition 2.1. Let Ω be a class of C*-algebras. Then:
(i) S∗Ω is the class of all C*-algebras that are *-isomorphic to C*-subalgebras of C*-algebras
in Ω.
(ii) Q∗Ω is the class of all C*-algebras that are *-isomorphic to quotient algebras of C*-
algebras in Ω.
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(iii) P ∗Ω is the class of all C*-algebras that are *-isomorphic to direct sums of families of
C*-algebras in Ω.

Lemma 2.1. Let Ω be a non-empty class of C*-algebras. Then,
(i)S∗S∗Ω = S∗Ω
(ii)Q∗Q∗Ω = Q∗Ω
(iii)P ∗P ∗Ω = P ∗Ω.

Proof. (i) Straightforward.
(ii) By definition we have Ω ⊆ Q∗Ω thus Q∗Ω ⊆ Q∗Q∗Ω. For reverse of inclusion, if
A ∈ Q∗Q∗Ω, then, there exist B ∈ Q∗Ω and closed ideal I E B. Also, there exists an
*-isomorphism f : A −→ B/I. Since B ∈ Q∗Ω there is E ∈ Ω, closed ideal J ⊆ E and
*-isomorphism g : B −→ E/J . Since I is a closed ideal of B, it is cocluded that g(I) is also
a closed ideal of E/J . Take

H = {h ∈ E : h+ J ∈ g(I)}.

Then, H is a C*-subalgebra of E. If Π : E −→ E/J is the quotient map, then it is
continuous. Since Π is continuous, H = Π−1(g(I)) is closed and it is an ideal of E. Let
h : E/H −→ A be defined by,

h(e+H) = f−1(g−1(e+ J) + I).

It is obvious that h is well-defined and an *-isomorphism of E/H onto A, so A ∈ Q∗Ω.
(iii) Since Ω ⊆ P ∗Ω, we have P ∗Ω ⊆ P ∗P ∗Ω. If A ∈ P ∗P ∗Ω, then there exist {Ai}i∈I

a family of elements of P ∗Ω and an *-isomorphism f : A −→ ⊕i∈IA. Take i ∈ I, since
A ∈ P ∗Ω, there exists {A(i,j)}j∈Ii a family of elements of Ω and an *-isomorphism gi :
Ai −→ ⊕j∈IiA(i,j). Take J = {(i.j) : i ∈ I, j ∈ Ii} and h : ⊕(i,j)∈JA(i,j) −→ A is defined as
follows:

h((a(i,j))(i,j)∈J ) = f−1(g−1
i (a(i,j))j∈Ii)i∈I .

It is clear that h is an *- isomorphism of ⊕(i,j)∈JA(i,j) onto A. So, A ∈ P ∗Ω. �

Lemma 2.2. Let Ω be a non-empty class of C*-algebras. Then,
(i) P ∗S∗Ω ⊆ S∗P ∗Ω.
(ii) P ∗Q∗Ω ⊆ Q∗P ∗Ω.
(iii) S∗Q∗Ω ⊆ Q∗S∗Ω.

Proof. (i) Straightforward.
(ii) If A ∈ P ∗Q∗Ω, then there exists a family {Ai}i∈I of elements of Q∗Ω and an *-
isomorphism f : A −→ ⊕i∈IAi. Take i ∈ I. Since Ai ∈ Q∗Ω, there exist Bi ∈ Ω, closed
ideal Di ∈ Bi and *-isomorphism gi : Ai −→ Bi/Di. Since Di is a closed ideal of Bi, it is
concluded that, ⊕i∈IDi is a closed ideal of ⊕i∈IBi. Let h : ⊕Bi/⊕Di −→ A be defined as
follows,

h((bi)i∈I +⊕Di) = f−1(g−1
i (bi +Di))i∈I .

Then, h is an *-isomorphism of ⊕Bi/⊕Di onto A. So A ∈ Q∗P ∗Ω.
(iii) Straightforward. �

Definition 2.2. For each non-empty class of C*-algebras Ω, we denote by V ∗(Ω) the small-
est *-variety containing Ω.

The following theorm shows that each *-variety can be characterized by means of the
operators S∗, Q∗ and P ∗.

Proposition 2.1. Let Ω be a non-empty class of C*-algebras. Then,

V ∗(Ω) = Q∗S∗P ∗Ω.
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Proof. By Lemmas 2.2 and 2.3, we have

Q∗Q∗S∗P ∗Ω = Q∗S∗P ∗Ω

and

S∗Q∗S∗P ∗Ω ⊆ Q∗S∗S∗P ∗Ω

= Q∗S∗P ∗Ω

also

P ∗Q∗S∗P ∗Ω ⊆ Q∗P ∗S∗P ∗Ω

⊆ Q∗S∗P ∗P ∗Ω

= Q∗S∗P ∗Ω.

Therfore, Q∗S∗P ∗Ω is a *-variety. But, if W ∗ is a *-variety containing Ω, then

Q∗S∗P ∗Ω ⊆ W ∗

therefore
V ∗(Ω) = Q∗S∗P ∗Ω.

�

Corollary 2.1. Every C*-algebra is a quotient of a *-subalgebra of a direct sum of some
copies of B(H).

Proof. We have
V ∗(B(H)) = V (B(H)) ∩ 1∗ = 1∗

by [5]. So, by theorem 2.5, we have

1∗ = Q∗S∗P ∗(B(H)).

�

3. C*-algebras and homogeneous polynomials

Each variety of Banach algebras is not a semi-variety. Also, each variety is not a
homogeneous variety (that could be generated by homogeneous laws). But it is proved that
each *-variety is a semi-variety, and also is a homogeneous variety that is a considerable
difference between the variety of Banach algebras and the *-variety.

Theorem 3.1. Let V ∗ = V ∗(B) be a *-variety. Then,
(i) V ∗ = {A : Ais a C∗-algebra and ∥p∥A ≤ ∥p∥B for all p}
(ii) V ∗ = {A : A is a C∗-algebra and there are M, δ > 0, ∥p∥A,δ ≤ M.∥p∥B for all p}
(iii) V ∗ = {A : A is a C∗-algebra and there are M, δ > 0, ∥p∥A,δ ≤ M.∥p∥B when p
is a homogeneous polynomial}
(iv) V ∗ = {A : A is a C∗-algebra and ∥p∥A ≤ ∥p∥B for all homogeneous p}

Proof. (i) It is clear.
(ii) Let A be a C*-algebra such that for some M, δ > 0, ∥p∥A,δ ≤ M.∥p∥B for all p. It
is proved that A ∈ V ∗ (by the following modification of the proof of theorem 3.1). Take

X = BAδ
1 and Γ = BX . Let ξa, ξ

∗
a and θ : U0 −→ Aδ be defined as before (for each a ∈ Aδ).

We have
∥p(a′1, ..., a′n)∥ ≤ M.∥p(ξ′a1

, ..., ξ′an
)∥.

So, θ is well-defined. Let U = U0, so U/kerθ is *-isomorphic with A. Hence A ∈ V ∗. The
converse is evident.
(iii) If p be a polynomial, we write pi for the part of p which is homogeneous of degree i.Thus,
we can write p = p1 + ...+ pm for some positive integer m. Let A be a C*-algebra such that
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for some M, δ > 0 and all homogeneous polynomials p, ∥p∥A,δ ≤ M.∥p∥B. We shall prove
that A ∈ V ∗. Let p be a polynomial and i is a positive integer. We have ∥pi∥A,δ ≤ M.∥pi∥B.
But ∥pi∥B ≤ ∥p∥B (see[5]). So, ∥pi∥A,δ ≤ M.∥p∥B, or ∥pi∥A,δ/2 ≤ 2−iM.∥pi∥B. Hence

∥p∥A,δ/2 ≤
m∑
1

∥pi∥A,δ/2 ≤ M.∥p∥B.

Thus A ∈ V ∗. The converse is evident.
(iv) Observe that we have
V ∗ = {A : Ais a C∗-algebra and ∥p∥A ≤ ∥p∥Bfor all polynomials p}
⊆ {A : Ais a C∗-algebra and ∥p∥A ≤ ∥p∥Bfor all homogeneous polynomials p}
⊆ {A : A is a C∗-algebra, there are M, δ > 0 such that ∥p∥A,δ ≤ M.∥p∥Bfor all
homogeneous polynomials p} = V ∗. Thus, the theorem is proved. �

Corollary 3.1. Let A be a C*-algebra. If B ∈ V̂ (A)\V (A). Then B is not a C*-algebra.

Proof. By theorem 3.1, we have

V ∗(A) = V (A) ∩ 1∗ = V̂ (A) ∩ 1∗.

�

.

4. cores of *-varieties

In this section, we introduce the core of *-varieties and its uniqueness, like the one
proposed in [9] for varieties of Banach algebras. Also, we give some examples of *-varieties
and find their cores.

Definition 4.1. Let V be a *-variety. A C*-algebra A in V is its core if there are sequences,
like {ai}∞i=1 and {a∗i }∞i=1 of members of A1 (where A1 is the unit ball of A) such that the
C*-subalgebra generated by {a1, a2, ...} ∪ {a∗1, a∗2, ...} is dense in A and

|p|V = ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥

for all polynomial p = p(X1, ..., Xn).

Definition 4.2. Suppose that A is a C*-algebra. Then, we say that A has maximum property
( m-property) if there are sequences {ai}∞i=1 and {a∗i }∞i=1 of members of A1 such that for
each polynomial p = p(X1, ..., Xn) it is concluded that,

∥p∥A = sup{∥p(x1, ..., xn)∥ : xi ∈ A}
= ∥p(a1, ..., an)∥
= ∥p(a∗1, ..., a∗n)∥

Lemma 4.1. Let A be a C*-algebra, then
(i) If A is a core of any *-variety like V , then A has m-property.
(ii) If A has m-property, then there exists a C*-subalgebra of A which is a core of V (A)

Proof. (i) Suppose that A is a core of *-variety V . Then, there are sequences {ai}∞i=1 and
{a∗i }∞i=1 of members of A1 such that for each polynomial p = p(X1, ..., Xn) we have

∥p∥A = ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥.
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So,

∥p∥A ≤ |p|V
= ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥
≤ ∥p∥A.

Thus, it is concluded that, ∥p∥A = ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥ and it means that A has
m-property.
(ii) If A has the m-property and {ai}∞i=1, {a∗i }∞i=1 are the sequences in definition5.2 , then
we have

|p|V (A) = ∥p∥A
= ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥.

Let A0 be the normed subalgebra of A generates by {ai}∞i=1 and {a∗i }∞i=1 and A0 be its

closure. Then, A0 ∈ V (A). In addition, for all polynomial p we will have,

∥p(a1, ..., an)∥A0
= ∥p(a∗1, ..., a∗n)∥A0

= ∥p(a1, ..., an)∥A
= ∥p(a∗1, ..., a∗n)∥A
= |p|V (A)

So, A0 is a core of V (A). �

Theorem 4.1. Each *-variety has a unique core (up to an isometric *-isomorphism).

Proof. For each *-variety V , there exist C*-algebra A and sequences {ai}∞i=1, {a∗i }∞i=1 in A1

such that, for any polynomial p(X1, ..., Xn) we see that,

∥p(a∗1, ..., a∗n)∥ = ∥p(a1, ..., an)∥
≤ ∥p∥A
≤ sup{∥p∥A : A ∈ V }
= ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥.

therefore, A has m-property. Then, by the lemma 5.3, it has a core. Now suppose that V is
a *-variety with two cores A and B, so by definition 5.1, there are sequences {ai}∞i=1, {a∗i }∞i=1

for A and {bi}∞i=1, {b∗i }∞i=1 for B such that for each polynomial p = p(X1, ..., Xn), we have,

|p|V = ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥

and

|p|V = ∥p(b1, ..., bn)∥ = ∥p(b∗1, ..., b∗n)∥.
Let A0,B0 be normed subalgebras determined , respectively, by {ai}∞i=1, {a∗i }∞i=1 and {bi}∞i=1,
{b∗i }∞i=1 and mapping Q : A0 −→ B0 defined by,

Q(p(a1, ..., an)) = p(b1, ..., bn)

Q(p(a∗1, ..., a
∗
n)) = p(b∗1, ..., b

∗
n)

where p(X1, ..., Xn) is a polynomial. The mappingQ is well-defined because, if p(a1, ..., an) =
0 and p(a∗1, ..., a

∗
n) = 0, then we have ∥p(b1, ..., bn)∥ = 0 and ∥p(b∗1, ..., b∗n)∥ = 0, hence

p(b1, ..., bn) = 0 and p(b∗1, ..., b
∗
n = 0. Also, this mapping is a homomorphism of A0 onto B0

and it is clear that Q is an isometry, so A0,B0 are isometrically isomorphic. But we know
Ao = A and Bo = B, thus A is isometrically isomorphic to B. �
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Example 4.1. Let Nn be the *-variety defined by the law

∥X1...Xn∥ = ∥X∗
1 ...X

∗
n∥ = 0

for each n ∈ N, namely the set of all nilpotent C*-algebras of class n. Let Fn be the free
C*-algebra on symbols O1, O2, ... and O∗

1 , O
∗
2 , ... subjected to the relations

∥Oi1 ...Oin∥ = ∥O∗
i1 ...O

∗
in∥ = 0

for all i1, ..., in ∈ N. Let {Un}∞n=1, {U∗
n}∞n=1 be the fixed enumeration of the non-zero words

in {O1, O2, ...} and {O∗
1 , O

∗
2 , ...} and An be the C*-algebra of all infinite series x =

∑
αnUn

and y =
∑

βnU
∗
n where

∑
|αn| < ∞ and

∑
|βn| < ∞. Then, An is a nilpotent C*-algebra

of class n with norm defined by

∥x∥ =
∑

|αn|, ∥y∥ =
∑

|βn|.

If there are sequences {On}∞n=1, {O∗
n}∞n=1 of elements of (An)1 such that, for any polynomial

p = p(X1, ..., Xn) we have,

|p|Nn = ∥p(O1, ..., Om)∥ = ∥p(O∗
1 , ..., O

∗
m)∥.

whereas, members of An are finite serie, Therefore An is the core of Nn.

Example 4.2. Suppose that 1∗ is the *-variety of all C*-algebras. Also, let F be the free
algebra on symbols X1, X2, ...,X

∗
1 , X

∗
2 , ... and {wn}∞n=1, {w∗

n}∞n=1 be fixed enumeration of the
words on the alphabet {X1, X2, ...} and {X∗

1 , X
∗
2 , ...}. Let A be the C*-algebra of all infinite

series x =
∑

αnwn, y =
∑

βnw
∗
n such that,

∑
|αn| < ∞,

∑
|βn| < ∞. Then, A with the

norm defined by

∥x∥ =
∑

|αn|, ∥y∥ =
∑

|βn|
is a C*-algebra. Then {Xn}∞n=1 and {X∗

n}∞n=1 are sequences of elements of A1 such that for
all polynomials p(Y1, ..., Yn) we have,

|p|1∗ = ∥p(X1, ..., Xn)∥ = ∥p(X∗
1 , ..., X

∗
n)∥.

If A0 is a *-subalgebra of A that is generated by {X1, X2, ...} and {X∗
1 , X

∗
2 , ...} then A0 is

dense in A. It is seen that, any *-variety is a homogeneous variety and we can suppose

p(X1, X2, ...) =
∑

ai1i2...Xi1Xi2 ...

is an element of A, so we have
∑

|ai1i2...| < ∞.
If ϵ > 0, then, we have N > 0 such that for all k > N ,

∑
m>k |ai1...ik | < ϵ.

If pk(X1, X2, ...) =
∑

ai1...ikXi1 ...Xik , then for all k ∈ N we have pk ∈ A0 and ∥p−pk∥ −→
0. So pk −→ p and this means that A0 = A, therefore A is the core of 1∗.

Corollary 4.1. The cores of *-varieties of IR-algebras and IQ-algebras are defined as above.

It is seen that, the core of any *-variety is unique and it has the maximum property.
Now, we try to find more about cores of *-varieties, so at first, we present the following
theorem that shows the relationship between a generator and the core of a *-variety.

Theorem 4.2. Let A be a C*-algebra, and V ∗ = V ∗(A) ( the *-variety generated by A ).
Then, the core of V ∗ is a closed C*-subalgebra of direct sum of some copies of A (up to an
isometric *-isomorphism).

Proof. By theorem 5.4, V ∗ has a unique core, namelyM . Let {an}∞n=1, {a∗n}∞n=1 be sequences
of elements of M1 such that, for each polynomial p = p(X1, ..., Xn) we have

M0 = {p(a1, ..., an)}p = M

and
M0 = {p(a∗1, ..., a∗n)}p = M
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also we have,
|p|V ∗ = ∥p(a1, ..., an)∥

and
|p|V ∗ = ∥p(a∗1, ..., a∗n)∥.

Let X = A1
M0 and Γ = AX . Since A ∈ X, for each 1 ≤ i < ∞ we have Γ ∈ V . Now

suppose that ξai : X −→ A are defined by,

ξai(x) = x(ai) (x ∈ X)

and ξa∗
i
: X −→ A are defined by

ξa∗
i
(x) = x(a∗i ) (x ∈ X).

So, we have ξai , ξa∗
i
∈ Γ and ∥ξai∥∞, ∥ξa∗

i
∥∞ ≤ 1 for each 1 ≤ i < ∞. Let U0 be the

*-subalgebra of Γ determined by {ξai}∞i=1 and {ξa∗
i
}∞i=1. If Θ : U0 −→ M0 is the *-

homomorphism defined by,
Θ(ξai) = ai

and
Θ(ξa∗

i
) = a∗i .

Take u = p(ξa1 , ..., ξan), u
∗ = p(ξa∗

1
, ..., ξa∗

n
). Then, Θ(u) = p(a1, ..., an),Θ(u∗) = p(a∗1, ..., a

∗
n),

and also we have,

∥Θ(u)∥ = ∥p(a1, ..., an)∥M0

= |p|V ∗

= ∥p∥A
= sup{∥p(x(a1), ..., x(an))∥A : x ∈ X}
= sup{∥p(ξa1 , ..., ξan)(x)∥ : x ∈ X}
= sup{∥u(x)∥ : x ∈ X}
= ∥u∥

and

∥Θ(u∗)∥ = ∥p(a∗1, ..., a∗n)∥M0

= |p|V ∗

= ∥p∥A
= sup{∥p(x(a∗1), ..., x(a∗n))∥A : x ∈ X}
= sup{∥p(ξa∗

1
, ..., ξa∗

n
)(x)∥ : x ∈ X}

= sup{∥u∗(x)∥ : x ∈ X}
= ∥u∗∥.

So, Θ : U0 −→ M0 is an isometrically isomorphism. Thus, U0 and M0 = M are isometrically
isomorphic. We saw that U0 is a closed C*-subalgebra of AX and this completes the proof.

�

Corollary 4.2. Let V be a *-variety and D ̸= {0} be the core of V . Then, we can choose
{ai}∞i=1, {a∗i }∞i=1 of elements of D1 such that, for all i ∈ N, we have ∥ai∥ = 1, ∥a∗i ∥ = 1 and
for all polynomial p = p(X1, ..., Xn),

|p|V = ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥
and also D0 = D, where D0 is the C*-subalgebra generated by {ai}∞i=1 and {a∗i }∞i=1.

Proof. By the theorem 4.8, if A ̸= {0}, then ∥ξai∥∞ = 1 for each 1 ≤ i < ∞. �
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Corollary 4.3. Let V be the variety of all IQ-algebras. Then, there exists a set X such
that, the core of V is a *-subalgebra of CX , where C is the set of all complex numbers.

Proof. By theorem 4.8 and this fact that V = V (C), the proof is obvious. �
Corollary 4.4. For each C*-algebra A, there exists a *-subalgebra B of direct sum of some
copies of A and sequences {ai}∞i=1, {a∗i }∞i=1 of members of B1 (or with norms one ) such that
for each polynomial p(X1, ..., Xn), we have

sup{∥p(x1, ..., x2)∥ : xi ∈ B1} = ∥p(a1, ..., an)∥ = ∥p(a∗1, ..., a∗n)∥.
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