U.P.B. Sci. Bull., Series A, Vol. 81, Iss. 1, 2019 ISSN 1223-7027

ON APPROXIMATION OF COMMON SOLUTION OF FINITE FAMILY
OF MIXED EQUILIBRIUM PROBLEMS INVOLVING i — o RELAXED
MONOTONE MAPPING IN A BANACH SPACE

by O.K. Oyewole!, L.O. Jolaoso?, C. Izuchukwu® and O.T. Mewomo?

In this paper, we introduce a U-mapping for finite family of mized equilibrium
problems involving 1 — o relazed monotone operator. We prove a strong convergence
theorem for finding the common solution of finite family of these equilibrium problems
in a uniformly smooth and strictly convex Banach space which also enjoys Kadec-Klee
property. Furthermore, we give some applications of our result and numerical example
to show its relevance. Our results improve and generalize many other recent results in
literature.
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1. INTRODUCTION

Let X be a real Banach space with the dual space X* and C be a nonempty, closed and
convex subset of X. A nonlinear mapping T : X — X is said to be a contraction, if there
exists a constant 6 € (0, 1) such that

[Tz — Ty|| < 0la — yll, ¥ 2,y € X.

If 6 = 1, then T is said to be nonexpansive. We denote the set of fixed points of T by F(T).
Let F: C x C' — R be a bifunction, where R is the set of real numbers. The equilibrium
problem with respect to F' and C' in the sense of Blum and Oettli (1994) is to find x € C
such that

F(z,y) >0, Vy € C. (1)

In this paper, we assume that the bifuncton F' satisfies the following conditions:

(F1) F(z,z) = 0, for all z € C; (F2) F is monotone; i.e. F(z,y) + F(y,z) < 0, for all

z,y € C; (F3) for all z,y € C, 7}irr(l)F(tz + (1 —-t)z,y) < F(z,y); (F4) for all x € C, F(z,.)
—

is convex and lower semicontinuous.

Fang and Huang [5] introduced the concept of relaxed y — o monotone mapping for solving
a mixed equilibrium problem. A mapping A : C' — X* is said to be relaxed 1 — o monotone
[17], if there exists a mapping p : C' x C' — X and a function o : X — R with a(tz) = tPa(z)
for all ¢ > 0 and z € X, where p > 1 such that

(Az — Ay, p(z, ) > a(z —y).
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In particular, if u(z,y) = ¢ —y, Va,y € C and a(z) = k||z||P, where p > 1 and k > 1 are
constants, then A is called p monotone [7, 20]. Fang and Huang [5] proved that under some
appropriate conditions, the following variational inequality is solvable; find x € C such that

where ¢ : C — R U {oco} is a nonlinear mapping. They also proved that the following
inequality is equivalent to the variational inequality (1) : find € C such that

The mixed equilibrium problem (see e.g [21]) is to find z € C such that
F(a,y) + (Az, u(y, ) + ¢(y) — ¢(x) 2 0, Vy € C. (3)

We denote the solution set of mixed equilibrium problem (3) by EP(F,A). It is easily
observed that if F(z,y) =0, Va,y € C, then, the mixed equilibrium problem (3) reduces to
the variational inequality problem (1). Also if A = 0 and ¢ = 0, then EP(F, A) coincides
with FP(F). Equilibrium and mixed equilibrium problems have been widely used to for
solve variational inequalities, fixed point and optimization problems. (see, [25]). There are
several iterative methods in literature proposed for finding solutions of fixed point and mixed
equilibrium problems with relaxed monotone mappings in various settings, see ([1, 3, 4, 6,
8,9, 10, 11, 12, 13, 16, 24, 25)).

In this paper, motivated by the research going on in this direction, we study a strong
convergence theorem for finding the common solution of finite family of mixed equilibrium
problems with p — «a relaxed monotone mapping in the frame work of a uniformly smooth
and strictly convex Banach space which also enjoys the Kadec-Klee property. First, we
introduce the following mapping: Let C be a nonempty closed convex subset of a smooth
and strictly convex Banach space X. For i = 1,2,... N, let F; : C x C' — R be a finite
family of bifunctions, A; : C — X™* be a finite family of p hemicontinuous and relaxed
i — o« monotone mappings and ¢; : C — RU {400} be a finite family of proper, convex and
semicontinuous functions. For i = 1,2,..., N and {r,} C (0,00), the resolvent operator on
F; is defined in [3] as

Ki (2) = {2 € X : Fy(z, y)+(Asz, 5y, 2)) +61(y) — 01(2) - A y— 2, Jz—Ja) > 0.V y € X}.
However it has been proved in [3] that K. is single valued for each ¢ = 1,2..., N. (See
Lemma 2.5). We define the mapping U,, : C — C as

Sn,l = )\n,lK}'n + (1 - )\n,1>la
Sn,2 = An,QKgn Sn,l + (1 - An,Q)Sn,h

Spn—1 =X N1 KNS noo + (1= Ay n—1)Sn,N—2,
Un = On,N — )\n,NKf«YLSn,N—l + (1 - /\n,N)Sn,N—h

where 0 < A\, ; <1, for ¢ =1,2,..., N. In addition, we present the following algorithm for
finding a common solution of finite family of mixed equilibrium problems involving a relaxed
monotone operator: For arbitrary z;, € C, let {z,,} be generated by

Tnt1 = @ f(Tn) + Bntn + Y UnZpn, Yn > 1 (5)

where U, is as defined in (4) and f a contraction mapping from C to C. Furthermore,
we obtain a strong convergence theorem under some appropriate conditions of the proposed
iterative algorithm in a uniformly smooth and strictly convex Banach space which also enjoys
Kadec-Klee property. Our results improve the results of [3, 21] and many other results in
literature.
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2. PRELIMINARIES

In this section, we give some basic definitions and results which will be used in the sequel.
Let X be a real Banach space and B = {z € X : ||z|| = 1}. X is said to be strictly convex,
if for any x,y € B,

x # y implies <1.

rry
2

Define a function ¢ : [0, 2] — [0, 1] called the modulus of convezity of X as follows:

r+y
2

5(¢) = inf {1 -

H 2,y € X, llall = lyll = 1. ke — Il > }

Then X is uniformly convex if and only if d(¢) > 0 for all e € (0,2]. It is known that a
uniformly convex Banach space is reflexive and strictly convex. Recall that X has the Kadec-
Klee property if for any sequence {z,} C X and z € X with x,, — 2z and ||z,|| — ||z,
then ||z, — z|| = 0 as n — oo. It is well known that if X is uniformly convex, then X
enjoys the Kadec-Klee property. For more on the Kadec-Klee property (see [2, 19]). X is

[lz+tyl|—||=]
t

said to be smooth if the limit }ir% exists for every x,y € B. It is also said to
—

be uniformly smooth if the limit is attained uniformly for x,y € B. The generalized duality
mapping J, : X — 2X" is defined by
Jp(a) = {z* € X*: (z,2%) = ||2||?, [|«*]| = []2]|P~!,2 € X}.

For p = 2, we have the normalized duality pairing denoted by J. It is well known that if X
is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset
of X (see [19]).

In order to prove our main result, we will need the following lemmas.

Lemma 2.1. [26] Let X be a real Banach space. Then for all z,y € X and j(z +vy) €
J(x +y), the following inequality holds:

[z +yl1* < ll=]* + 2y, j(2 + y))- (6)
Lemma 2.2. [18] Let {z,} and {yn} be bounded sequences in a Banach space X such that

Tn41 = ﬂnxn + (1 - Bn)ynv n Z 07

where {Bn} is a sequence in (0,1) such that 0 < liminf 5, <liminf 3, < 1. Assume that
n— 00 n—oo

limsup(||yn+1 = ¥nll = [[n1 — 2nl) < 0. Then lim ||y, — x| = 0.
n—oo n—oo
Lemma 2.3. [22] Let {a,} be a sequence of nonnegative real numbers satisfying the condi-
tion
Qp41 S (]- - ﬂ}/n)an + YnOn, N Z 07

where {y,} C (0,1) and {0} is a sequence in R such that

i. im v, =0 and Y2 s = 00, . either lim sup o, <0 or
n—oo n—oo

oo o |mon| < oo. Then, nhﬁn;o o, = 0.

Lemma 2.4. [23] Let X be a uniformly smooth Banach space and C' be a nonepmty, closed
and convez subset of X. Let U : C' — C be a nonexpansive mapping such that F(U) # 0 and
f:C — C be a contraction mapping. For each t in (0,1), define zp = tf(z) + (1 — 1)Uz,
then {z;} converges strongly to the unique fived point q of U ast — 0, where ¢ = Pru) f(q)
and Ppy : C — F(U) is the sunny nonexpansive retraction from C to F(U).
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Lemma 2.5. [3] Let X be a uniformly smooth, strictly convexr Banach space with the dual
space X* and let C' be a nonempty, closed and convexr bounded subset of X. Let A: C — X*
be a p-hemicontinuous and relaxed p — « monotone mapping, let F : C x C — R be a
bifunction satisfying (F1) — (F4) and ¢ : C — RU {4+00}. Let r > 0 and define a mapping
K, : X — C as follows:

K (x) ={2 € C: F(z,y) + (Az,u(y, 2)) + ¢(y) — ¢(2) + :{y — 2, Jz = Jx) >0, VyeC},
for all x € X. Assume that

(i) p(z,y)+u(y,z) =0,V z,y € C; (ii) for any fired u,v € C, the mapping x — (Av, u(x,u))
is convexr and lower semicontinuous; (i11) o : X — R is weakly lower semicontinuous; (iv)
for any 7,y € C, a(z — y) + aly — z) > 0;

(0) (A2 +(1—)22), ply, t21 + (1= 1)22)) > t{Az1, july, 21)) + (1 1) (Aza, iy, 25)) for any
21,22,y € C and t € [0,1]. Then the following hold:

(1) K, is single-valued; (2) K, is a firmly nonexpansive type mapping;

(3) F(K,) = EP(F,A); (4) EP(F,A) is closed and convez.

Let C be a nonempty, closed and convex subset of a uniformly smooth and strictly convex
Banach space X which also enjoys the Kadec-Klee property. Let p: C x C — X be a
nonlinear mapping. For i =1,2,..., N, let F; : C x C — R be a finite family of bifunctions,
A; : C — X* be a finite family of p hemicontinuous relaxed u — o monotone mappings and
@i : C = RU{+400} be a finite family of proper, convex and lower semicontinuous functions.
Let A1, A2,..., AN be real numbers such that 0 < \; <1 foralli=1,2...,N. We define a
mapping U : C' — C as follows:

Sl :>\1K71, +(1—>\1)I, Sg :>‘2K72’Sl+(1_>‘2)51’ ty

Sno1=AN_1 KN Sn_o + (1= Av_1)Sn—2,

U = Sy=MKNSy_1+(1—-An)Sn_1. (7)

The mapping so defined above is called U-mapping generated by K} K2,..., KN and

A Ags e AN

3. MAIN RESULT

In this section, we present our main results.

Lemma 3.1. Let X be a uniformly smooth, strictly convex Banach space with the dual space
X* and C be a nonempty, closed and convex subset of X. Let A: C — X* be a relaxzed p —
monotone mapping, F : C x C — R be a bifunction satisfying (F2) and ¢ : C — RU{+0o0}.
Assume that

(i) p(z,y) + wly,z) =0V 2,y € C; (i) for any x,y € C, oz —y) + aly —z) > 0.

For s >0 andr >0, [|[Ka — Kyz|| < |1 = Z||z — K.

Proof. Let z = K,.(x) and w = K;(z), from the definition of K., we have

F(e,) + (Az, 1y, 2)) + 0(y) — 6() + 1y = 2 Tz = Ja) 2 0¥ y € C,
In particular, we have
F(z,w) + (Az, p(w, 2)) + ¢(w) — é(2) + %(w —z,Jz—Jz) > 0. (8)
Similarly, we obtain

F(w, z) + (Aw, p(z,w)) + ¢(z) — p(w) + %(z —w, Jw — Jx) > 0. (9)
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Adding equation (8) and (9), we obtain from (i) that
1
F(z,w) + F(w, 2z) + (Az — Aw, p(w, 2)) + = (w — z, Jz — Jx)
r

+§<z—w,Jw—Jx) > 0. (10)
Using condition (F'2), we have
%<w*Z,JZ*J$>+§<Z*U),J’U]*JZL’>
> (Aw — Az, u(w, 2)) > a(w - 2) (1)

interchanging the roles of w and z in (11), we obtain

1 1

—(z—w, Jw—Jx)+ —(w—z,Jz — Jx) > a(z — w). (12)

s r
Adding (11) and (12), and using condition (ii), we have 1 (w—z, Jz—Jz)+1 (z—w, Jw—Jz) >
0, which implies that (w — 2, Jz — Jz) — (w — 2, 222="J2) > 0. That is, (w — 2, Ze=r/z
(Jz — Jz)) <0, which implies

rJw —rdJz —sJz+ sJw — sJw + sJx

(w — z, . ) <0. (13)

This further implies that ||w — 2||? < (w — 2z, =2 (Jx — Jw)), from which we obtain that

S

=2l < [1 = [l = wll (14)

That is,
1Kow = Kypal| < [1 = Lllo - Kial . (15)
O

Proposition 3.1. Let C be a nonempty closed convex subset of a uniformly smooth and
strictly convexr Banach space X. Let p : C x C — X be a nonlinear mapping. For i =
1,2...,N, let F; : C x C — R be a finite family of bifunctions, A; : C — X* be a finite
family of p-hemicontinuous relazed p — o monotone mapping and ¢; : C — RU {400} be
a finite family of proper convex lower semicontinuous mapping. Let Ay, Ay, ..., An be real
numbers such that 0 < \; <1 foralli=1,2,...,N. Let U be the U-mapping defined in (7).
Then S1,Sa,...,Sn—1 and U are nonezpansive. Also, F(U) = NN, EP(F;, A;).

Proof. By the nonexpansivity of K¢, for i = 1,2,..., N, it follows that Sy, Ss, ...,

Sy = U are nonexpansive mappings. Since NN, F(K?) = NI¥.| EP(F;, A;), then it suffices
to show that F(U) = NY_, F(K!). To show that F(U) = NI¥.| F(K!), we have to show that
NN, F(KY) C F(U) and F(U) € NY,F(K}). Tt is easily observed that the first part is
obvious. Next we show that F(U) C NY., F(K}!). Let a € F(U) and b € N, F(K?). Using
the definition of U, we have

la=0bll = [|lUa—bll=[[ANEYSn-1a+ (1= An)Sy-1a —bl|

< ANV|IENSno1a = bl + (1= An)[[Sy-1a = b]| < |[Sy-1a — ]|
= |JAN_1KN 1Sy 2a —b) + (1 = Ay_1(Sn_2a — ||

< Ava|[EY T S ea = bl 4 (1= Av—1)||Sn—2a — b]|

< |[Sn—2a —bl|

< |IS1a =0l = [[MKra+ (1= Xi)a—b]]

< MK fa = 0]+ (1= Xp)lla— bl < [|a —b]|.
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It follows that ||a —b|| = ||[A1(Kla—b)+ (1 —A1)(a—b)|| and ||la —b|| = M\ ||K}a—b]|+ (1 —
A1)|Ja—0bl|, that is ||a —b|| = || K}a—b]||. Using the strict convexity of X, we obtain K'a = a,
which implies that a € F(K}). Hence, Sia = a. Again from (16) and the fact that S1a = a,
we have ||a—b|| = |[A2(K2S1a—b)+(1—X2)(a—b) and ||a—b|| = Xao||KZa—b||+(1—X2)||la—0]|,

that is, |la — b|| = ||K2a — b||. Using the strict convexity of X, we obtain K2a = a, which
implies that a € F(K?2). From which we obtain Sza = a. Proceeding the same way, we
obtain a« = Kla = K?a = -+ = K,{V_la and a = Si1a = Ssa = -+ = Sy_ia. Since

a € F(U) = F(Sy) and Sy_1a = a, then a = AyK¥a + (1 — Ay)a. This implies that
a= KYa.Hence F(U) C F(K.)fori=1,2,...,N and thus F(U) C N}¥, F(K!). Therefore,
FU)=n{,F(K!) =nY,EP(F;, A;). The proof is complete. O

Proposition 3.2. Let X be a uniformly smooth and strictly convexr Banach space. For
i=1,2,...,N and n € N, let U,, be a U-mapping defined by (4). Let {x,} be a bounded
sequence in X, then the following inequality is satisfied.

N
Un+1%5 — Unznl| < ||Tny1 — 20|l + M Z ‘)‘nJrl,i — Al (16)

i=1

Proof. Using the fact that Kﬁn and S, ; for i = 1,2..., N are nonexpansive with Lemma
3.1, we obtain the following estimates:

|Uns12n — Upyl| = H)\n+1,NK£+ISn+1,N—133n
+ (1= Mg 1,8)Sns 1, N—1Zn — P NI S n—1Zn + (1= Ay n)Snv—120]]|
= |‘>\n+1,N(K7J-\,i+ISn+1,N71xn - KfV"HSn,NqQ?n) + (Sn+1,N-1Tn — S N—1Tn)
+ A1, N (Sn,N—1Zn — Snt1,8-1Zn) + (Ao, N — At 1,8)(Sn N—1Tn) + )\n+1,N(KiVn+1Sn,N—1fEn
— KN Spn1%n) + g1,y — Aan ) (K Spov—120) ||
< /\n+1,N||Kan+1Sn+1,N—1xn - K£+1Sn,N—1xn|| + (1= A, M)|Snt1,N—1Zn — S N—1Zn ||+
Ans1t. v = An N IR Spv 120 = Spov 1@l + Mg N[N Spovo1mn — KN Sn vo12a|
< Mt 1,N|Snt1,N—1Zn — SuN—1Zn|| + (1 — A1, N)|[Snt1,N—1Zn — Sn N—1Zn ||+
Ans1.8 = A N LIS Snv—12n = Spv12nl| + At NIEN L Snv—12n — KN S v 10|
<|[Snt1,N=1%n — Sn,N—1Zn|| + [Ant1,n — /\n,N|-HK,{\£Sn,N—1$n — Sp N_1Zn ||+

||K7]a\i+1‘s’n,N711'n - Ky{YLSn,Nfll'nH

<||Snt1,N=1%n — Sn N=1Zn|| + [Ant1,N — An,N|-HK7]‘\:LSn,N—1xn — Sp.N_1T5]|

Tn+1

+'1—

HSn,N—lanv
n

which implies that

Tn41
1—

||Un+1xn - Unxn” S ||Sn+1,N—1-Tn - n,N—lan + Ml (An-&-l,N - )\n,N|a

)

(17)

n
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where M is a constant such that M; > max{HK,J,\T[LSn’N,lmn — Su.N=1Zn||s ||Sn.N—120 ][}
Furthermore,

||Sn+1 N—-1Tn — Sn N— 1xn|| - ||>\n+1 N— 1Kr S7L+1,N—2xn + (1 - )\n,+1,N—1)Sn,+1,N—2xn

1
— N1 KNS, Ny + (1= Ay N—1)Sn, N—2Z0] |

= ‘|>\n+1,N—1(K7{YL+115n+1,N—21'n K,{VH Sp.N—2Tn) + (1 — Apt1,8N-1)(Snt+1,N—2Zn — Sn,N—2Zn)
+ Agr1,v-1 — An,Nfl)(K»,]‘YL_lsn,N72xn — Sy N—2Zp)

F A1 N1 (KN TS0 Noamn — Kﬁflsn,N—zxn)H

Tn41

Thus
||Sn+1,N71$n_Sn,N71$n||
S HSn+1,N—2xn - n,N—anH + |An+1,N—1 - )\7L,N—1|'||K7]-YL7157L,N—21‘7’L - 7L,N—2x7l||

rn+1

+ '1 - 1SN —22ll- (18)

n

Substituting (18) into (17), we obtain

Tn41

||Un+1-73n - Un-rnH < Ml( 1-—-

+ ‘/\n—i-l,N - )\n,N|) + ||Sn+1,N—2xn - n,N—anH'i‘

n

Tn+41

||Sn,N—2xn||

[Ant1,n-1 — )\n,N—1|-||K£YL_1Sn,N—2xn — Sn.N—2@y|| + ’1 -

< M, (2’1 _ Int1

n

n

+ A1 v — An| + Mg N—1 — >\n,N1|> + [|Snt1,N—2%n — Sn . N—22n]|,
(19)

where My > max{ My, [|[KN71S, n_omn — Sn n—2@al|, [|Sn.n—22n]|}.
Proceeding the same way as above, we obtain

N-1

+ ) i — A

=2

||Un+1mn - Un-TnH S MN—l <(N - 1)’1 - T:+1

n

4 > + ||Sn+1,1xn - Sn,lan,
where My_1 > max{My_o, HKf,nSn,lmn — Snaznll, [|Sn12n||}. Hence,

Z |)\n+11_ n,i

= ||)\n+1,1Kq} + (1 - )\n+1,1)xn - An,lKr - (]- - )\n,l)an

r
||Un+1xn - Unan S MN—l ((N 1)’ il

) + [|Sn+1,1%n — Snt11]]

N-1
+ My Z [Ans1,i — Anil
i=2
N-1
= |Ant11— )\n,1-||Kr1$n —Zp|| + Mn_1 Z [Ant1,i — Anl
i=2

= ||)\n+1,1K7}”+1xn + (1 — )\n+1 1$n> — )\n lKl T, — (1 — )\n,l)mnH +

Z |)\n+1 [ )\n,1>
+ Z |)‘n+1,i - An,i')a (20)
=1

My_: <(N - 1)’ Tntl

IN

My (N‘l o Tn+1
Tn
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where My > max{My_1, ||K}zn — 24|, ||zn]|}. Therefore,

HUn—i-lxn-i-l - Unan < ||Un+1xn+1 - Un—&-lan + ||Un+1xn - Unan

N
+ Z [Ant1i— )\nz|>
i=1

IN

T
||’In+1 7$n|| +MN(N‘1 — :+1

n

O

Proposition 3.3. Let C be a nonempty, closed and convexr subset of a uniformly smooth
and strictly convex Banach space X. Let pp : C x C — X be a nonlinear mapping. For
1=1,2...,N, let F; : C x C — R be a finite family of bifunctions, let A; : C — X* be a
relazed ;1 — o monotone mappings. Let ¢; : C — RU{oo} be a finite family of proper convex
lower semicontinuous mapping. Fori=1,2...N, let A\, ; and \; be sequences in [0,1] such
that A\, ; — A; as n — oo and {r,} be a sequence in (0,00) such that r, — r as n — o
with v > 0. Suppose U is the mapping generated by K', K2,..., KN and A\, o, ..., AN.
For n € N, let U,, be the mapping generated by K}H,Kfn, . ,K,{i and Ay 1, An 2,y Ap,N-
Assuming the conditions of Lemma 3.1 are satisfied, then for each x € C, we have

nhﬁngo [|Unx — Uzx|| = 0. (21)
Proof. Let x € C, using Lemma 3.1, we have
Sz — Siz|| = [AnaKE 2+ (1= A1)z — MK}z — (1= M)z
= MK}, = Klz) + (A — M) Kz — )|

< 122 it =il + s = Mk
r
< ([r= 2 o= iscte — ol
T
Using the same argument as above, for each i = 1,2,..., N, we obtain
[Su.nvz — Snz|| = A NEY Spv—1z+ (1= Aon)z — ANK)Y Syo1z — (1 — Ay)zl|
< MnNIEN Sy vz — KN Sy_1zl| + A n[|KY Syo1z — KN Sz +
Ang = Ml Sy—iz — |
Tn
< |Spn-17 — Sy—az|| + '1 - IKN Sy—12 — Sn_12]]

+ g = MK Syaz — x|
It follows that

N
|Unz = Usl| = [|Sp.nz = Snal| < [|Snaz = Szl + Y [Ani — Al [[KLSi 1 — Sioya|
=1
< (‘1 I e - )\1|) I|EK e — || + §N: i — Nl [|KESi 12 — S qa]].
r =1
Since r,, = r and A, ; = A; as n — 0o, then nILH;O [|{Upz — Uzl|| = 0. O

Theorem 3.1. Let C' be a nonempty closed and convex subset of a uniformly smooth and
strictly convexr Banach space X which also enjoys the Kadec-Klee property. Let p : C X
C — X be a nonlinear mapping. Fori=1,2,...,N, F; : C x C — R be a finite family
of bifunctions satisfying conditions (F1) — (F4), A; : C — X* be a finite family of p-
hemicontinuous relazed 1 — a monotone mapping and ¢; : C — R U {oo} be a finite family
of proper conver lower semicontinuous functions. Let K} K2,...,KN be a finite family
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of resolvent operators for mized equilibrium problems with relaxed p — o mappings on C
such that NN F(K!) # 0. Let f : C — C be a contraction with constant 6 € (0,1), let
An1y An2s .-, An N e real numbers satisfying 0 <, A, ; < 1 such that nhﬁngo [Ani —X| =0
fori =1,2,...,N with 0 < \; < 0. Forn € N, let U, be a U-mapping generated by
Krln,Kfn, ) K,{X and Ap1,An2, ... An,N. Suppose {an}, {Bn} and {v,} are sequences in
(0,1) with ap + Br +yn = 1, 1 is a positive parameter and {r,} is a sequence in (0,00) .
Assume that the conditions (i)-(v) of Lemma 2.5 and the following conditions are satisfied:
(1) nh_}rréo an =0, o, =00; (ii) 0 < hnni}i%fﬁn < limsup 3, < 1;

n—roo
(ii) rn — 7, n — 00; (iv) iminfr, >0, lim == =1, lim |Ayq1, — Ayl = 0.

n—oo n

For a given x1 € C, let {x,} be the sequence defined iteratively by
Tpt1 = W f(Tn) + Bntn + Y UnTn, Yn > 1. (22)

Then, {z,} converges to Prf(q), where T = NN, EP(F;, A;) and Pr is the sunny nonez-
pansive retraction of C onto I.

Proof. The proof of this theorem will be divided into several steps.
Step 1: {z,} is bounded. To see this, fix ¢ € I". We have,

o (f(2n) — @) + Bn(@n — @) + ¥ (Unzn — @)||
lan(f(@n) = f(@) + f(0) = ¢+ Bn(2n — @) + W (Unzn — q)|

< anllf(@n) = F@I + anllf(@) — gl + Bullzn — qll + Ynl|Unzn — 4l
< bayllzn —qll + anllf(@) — qll + Ballzn — gl + yullzn — 4l
< Oanllrn — gl + (1 — an)l|zn — gl + anllf(q) —4ll
< 1 =an(I=0)||zn —qll + anllf(q) — ql|
1
< maX{Hxn—(JWmHﬂQ)—(IH}
1
< max{|lar — qll. — 1 £(a) ~ all}. ¥n > 1 (23)

Therefore, the sequences {z,} and {U,x,} are bounded.
Step 2: We show that

il 1 — ]| = 0 (24)

o f(#n) + YnUn@n
11— 6n

is nonexpansive, {z,} and {U,z,} are bounded, we get that {y,} is also bounded.

Now,

Putting y,, = , then (22) becomes z,,+1 = Bnzy + (1 — Bn)yn. Since U,

Oén+1f(xn+l) + ’Yn+lUn+lxn+1 B anf(xn) + ’)/nUnxn
1- BnJrl 1- Bn

(1?5“) (f () — ) + <1 S fﬂﬁn)( F(@n) = Unea)

(67
+<1 — 1"—H> (Un+11‘n+1 - Unxn)v
- ﬁnJrl

Yn+1 —Yn =
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hence, using Proposition 3.2 and the fact that 6 € (0,1), we have

*’ﬁnﬁil 1_/3n 1f (2n) — Upen|

< 10_0‘7%:11”%”4’_1 — z,l| + ‘1 - % [E——
+My (N’l - +Z Ans1i — /\n’i|)
+i1i“"g; = 1) = U

< g — xn|+’1 Oéngnlﬂ 1—Bn 1f (#n) — Una]|

—&—MN(N’l— Tn41
T

n

+ Z [An+1,i — /\n,i|)-

i=1
This together with a,, — 0, 2 =1 and [Apy1,5 — Ani| = 0 as n — oo implies that
limsup({[yn+1 = ynll = [|Tn41 —zn|]) < 0.
n—oo
Hence, by Lemma 2.2, we obtain ||y, — ©,|| — 0 as n — oo.

Consequently, lim |[|z,11 — 2,|[ = lim (1 = B,)[|yn — 2zl = 0.
Step 3: Next, we show that

nh_}n;o [|zn, — Uzy|| = 0. (25)
We note that,
< aullf(zn) — Unznl| + Ballzsn — Unzanl|
S an”f(xn)_U xn||+6n||xn+1_$n+1 +xn_Unxn||
Bn
< 1 6n||f(xn) Unn|l + 1 ﬁonn — Tny1l|.
From conditions (1),(2) and step 2, we have that lim ||x,+1 — Upzy|| = 0.
n—oo
Also,
[|Zr, — Unznll < ||@n — Tpg1l] + [|Zns1 — Unznll — 0, as n — . (26)
Note also that,
lzn = Uznll < lzn — Un@al| 4+ [[Unzn — Uzy||
< |l#n — Upzpl| + sup ||Upz — Uz||. (27)
zeC
Therefore from (26) and Proposition 3.3, we have that ILm ||zn, — Uzy|| = 0.
Step 4: We show that
lim (f(q) —¢,5(q —2,)) < 0. (28)

n—oo
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For any ¢ € (0,1), set 2z = tf(2:) + (1 — t)Uz:. Then we have,

lze —anl? = [#(f(2) —2n) + (1 =) (Uz — )|
< (L =0)?||Uz — @l + 26(f (20) — @0, 5 (20 — 7))
< (1= 0)2[||Uz — Uzp|| + Uz — ][]

+2t(f (2¢) — 26, (26 — Tn)) + 26(2t — T, (22 — T0))

< (U= 02l = wall U0 — 2] + 2tz — 2l + 20 ) — 20 — 7)),
< (=022 — @l + gn(t) + 26(f (2¢) — 20,4 (20 — xn)) + 2t 20 — 20|,

where

gn(t)=(1-— t)2(2||zt — |l + ||zn — UnznlD|2n — Unn|] = 0 as n — oo. (29)

It follows that

(o= Jeila—an) < Glle =l + 200 (30)

Letting n — oo in (30) and noting (29), we obtain (z;— f(2:), j(ze—xn)) < £M*, where M* =
t
limsup ||z; — 2,||?. Clearly §M* — 0 as t — 0 from which we obtain lim sup limsup(z; —

n—00 t—0 n—00
f(zt),7(z — x,)) < 0. Since j is norm-to-norm continuous on bounded subset of X and by

Lemma 2.4, z; — q, where ¢ = Prf(q), we have ||j(z: — 2n) — j(q — x,)|| = 0.
Observe that

(2t = f(20), (2t — ) — (g — f(2t),5(q — zn))

<z = q,5(z — ) + (g = f(20),5(z = wn)) = (¢ = f(20),5(q — xn))

<zt — @, J(2e — @) + (g — f(20),5(26 — 20) — 5(q — 20))
<zt = all-llzt = @all + [lg = f()N7 (2 — 20) — G(q — zn)[| = O,
as n — 0o. Therefore,
(2t = f(2),5(2e — @) = (a = (@), j(q — @) (31)

Hence,

lim (¢ — f(q),j(q —zn)) <O0. (32)

n—oo
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Step 5: Finally, we show that x, — ¢ as n — oco. From Lemma 2.1 and step 1, we have

||xn+1 - Q||2 = ||anf(xn) + ﬂnxn + ’YnUnl'n - QHZ
= |an(f(zn) — @) + Bn(2n — @) + Y (Unzn — Q)||2

< ||Bn(1‘n - (Z) + 'Yn(Unxn - Q)HQ + 2an<f(xn) - Q7j(mn+1 - Q)>
< {Bullzn — dll +nllon = all}? + 200 (f(@n) = £(a), j(@ns1 — @)
+204n<f(Q) - q,j($n+1 - q)>
< (1= a)llon = qll* + 200 (lon — all-llznsr = all) + 200(f (@) = ¢, 5(2n41 = @)
< (L=a)llzn —dall® + Oanllzn — gl + 0anllzns1 — all +200(f(q) — ¢, §(zns1 — 0))
(1—an)?+0ay, 9 20y, .
< — _ —
< T Ga, llzn —all” + 1_0an<f(Q) ¢ §(Tn1 — @)
120, +0ay, 9 s 9 200, )
= T~ ba. llzn — ql|* + 179%Hwn adl” + 7 o, (f(@) = ¢:3(Tpt1 — @)
2(1 -0, s 21 =0, [ M*xay,
D N Sl N Y
= { 1 fa, }”x I+ =0, (20 = o)
1 .
g0~ o — )}
Observe that the conditions of Lemma 2.3 are satisfied with ~, = % and o, =
erlig(f(q)q,j(anq))}. By Lemma 2.3 and (32), it follows that ||z, —q|| — 0

as n — 0. Therefore {x,} converges strongly to ¢ = Prf(q). This completes the proof. O

We obtain the following as consequences of Theorem 3.1.

Suppose A; = 0, in Theorem 3.1, the mixed equilibrium problem with © — « monotone
mapping reduces to the following classical mixed equilibrium problem: F;(z,y) + ¢;(y) —
¢i(z) > 0. We thus obtain the following result:

Corollary 3.1. Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly conver Banach space X which also enjoys the Kadec-Klee property. Let pn: C x C —
X be a nonlinear mapping. For i = 1,2,... . N, let F; : C x C — R be a finite family
of bifunctions satisfying conditions (F1) — (F4), and let ¢; : C — R U {oc} be a finite
family of proper convex lower semicontinuous functions. Let K} K2 ... KN be a finite
family of resolvent operators for mized equilibrium problems on C' such that NN, F(K?) # 0.
Let f : C — C be a contraction with constant 0 € (0,1), let An1,An2,--., An.N be Teal
numbers satisfying 0 <, A, ; < 1 such that nh_}n;o [Ani—Ni| =0 foralli =1,2,...,N. For

all n € N, let U, be a U-mapping generated by Krln7Kfn, .. Kﬁ\i and Ap,1, An,2, - An,N-
Suppose {an}, {Bn} and {yn} are sequences in (0,1) with o, + Bn +vn = 1, r is a positive
parameter and {r,} is a sequence in (0,00). Assume that the conditions of Lemma 2.5 and
the following conditions are satisfied:
(i) lim o, =0, Y07 | a, = o0; (i) 0 < liminf 8, < limsup 3, < 1;

n— o0 n—o0 n—o00
(i4i) rn — 7, n— 00; (iv) liminfr, >0, lim = =1, lim |Ayq1, — Al = 0.

n—oo n n—oo

—o0 'm

For a given x1 € C, let {x,} be the sequence defined iteratively by
Tnt1 = af (zn) + Brnxn + ¥ Unxn, Yn > 1. (33)

Then {z,} converges to Prf(q), where I = NN, EPF;, Pr is the sunny nonezpansive re-
traction of C onto I
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For F;(z,y) = 0, in Theorem 3.1, the mixed equilibrium problem reduces to the following
variational inequality
(Aiz, u(y, 2)) + ¢i(y) — ¢i(z) = 0.

We obtain a result which solves the finite family of variational inequalities as follows:

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convexr Banach space X which also enjoys the Kadec-Klee property. Let p : C X
C — R be a nonlinear mapping. Fori = 1,2,...,N, let A; : C — X* be a finite family
of pu-hemicontinuous relared p — o monotone mapping and let ¢; : C — R be a finite
family of proper convex lower semicontinuous functions. Let K} K2 ... KN be a finite
family of resolvent operators for variational inequalities with relaxed p — o mappings on C
such that NN F(K!) # 0. Let f : C — C be a contraction with constant 6 € (0,1), let
An1y An2s - An N e real numbers satisfying 0 <, A\, ; <1 such that lim [Ani —Ail =0 for

alli =1,2,.. N For alln € N, let U, be a U-mapping generated by K1 K2 ...KN and
An,1y An,2s -« s An,N. Suppose {an} {Bn} and {yn} are sequences in (0,1) wzth ozn—i—,é’n—l—'yn =
1,risa posztwe parameter and {r,} is a sequence in (0,00). Assume that the conditions of
Lemma 2.5 and the following conditions are satisfied:

(i) Jim_ay, =0, S o =005 (i) 0 < liminf 3, <limsup B, < 1;

n— oo
(m) T — T, n— 00; (i) hmlnfrn >0, h_)ngO Tran _ =1, hm Ant1,i — Anyi| = 0.

Tn

For a given z1 € C, let {:En} be the sequence defined ztemtwely by
Tnt1 = @ f(Tn) + Bntn + YWUntpn, Yn > 1. (34)

Then {z,,} converges to Prf(q), where I = NY_,VIA;, Pr is the sunny nonexpansive retrac-
tion of C onto I

4. NUERICAL EXAMPLE

Let X =R xR and C = [-1,1] x [-1,1]. Define a mapping A : C — R x R by A(z1,22) =
(w1, 2) for all (z1,22) € C, a: R x R — R by a(z1,22)) = 327 + 323 for all (z1,72) € X
and p: C x C = R xR by p((x1,22), (y1,y2)) = (2(x1 — y1),2(x2 — y2)) for all (z1,x2) x
(y1,92) € C x C. Then the mapping A is a relaxed p — o monotone mapping. Indeed, for
all x = (z1,22),y = (y1,¥2) € C, we have

(Ar — Ay, w(z,y)) = (21— 1), (22 — ¥2)), (2(z1 — y1), 2(z2 — ¥2))
= 4(z1— 1) + (22 — 32)°]
> 3[(z1—y1)? + (22 — y2)*] = alz — y). (35)
Hence, A is a relaxed p — o monotone mapping. L

et z = (21,22), § = (yl,yz) and T =
(71,22). Define Fy(z,9) = —3iz? + 2izy + iy, A;(2) = iz and ¢;(2) = iz%. Lemma 2.5

ensures that there exist & € R? such that
Fi(2,9) + (Aiz, n(3,2) + ¢i(§) — ¢i(2) + —(§ — 2,2 —Z) >0V § € R?
—3iz? + 2izy +iy® +i2(2(§ — 2)) + (i5°) — (i) + — (g —2) x (2—17) >0
—3i2% + 2izy + i° + 2igz — 2022 + (i7°) — (i7%) + —(§Z — g7 — 22 + 2%) > 0
T

n

—3irnZ? 4 2rpiZy + iG> + 2rifz — 2rniz? + rpif’ — raiZ + G2 — YT — 22 + 22 > 0

rre

2irny? + (4irpz + Z — T)j + 2% — 2% — 6ir,z2 > 0.
Let H(y) = 2ir,y? + (4ir,z + 2 — T)y + 2% — 2% — 6ir, 22, then H(y) is a quadratic equation
in 4.
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Graph of ||xn+1-xn||2 with x,=0.25

10° w

1 0-7 1 I 1 ! I
200 400 600 800 1000 1200 1400

Number of iterations

FIGURE 1. Errors vs number of iterations for initial value 1.

With @ = 2iry,, b = 4ir,Z+ 2 — Z and ¢ = —6ir,z%> — 22 + zZ. We obtain the discriminant
A of H(g) as follows:
A = b —dac= (4ir,zZ+ 2z —x)* — 4(2ir,)(—6ir,z* — 2% + ZT)

= T2 +64i*r22% +16ir,z + 2° — 160,72 — 272 = 7° + (Sir,z + 2)? — 272 — 16ir,72
* — 2(8ir,z2 + 2)T + (8irpz + 2)* = (2 — (8r,2 + 2)) > 0.
Hence, z = 821%% This implies z = (

Z1 Z2
Sir, +1"8ir+n—1

i 1 T2
K (%) = . 36
() <8irn 1 Sir, + 1> (36)

> and thus

1
Assume that A, ; = e and S, 0% = Z. Using (4) and (36), we have

1 1 m+1

SpiT = X Sni-1T + ——Sp,i-1Z, fori=1,2,...,100 37
n,il in+2 SZTn+1 n,i 1x+l'ﬂ,+2 n,i—1T, 10T 1 ) 4y ) ) ( )
and U,, = Sp,100. Choosing o, = ﬁ_l, Bn = 87%1, Yn = 87112%:’77;7_1 aI}d Ty = ﬁ
Let f(Z) = 5%, then our iterative algorithm (33) becomes Z,41 = o T 887%1 +

%Un:ﬁm V n > 1. We make different choices of our initial value as follow:

(1) Z1 = —0.5, (2) ;1 =0.05 and (3) Z; = 0.25. We also vary the stopping criterion as:

(a) M < 107% and (b) M < 10712, Matlab version 2014a is used to
|Zy — 1] |Z2 — 4]

obtain the graphs of errors against the number of iterations.
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