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COMPARATIVE STUDY OF NEURAL NETWORKS FOR
ENHANCED DETECTION OF PHYTOPHTHORA INFESTANS
IN POTATO CROPS

Raluca TRUFELEA!, Dan POPESCU?

Phytophthora infestans is the root cause of late blight in potato leaves. It is a
devastating pathogen that leads to significant yield losses worldwide. It is crucial to
detect the pathogen in early stages to prevent outbreaks and improve disease
management strategies. This study compares YOLO architectures, starting from
YOLOv7 to YOLOI12, tailored for high-accuracy detection of Phytophthora infestans.
The database consists of images from healthy leaves to early blight leaves, to late-
blighted leaves, in potato crops, being publicly available. Experimental results show
that YOLOI12n achieved the highest precision of 0.999, outperforming all the other
models. The proposed article contributes to precision agriculture by providing an
automated, scalable, efficient integrated pathogen management detection system.
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1. Introduction

Phytophthora infestans is a fungal pathogen responsible for late blight
disease. This devastating disease is affecting potato and tomato crops. Experts [1]
consider it to be one of the most aggressive plant pathogens, due to its fast spreading
and destructive impact on global agriculture. The infection primarily targets leaves,
but it also affects stems and tubers. As a representative of the Stramenopila family,
P. Infestans is phylogenetically closer to algae than fungi and shows a complex life
cycle. It diffuses predominantly through air and water under high humidity and
moderate temperature conditions.

Phytophthora infestans is a fungal-like oomycete pathogen responsible for
the disease commonly known as "potato late blight," widely regarded by experts as
the most aggressive plant pathogen. This microorganism primarily affects potato
and tomato crops, causing significant damage to the leaves, stems, and tubers.

The disease is highly destructive, leading to substantial losses both globally
and nationally in the agricultural sector.
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Phytophthora infestans belongs to the kingdom Stramenopila, making it
more closely related to algae than fungi, and it has a complex life cycle. It spreads
primarily through airborne and waterborne spores, thriving in high humidity and
moderate temperatures. This fungal infection produces sporangia and zoospores,
which could germinate in water and rapidly infect host plants.

Constant monitoring of agricultural pests enables specialists to assess
infestation levels and develop effective pest management strategies. This study
investigates the capability of convolutional neural networks in classifying the
degree of infestation in potato crops. It explores the detection of three infestation
stages: healthy plants, an intermediate stage with moderate infestation, and the final
stage of severe infection. Top accurately find damage caused by Phytophthora
infestans, a decision fusion system including multiple neural networks was
employed.

The control of Phytophthora infestans is a highly labor-intensive process,
requiring significant time and resources. One common method is crop’s rotation,
which prevents the planting of tomatoes near potato fields and restricts the reuse of
the same land for these crops in consecutive years, thereby reducing the favorable
conditions for fungal proliferation. Another often used strategy involves cultivating
Phytophthora infestans-resistant plant varieties, although resistance is not entirely
foolproof. Additionally, removing infected plants from fields serves as an important
measure to halt the spread of the pathogen.

Managing the spread of this infection is complex but possible. Both
chemical and biological control methods are employed. Chemical control involves
the systematic application of preventive fungicides, often in varying formulations,
as Phytophthora infestans can develop resistance to fungicidal treatments.
Biological control methods relieve bacteria such as Pseudomonas fluorescens and
Bacillus subtilis, as proved by scientific studies.

The focus on Phytophthora infestans in this research stems from the severe
economic damage it has caused both historically and in the present. This pathogen
was notoriously responsible for triggering the Irish Potato Famine (1845-1852),
which led to widespread human losses and increased migration rates. Today, this
fungal infection continues to inflict substantial economic damage, particularly in
regions where potato and tomato cultivation is a primary source of income.
Consequently, this study aims to mitigate such losses through early infestation
detection, improved classification performance, and scalable analysis methods, all
of which contribute to cost reduction.

A modern solution in plant disease management is artificial intelligence
(AD). Al plays a crucial role in agriculture, aiding in the identification of various
plant species and agricultural pests, including potato late blight caused by
Phytophthora infestans. Al can detect early symptoms of plant diseases far more
efficiently than the human eye. Essential components in this context include
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imaging devices such as cameras, drones, surveillance systems, and integrated field
sensors, which prove continuous monitoring systems that detect subtle changes
before they become visible to human observers. This enables prompt intervention
to prevent disease spread, reduce costs, and minimize material losses caused by
pests.

Al also plays a key role in predicting environmental conditions that favor
plant diseases. It allows for the analysis of meteorological data, humidity levels,
temperature fluctuations, and other environmental factors that contribute to
pathogen dissemination. By using such information, farmers receive real-time alerts
regarding environmental changes and pathogen progression. Additionally,
recommendation systems can provide personalized guidance, enabling prompt
action to mitigate potential risks.

Artificial Intelligence revolutionized plant disease management by enabling
rapid and precise pathogen detection. This approach facilitates early intervention,
reducing economic losses, mitigating disease spreading, and supporting agricultural
development. This study contributes to the development of scalable, cost-effective
solutions for safeguarding global food security by integrating Al-driven disease
detection with precision agriculture.

This paper presents the training and testing methodologies for the YOLO
family to detect Phytophthora infestans in potato crops. The Experimental Results
section discusses the strategies adopted in developing the application and compares
the performances of different networks to determine the most effective network as
a recommendation for end users. Finally, the Discussions and Conclusions sections
provide a comprehensive analysis of the findings and insights drawn from this
research.

2. Related works

Researchers propose an automated identification method based on VGG19
for potato leaf detection [2]. This approach leverages computer vision to detect four
common diseases: bacterial spots, early blight, late blight, and mite damage. The
VGG19 model was fine-tuned using transfer learning on this dataset, achieving an
impressive accuracy of 95.2% on the test set, outperforming other state-of-the-art
methods. Early identification and classification of seven common potato diseases,
including early blight, late blight, and other leaf diseases, was also the focus of
study [3]. The proposed model employs deep learning techniques and is built upon
a complex CNN architecture comprising three convolutional layers, three max-
pooling layers, and two fully connected layers. The model’s purpose is to enable
more accurate and early disease detection, providing farmers and agricultural
specialists with effective tools for disease management and improved crop
protection.
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Paper [4] proposes using CNNs to automate the detection process, enabling
the early identification of potato leaf diseases. This study utilizes the “Potato
Disease PyTorch Lightning CNN” dataset from Kaggle, similarly to the present
research, for training the CNN model. The model achieved an impressive disease
classification accuracy of approximately 98.6%.

The evaluation of a total of eight deep learning (DL) models, including both
custom-built and pre-trained architectures, using two validated datasets. The
compared models include ResNet50, VGG16, a hybrid CNN-KNN, VGG19,
SBCNN, InceptionV3, AlexNet, and a hybrid CNN-SVM [5]. Among these, the
study found that ResNet50 achieved the highest accuracy in detecting potato leaf
diseases, particularly CNN-based models, in enhancing the precision and efficiency
of disease detection in potato crops. This achievement could play a crucial role in
enabling prompt inventions and minimizing crop losses.

Potato leaf images were categorized into three classes: healthy leaves,
leaves affected by early blight, and leaves affected by late blight. A crucial aspect
of the researcher [6] was balancing the dataset using oversampling techniques to
prevent class imbalance. The data was then processed using a Convolution Neural
Network (CNN), which employs multiple processing layers to extract and identify
essential features from the images. The methodology involved selecting the optimal
activation function, optimizer, the ReLU activation function, and 250 epochs. This
result proves significant potential for the fast and precise diagnosis of potato leaf
diseases, aiding farmers and agricultural authorities in implementing effective
preventive measures.The primary diseases examined in [13] include late blight,
early blight, and another leaf disease, all of which cause significant economic and
ecological losses for farmers. The research aims to enable early detection of these
diseases to minimize losses and safeguard the value of agricultural production. The
study employs four categories of disease-affected leaves and one category of
healthy leaves and evaluates three deep learning models: VGGNet16, ResNet101,
and a modified version of AlexNet. The modified AlexNet model yielded the best
results, achieving 99.97% accuracy during training and 61% accuracy in testing.
This automated disease detection system has the potential to become a valuable tool
for farmers, facilitating rapid diagnosis and effective intervention to prevent crop
losses. This capability can significantly reduce the time and costs associated with
manual crop health assessment.

3. Materials and methods

3.1. Database used
The dataset “Potato Leafe Disease Gallery” is a public database available
on Kaggle, being a valuable resource for researchers. This holds labeled images of
early, late blight, and healthy leaves. The images are captured from different angles
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and lighting conditions, creating various datasets suitable for training computer
vision models.

Each image is annotated with a specific disease type or marked as healthy
for unaffected leaves. This structured labeling enables the training of models
capable of distinguishing between healthy and infected leaves, including crop
health monitoring, where fast disease detection allows farmers to take prompt
action, thereby minimizing the risk of yield loss. Additionally, it plays a crucial role
in precision agriculture, using advanced technologies to monitor and safeguard
crops, ultimately enhancing agricultural efficiency and sustainability. In Table 1,
the overview of the database is presented, explaining how balanced the number of
images and the number of classes are.

Table 1

Database overview

Class Number of
Images

Healthy leaves 152
Early blight leaves 1000
Late blight leaves 1000
Total 2152

As it can be seen in Table 1, the dataset is not balanced. In that regard, the
class Healthy leaves were augmented to increase the size of the dataset from 152 to
1000, as with the other classes, counting 3000 images in total. Table 2 also reflects
the database after augmentation. The augmentation techniques used for the Healthy
leaves class were horizontal flip, rotation, scale, vertical flip, brightness contrast,
Gaussian blur, padding, and crop. For training/ validation, 800/ 200 images were
used, as seen in Table 2.

Table 2
Database overview after image augmentation

Class Number of Images for | Number of

Training Images for

Validation
Healthy leaves 800 200
Early blight leaves | 800 200
Late blight leaves | 800 200
Total 2400 600

The dataset is frequently employed with deep learning algorithms,
particularly CNNs, which can analyze images, extract intricate features, and learn
to recognize disease based on visual patterns. Before training models, data
preprocessing is essential and typically involves noise reduction and image
augmentation. Noise reduction improves image quality by removing artifacts, while
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augmentation through transformations such as rotation, scaling, and brightness
adjustment enhances dataset diversity, helping prevent model overfitting. Figure 1
illustrates a representative example of each available class.

Fig. 1. a) Early blight leaves, b) Healthy leaves, ¢) Late blight leaves

3.2. Neural Networks Used

The YOLO models, starting with YOLOv7 until YOLO12, were trained and
proved progressive improvements in detection accuracy and efficiency, which
highlighted the benefits of leveraging the latest advancements in object detection
architectures. This approach shows performance improvements in accuracy, speed,
and offering valuable insights into the evolution of the YOLO family architecture.

YOLOv7 is a real-time object detection model that redefines the
benchmarks for speed and accuracy in computer vision. It is particularly well-suited
for applications such as object tracking, autonomous driving, robotics, and medical
image analysis. One of the defining characteristics of this architecture is its
performance, optimized for a broad range of frame rates, spanning from 5 FPS to
160 FPS. With an average precision (AP) of 56.8%, YOLOv7 [7] stands as the most
accurate real-time object detector for applications demanding speeds above 30 FPS.
Among its notable innovations in design and training, YOLOv7 employs model
reparameterization, which enhances performance by improving gradient flow
within the network architecture. It also introduces a guided label assignment
system, specifically fine-tuned for networks with multiple output layers. In Fig. 2,
the architecture of YOLOV7 is presented.

YOLOVS is one of the latest iterations in the YOLO series, developed by
Ultralytics, marking a significant advancement in real-time object detection. This
version integrates cutting-edge features and optimizations, making it well-suited for
a diverse range of applications, from object detection to more complex tasks such
as segmentation, key point detection, and classification.



Comparative study of neural networks for enhanced detection of Phytophthora infestans in... 101

Input Bounding
—> Backbone —>| Neck —> Head [— Boxex
Image & Class Labels
v v v
Feature Extraction | |rFeaature Fusion| |~ Prediction
E-ELAN PANet YOLO Head

MP
CBS

SPPCSPC

Fig. 2. YOLOV7 architecture

The available YOLOvS models start with YOLOv8n and end with
YOLOvV8x. The difference consists of the number of parameters used and the
FLOPs. Key advantages of YOLOVS [8] include its superior performance, as it
surpasses earlier versions in both accuracy and speed. Its architecture is highly
versatile, designed to excel not only in object detection but also in segmentation,
classification, and other sophisticated tasks. In Fig. 3, the architecture of YOLOvV8
is shown.
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Fig. 3. YOLOVS architecture

YOLOV9 [9] has introduced significant advancements in real-time object
detection, particularly on the COCO dataset, setting new benchmarks for efficiency
and accuracy. Its various model variants, ranging from tiny (t) lightweight versions
to large-scale (e) models, prove notable improvements in mean Average Precision
(mAP) while significantly reducing computational demands and parameter counts.
This makes YOLOV9 not only more precise but also more efficient than its
predecessors and competing models. These improvements solidify YOLOvV9’s
position as object detection model, excelling in both accuracy and resource
optimization. In Fig. 4, the architecture of YOLOVY is presented.
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Fig. 4. YOLOV9 architecture

YOLOvVI10 [10], released in 2024, introduces a series of enhancements that
make it faster and more efficient, continuing YOLQO’s tradition of prioritizing real-
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time performance. Key features of YOLOv10 are reducing the parameter count and
lowering the latency. Also, the refined architecture for improved computational
efficiency, the Non-Maximum Suppression (NMS)-free approach, and consistent
dual assignments for better object detection accuracy. YOLOVI1O0 is specifically
designed to minimize the number of parameters required for detection, leading to
lower latency and reduced hardware resource consumption. The difference consists
of the number of parameters used and the FLOPs. For instance, YOLOv10-B
features 25% fewer parameters compared to YOLOV9-C and achieves 46% lower
latency, making it an ideal choice for real-time applications on resource-constrained
devices, such as drones and security cameras. In Fig. 5, the architecture of
YOLOV10 is presented.
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Fig. 5. YOLOvV10 architecture

YOLOI1 [11], also released in 2024, stands for the pinnacle of YOLO’s
evolution, incorporating the most advanced techniques in computer vision and
machine learning. This makes it a top-tier choice for any application requiring high-
quality real-time object detection. Key Features of YOLOI1 are enhanced
architecture with advanced feature extraction techniques, expanded scope for
various computer vision tasks and optimized processing speeds for even faster
performance. YOLOI11 introduces 5 new models, starting from YOLO11n to
YOLOI11x.

YOLOI1 introduces significant architectural improvements, enhancing its
ability to capture fine details in complex images. It can detect not only standard
objects but also subtle objects or those in challenging lighting conditions. Beyond
object detection, YOLOI11 now supports instance segmentation, enabling the
identification of individual objects within an image, pose estimation, allowing for
spatial understanding of an objects or person’s position, and oriented object
detection, capable of recognizing objects at unusual angles. With these
advancements, YOLOI1 sets a new benchmark for precision, versatility, and
efficiency in real-time computer vision applications. In Fig. 6, the architecture of
YOLOI11 is presented.

YOLOI12 [12] introduces an Area Attention Mechanism, a novel self-
attention approach that efficiently handles large receptive fields by dividing feature
maps into equal-sized regions, significantly reducing computational costs.
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Fig. 6. YOLOL11 architecture

It also features Residual Efficient Layer Aggregation Networks (R-ELAN), an
improved aggregation module with block-level residual connections and a
bottleneck-like structure for enhanced optimization.

The model streamlines standard attention mechanisms using
FlashAttention, removing positional encoding, adjusting MLP ratios, and
incorporating a 7x7 separable convolution to implicitly encode positional
information. As well as the previous models, YOLO12 introduces 5 new models,
from YOLOI12n to YOLO12x.

YOLOI12 is designed for versatile computer vision tasks, including object
detection, instance segmentation, classification, pose estimation, and oriented
object detection. It achieves a strong balance between speed and accuracy by
reducing parameters while supporting high performance. It enhanced feature
extraction, optimization stability, and architectural efficiency, being suitable for
various applications. In Fig. 7, the model architecture of YOLO12 is presented.
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Fig.7. — YOLO12 architecture

The models were evaluated using the key performance metrics, presented in
Tabel 3, such Precision (P), Recall (R) and Mean Average Precision (mAP) to
assess their accuracy and effectiveness in the classification task.

Table 3
Performance Metrics
Name Formula Parameters
TP TP = True Positive,
Precision P = TP T FP FP = False Positive values
TP TP = True Positive,
Recall R = TP+ FN FN = False Negative values
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n = total number of classes,
mAP k= . .
K=n = the index of a specific class,
Mean Average _
Precision _ 1 Z Apk | APk =sum of the Average
T n Precision (4P) values across all n
k=1 classes

Precision measures the proportion of correctly identified instances out of all
predicted instances, while Recall reflects the model’s ability to detect all relevant
instances within the dataset. Mean average precision (mAP) provides a
comprehensive evaluation by combining both precision and recall, across different
confidence thresholds.

4. Results

The system diagram, presented in Figure 11, illustrates a standard machine
learning pipeline, broken into four main stages as it follows: data acquisition, data
preprocessing, modelling, result evaluation. Data acquisition involves collecting
raw data from various sources such sensors or cameras, public or proprietary
databases, manual annotation or scraping. The purpose of it is to to gather sufficient
and relevant data that will serve as the foundation for the entire modeling process.
Once data is collected, it must be cleaned and transformed. This stage, data
preprocessing includes removing noise, duplicates, or irrelevant features,
normalization or standardization, data augmentation and splitting into training,
validation, and test sets the purpose of it is to prepare the data in a format suitable
for training a model while reducing bias and improving performance. The
modelling step focuses on building the machine learning or deep learning model
choosing the model architecture, training the model on preprocessed data and
tuning hyperparameters to optimize performance, with the purpose of learning
patterns or relationships within the data to make predictions or classifications.
Finally, the trained model is assessed using metrics such as accuracy, precision,
recall, F1-score. Since the input involves static images, inference time is not critical
here, meaning evaluation focuses more on model accuracy and generalization rather
than speed.

Y
A 4
A 4

Data Aquisition Result Evaluation

Data Preprocessing Modelling

Fig. 11. — System diagram
The models were trained using a cloud virtual machine powered by a GPU
PNY NVIDIA TESLA T4 TCST4M-PB and CUDA 12.4 toolkit. The training for

the YOLO models was performed the same, with batch dimensions of 16 on 100
epochs, with a 640x640 image dimension. While training, callbacks were defined
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as checkpoints for saving only the best weights, early stopping, and reducing the
learning rate. Table 4 presents the leaves diseases studied in this paper, the number
of images per class used for training, and for validation. Due to the small size of the
dataset, it led to overfitting, as the model learned the training data too well but failed
to generalize to unseen examples.

Table 4
Classes overview

Class Class name Total Number | Number of Number of

of Images Images for Images for

Training Validation
Healthy leaves Healthy leaves 1000 800 200
Early blight leaves | Early_blight leaves | 1000 800 200
Late blight leaves | Late blight leaves | 1000 800 200
Total 3000 2400 600

In Table 5, the results obtained on the training phase are presented, and in
Table 6 the results obtained in the validation phase are shown.

Training results

Architecture | Precisio | Recal | mAPS5 | mAP9 |Inference

n 1 0 5 (ms)

YOLOv7 0.574 10.733 | 0.666 |0.466 |14.3

YOLOv8n |0.975 1 0.993 10978 |2.0

YOLOvOn |0.976 0.991 10.993 0983 |13

YOLOv10n |0.946 0.977 10.994 10.959 |3.09

YOLOvlin |0.998 1 0.995 10.988 |2.7

YOLOv8m |0.997 1 0.995 10.961 |9.95

YOLOvIm |0.969 0.992 10.991 |0.99 12.56

YOLOv10m | 0.988 0.987 10.994 0954 |11.24

YOLOIlm |0.978 0.996 10.994 0965 |11.4

YOLOI2n ]0.999 0.999 10.995 [0.982 (4.2

YOLOI2m |0.999 1 0.995 10991 |35

Validation results

Architecture | Precisio | Recal | mAP5 | mAP9 | Inference

n 1 0 5 (ms)

YOLOv7 0.574 0.733 | 0.666 |0.466 |14.8

YOLOv8n |0.975 1 0.993 10.98 3.8

YOLOv9n [0.976 |0.991 [0.993 |0.983 [2.3

YOLOvIOn [0.939 |0.987 [0.995 |0.96 5.8

YOLOvlln [0.998 1 0.995 [0.988 [4.7

YOLOv8m [0.997 10.999 [0.995 |0.962 |24.6

YOLOvIm [0.969 [0.992 [0.991 |0.99 25.2

YOLOvIOm | 0.987 |0.987 [0.995 ]0.995 |12.2

Table 5

Table 6
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YOLOIIm |0.978 [0.996 [0.994 |0.965 |26.9
YOLOI12n [0.999 10.999 [0.995 |0.984 6.2
YOLOI2m |0.999 1 0.995 10991 |5.6

As it can be seen, the YOLOI11m model obtained the best mAP95, 0.995.
The best mAP50 is 0.995, obtained by several models as YOLOv10n, YOLO1 1n,
YOLOvV10m, and YOLO12n. The best recall score, 1, is obtained by YOLOv8n and
YOLOI11n. The most precise model is YOLO12n, which obtained 0.999. On the
other hand, YOLOvV7 obtained the lowest results in this task. Since the inference
involves a comparison of static images, the time factor is not critical or relevant in
this context.

In Fig. 12, experimental results from all the classes in the training and
validation phases are displayed.

Fig. 12. — Experimental results from all the classes

Table 7
Class annotations
Class Class annotation | Name of the Image
Early blight leaves | 0 Starts with e/E
Healthy leaves 1 Starts with h/H
Late blight leaves |2 Starts with I/L

Analyzing Fig. 12 and Table 7, there are both correctly classified and misclassified
images. For example, Image ‘Haug 216.JPG’ is part of the healthy leaves class, but
it was classified as an early blight leaf, while ‘h _ (64).JPG’ was correctly classified.
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5. Conclusion

In this study, the authors explored the effectiveness of YOLO object
detection models from YOLOv7 to YOLOv12 for the detection of potato leaf
infestation in precision agriculture. Across all versions, the models proved strong
performance in accurately finding signs of infestation under diverse field
conditions. Importantly, the authors have shown that YOLO's real-time processing
capabilities, particularly in its recent versions, make it ideal for field deployment in
precision agriculture, where prompt identification of crop diseases is crucial for
minimizing yield loss. These findings underscore the suitability of YOLO-based
models as practical tools for supporting early intervention and automated crop
monitoring in real-world agricultural settings.

In conclusion, deep learning architectures, particularly convolutional neural
networks (CNNs), have proven to be highly effective in the agricultural domain,
especially in the detection and management of plant diseases such as Phytophthora
infestans. These architectures enable precise image classification, disease detection,
and early identification of affected areas, which is crucial for improving crop yields
and reducing the need for chemical interventions. In agriculture, CNN-based
models, including popular architectures like YOLO (You Only Look Once), are
used to analyze images of plants and detect symptoms of diseases, enabling farmers
to take timely actions to prevent widespread infection. YOLO is known for its real-
time processing capabilities, which make it ideal for field deployment in precision
agriculture. Furthermore, advancements in architecture, like YOLOv7 and others
that focus on transfer learning, have significantly reduced the amount of labeled
data needed for training models, making them more accessible and effective in
various agricultural settings. The application of these architectures in the context of
Phytophthora infestans provides a powerful tool for early detection, monitoring,
and management, which not only supports sustainable farming practices but also
contributes to better food security by mitigating crop losses caused by this
devastating pathogen.
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