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B-SPLINE COLLOCATION BASED APPROXIMATIONS FOR
STRUCTURAL PROBLEMS OF FOURTH ORDER

Deepak MAHAPATRA!, Shubhasis SANYAL?, Shubhankar BHOWMICK?3

Application of B-splines as approximating polynomials in collocation
technique improves its accuracy and makes it suitable for numerical solutions of
complex governing equations. In this paper a mathematical model of an available
fourth order boundary value problem (governing equation of a beam) subjected to
mechanical and thermo-mechanical load is considered. Also material non-linearity
is taken into account through which behavior of functionally graded beam is
analyzed. The approximate solution of the various problems addressed is
approached using B-spline Collocation Technique and results are compared with
those in available literature. Through this work, suitability of B-Spline Collocation
Technique for approximate solution of complex higher order boundary value
problems has been reported.

Keywords: boundary value problems, b-spline basis functions, greville abscissa,
thermo-mechanical load, functionally graded materials

1. Introduction

The application of B-splines in Computer Aided Design and
Manufacturing in the recent era has been tremendous. B-spline curves exhibit
superior characteristics regarding the local control and adaptability. Owing to
their accuracy in handling minute variations over specific regions without
effecting the overall geometry of the curve makes it very elegant in CAD
applications. Researchers feel that the characteristic of B-spline makes it suitable
for wide application areas and not just limited to CAD/CAM.

In recent era owing to technological advancements and high-performance
computing, the demand for more precise predictions to match real life conditions
is on rise. In this sequence, Hughes [1] has applied the concept of Non-uniform
Rational B-splines (NURBS) in analysis procedure so as to update the classical
Finite Element Techniques to match with modern CAD. Traditionally the concept
of B-splines has been successfully implemented in curve fitting and several CAD
applications. Its applications in linear regression models and applications in data
mining, image processing etc. has also been of considerable impact.
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B-spline regression analysis is used along with traffic flow theory for data
mining application by Sun et al [2]. Aguilera et al [3, 4] have reported the B-
spline approaches for the analysis of functional data. Zakaria et al [5] have used
the fuzzy B-spline surface model based on fuzzy set theory to represent fuzzy
data/ control points and thus modeled the data point uncertainty. Guo [6] has
considered the splines for functional data analysis while Valenzuala and Pasadas
[7] have used the cubic splines for fuzzy data approximation. Lehmann et al [8] in
their work has reported the use of B-splines interpolation technique in image
processing and author has also showed that the present technique gives very good
interpolation results and Fourier properties within a reasonable time for
computation. The concept of B-spline interpolation has been also used in signal
processing by Unser and Blu [9]. From the above discussion it is clear that B-
splines as interpolation functions have wide applications and it may be good
choice for data analysis as well.

As B-splines have excellent properties regarding the local control and
smoothness at the interfaces which makes it highly suitable for curve-fitting
applications. This also makes such curves suitable for numerical techniques in
finding approximate solutions of complex governing equations (with non-
linearities). Collocation method is one of the simpler and fast methods to arrive at
approximate solutions. However the accuracy of collocation is not high which
limits its applicability to a relatively narrow area. However the accuracy can be
improved substantially by using B-splines as approximating polynomials. The
superior accuracy and smoothness of B-spline basis functions and low
computational cost of collocation makes it very attractive. The collocation method
using B-splines can prove efficient as compared to the traditional Finite Element
(FEM) and Finite Difference Method (FDM) and can give results in piecewise
continuous and closed form and it has much simpler application process to get
results with satisfactory accuracy. A comparison of the FEM, FDM and B-spline
collocation has been reported by Kadalbajoo and Yadaw [10] to show that the
present technique gives better approximations and convergence and hence it may
be useful for applications in simpler geometries like beams and plates.

A number of works pertinent to application of B-spline collocation has
been published. Fairweather [11] and Rashidiniya [12] have compiled a number of
related works in their survey on B-spline collocation. It is seen that the
effectiveness of the present method has been largely explored in thermal problems
particularly to heat transfer and fluidics; however this method may be justifiably
applied to structural problems as well. The authors Chawla et al [13] and Chawla
[14] have successfully applied the collocation using b-splines to heat or mass
transfer problem and radiation-conduction problem. Botella [15] has presented the
numerical solution of Navier Stokes equation using B-spline collocation to obtain
efficient results of desired accuracy. Kadalbajoo [16] used the collocation method
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to solve boundary value problems of convection and diffusion; thus, obtain an
approximate solution with sufficient accuracy level.

In 1995, Bert [17] has applied the method of spline collocation to find
approximate solution in statics of beams and plates. Wu [18] has used the Spline
collocation technique to solve generalized problems of beam structures. The
dynamics of non-uniform beams supported on elastic foundation and of pre-
twisted beams using Spline collocation with uniform knot span has been reported
by Hsu [19, 20].

The technique of B-spline collocation may also be extended to cover the
variation in material behavior as in case of functionally graded materials (FGMSs).
These are advanced composites (mixture of different materials, arranged in certain
form) whose parent materials are mixed in a desired form so as to obtain required
properties. Hence the material anisotropy inherits material non-linearity in the
defined problem. Shankar [21] studied the behavior of FG Euler-Bernoulli beam
using elasticity approach. Chakraborty et al [22] have developed a new beam
element that can be applied to a bi-material shear deformable beam with
functionally graded intermediate layer and hence to determine its mechanical
response to static and dynamic loads in a thermal environment. Li [23] reported a
unique unified formulation for FG Timoshenko beam by reducing the three
differential equations of displacement variables into a single fourth order
equation.

Recently, Isogeometric (IG) analysis [1] using NURBS, which is a refined
formulation of B-splines, as shape functions, is increasingly attracting researchers
for finding approximate solutions to complex problems. Auricchio et al [24] have
reported the applications of IG collocation technique and applied it to theoretical
analysis of many mathematical problems. Reali [25] has applied for the first time
IG collocation to slender beams and plates and have illustrated the inherent
potential of the method.

Patlashenko et al [26] have applied the cubic B-spline collocation
technique to study the behavior of panels subjected to mechanical and thermal
loading. Patlashenko [27] extended his work to nonlinear analysis of laminated
panels using two dimensional spline collocation methods. Mizusawa et al [28, 29]
have used the concept of spline finite strip method to study the vibration
characteristics of cross-ply and thick laminated cylindrical panes. Akhras et al
[30] have applied the spline finite strip method to investigate the stability and
vibration behavior of piezoelectric composite plates while Loja et al [31] have
applied the B-spline finite strip technique to study the static and dynamic behavior
of FG sandwiched plates with piezoelectric skins. In a recent paper, Provaditis
[32] has used the B-spline collocation technique to obtain the natural frequencies
of thin plates in bending. The results of [32] report the effectiveness of B-spline
collocation technique over the cubic B-spline Galerkin-Ritz formulation.
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From the above review of literature it is felt that though the technique is
being used for last 3-4 decades but its application area is largely limited to thermal
problems of interest. In structural problems its application is quite lean;
considering the level of smoothness provided by this technique, its applications
areas may further be explored to a wider scale. As mentioned above, in the present
era, isogeometric analysis using NURBS (Non Uniform Rationalized B-splines)
has been considered as a powerful tool in approximation theory. It is felt that
application of B-splines in approximations can render results with satisfactory
accuracy, at least for relatively simpler 1d- or 2d-problems of structural
mechanics.

In this paper the governing differential equation of a beam (fourth order
boundary value problem) with known boundary conditions is solved numerically
using B-spline collocation technique to find an approximate solution. Two types
of loading are considered- purely mechanical load and thermo-mechanical load.
The results are then verified with the known results from literature to obtain a
perfect match. The effect of material non-linearity as in FGMs has also been
addressed.

2. Formulation
2.1 B-Spline Basis Functions

B-splines are piece-wise polynomials made up of linear combinations of b-
spline basis functions that can be used to approximate a solution to a
mathematical problem. It is drawn in a parametric space‘t’. They are defined in
terms of order/ degree of the curve and also depend upon a set of non-decreasing
coordinates in parametric space which is called a knot-vector. It is assumed that

the knot vector is of open uniform type given by:
T = [to by ooy Gyt (1)
where, n+1 = no. of control points and ‘k’ is order of the polynomial spline. The
b-spline basis of ‘ki’ order is defined recursively using the relation:
-t t., —t

Ny =———N, +—*—N. )

(9 ti+k—1_ti (e ti+k_ti+l (24

In order to use the above relation we need to define the smallest basis

function i.e. of first order:

Lt <t<t,,
i1 . (3)
0, otherwise
Using (n+1) control points Bo, B:... Bn, a B-spline function is defined as:

B®=iMMU& (4)
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2.2. Collocation Technique

In order to simplify the procedure we may assume (and in a general sense)
that to = 0 and tn+k+1=L SO as to merge the parametric space with real space; and
thereby we may assume t = x as reported in [33]. Let the entire length of the beam
be divided into ‘I’ spans. Let ‘k’ be the order of the spline function that is taken as
the approximating polynomial in the present case. Each span is represented by a
single spline function as such the total number of spline functions is equal to the
no. of spans. As the continuity at the knots equals C¥S!, the number of
smoothness conditions at the knots is (k-s) and hence depends upon the
multiplicity ‘s’. Let ¢ denote the number of smoothness conditions at each knot.

Hence the no. of coefficients of ‘I’ piecewise polynomials which is equal to the

no. of control points, 9t , can be expressed as:

N=kl->9 (5)
This leads to 9t unknowns that are to be determined. If there are ‘m’

boundary conditions, then collocation points required will be given by 9t-m. In

this work collocation points are calculated using the method of Greville abscissa
as discussed in [33], defined for a knot vector, T = [to, t1, ta...... , th+k+1] @s:

+ot ) (6)

In Equation (6) ‘t” represents the knots in B-spline and ‘n’ is equal to (k-1)
and is the degree of b-spline curve used. The above leads to 9t values of x;, the
first and the last of which represent the boundaries which have been already used
in boundary conditions hence must be omitted. Out of the remaining, points which
are located towards centre are selected as collocation points. Thus we have 0
algebraic equations with 9t unknowns. These can be solved to obtain a unique
solution.

i+1

1
=—(t +t
X, n('+

2.3. Isotropic Beam Problem

An isotropic Euler beam is considered for analysis. Its governing equation
is a fourth order boundary value problem [34] given by:
o'w
ox*
where El is the flexural rigidity of the beam for bending, ‘w’ is transverse
deflection of beam and ‘g’ is constant mechanical pressure applied at the top
surface of the beam with known boundary conditions. The following boundary
condition of the beam may be considered:

a) Clamped-Free

El

+q=0 ()
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(iyw(0) =0, (ii)%"(o) =0, (iii) ngz"

b) Clamped-Simply supported

Owl0) = 0,60 22 @) = 0,60 22 @) = 0, @r)wlL) =0
ox o= x

o*w
ox®

(L)=0,(iv)

(L)=0 (8)

9)
C) Clamped-Clamped
(i)w(0) =0, (||)&(0)=0, (|||)&(L)=O, (ivyw(L)=0 (10)
d) Simply supported-Simply supported
. .. O°W ... O°W .
(i)w(0) = 0, (ii) = (0) =0, (iii) = (L)=0,(iv)w(L)=0 (11)

When the aspect ratio (I/h) of the beam is less (I/h<10) there is substantial

deformation owing to shear strain, under these conditions the above theory

underestimates the actual deformation. Under such conditions Timoshenko beam

theory is suitable that accounts for shear deformation also. The governing
equation for Timoshenko beam is given by [34]:

o0°p

El pve +9=0 (12)

where ‘¢’ is the slope of elastic curve. The boundary conditions are modified

accordingly for the cases in which at least one of end condition is of clamped

type. In all such cases ;ﬂigﬁ as the shear deformation given by:
X

y = (qﬁ—i—w) # 0. The solution of the above equation will calculate the value of ¢
X

that can be used to back calculate ‘w’. However we can simplify the process by a
simple assumption as follows. We assume an independent parameter ‘F’ that
relates the slope ¢ and transverse deflection ‘w’ [23] as:

_p_El d°F
~ kGA X2
__gr (13)
¢= X
Hence when substituted for ‘¢’ in Equation (12) we get:
o'F
El v +9=0 (14)

Once the parameter ‘F’ is calculated the slope and deflection terms for
Timoshenko beams can be easily determined. The boundary conditions for a
Timoshenko beam are:
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a) Clamped-Free

. . .. O°W 0w

(i)w(0) =0, (ii)¢(0) =0, (iii) = (L)=0, (IV)W(L) =0 (15)
b) Clamped-Simply supported

(i)w(0) =0, (ii)¢(0) = O(iii) gj(vzv(L) =0,(iv)w(L)=0 (16)
c) Clamped-Clamped

(i)w(0) =0, (ii)¢(0) =0, (iii)p(L) = 0, (iv)w(L) =0 7)
d) Simply supported-Simply supported

. . O°w .. O°W .

(i)w(0) = 0, (ii) = (0) =0, (iii) = (L)=0,(iv)w(L)=0 (18)

It can be observed through Equation (15) that if the value of ‘G’ is infinite then
‘w’ is reduced to ‘F’, which mean Equation (15) and Equation (7) become
identical. Thus only by assuming a finite value for ‘G’ we get Timoshenko
deflection and correspondingly Euler deflection is obtained for its infinite value.

2.4. Anisotropic Beam problem

In this section B-spline collocation technique is used to numerically find
the approximate solution of a beam with material non-linearity. The complexities
arising due to such non-linearity makes the problem quite complex and it is very
difficult to obtain a direct solution. The materials with such non-linearity in
material behavior are called composite materials and the one considered in this
work are called functionally graded materials.

Functionally Graded Materials are advanced composite materials whose
properties are tailored in a desired manner to obtain specific properties. The
composition of the parent materials is varied in a specified manner to achieve
such variation in the properties. In this work the variation of material properties is
assumed to be according to power law function. The expression for power law is
given by:

z 1Y
p(z):pb+(pt_pb).(3+5j (19)
where ‘P’ is any material property, ‘z/h’ represent the normalized distance from
geometrical center. Here “h’ is the height of beam cross-section and the subscripts
‘b and ‘t” represents the bottom and top layer of the beam.
Li [23] has derived the governing equation of a beam made up of functionally
graded material such that its properties vary across the cross-section of the beam
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given by power law function, Equation (20). The governing equation for a
functionally graded beam as reported in [23] is given by:

. 0'F
D o +q=0 (20)

Equation (21) is the governing equation for a functionally graded beam. It is
very similar to the equation for isotropic beams and can be numerically solved
using the B-spline collocation method. (D* is material property term and ‘F’ is a
parameter that resembles transverse deflection of beam; both are explained in
appendix-1).

It can be noted that above Equation (21) is governing equation for a
Timoshenko beam made up of functionally graded material. From the appendix-1
it can be observed that the term “F’ depends on D* and Kss which are numerically
constants for a particular beam. It reduces to ‘w’ when the value of Kss is infinite.
Hence Equation (21) becomes the governing equation for Euler beams only by
assuming the rigidity modulus to be infinite. Hence Equation (21) is applicable for
both Euler and Timoshenko beams made up of functionally graded materials by
constraining a suitable value to rigidity modulus.

The term ‘B’, used in Equation (20), is called power law index and it
represents the composition of a functionally graded material. When its value is
zero then the material becomes isotropic, and constant terms reduce as D*=El
(flexural rigidity), Kss=ksGA (shear rigidity), where ‘I’ is the moment of inertia of
cross-section and ‘A’ is cross-section area. This means Equation (21) simplifies to
isotropic Timoshenko beam if (5=0), and to an Euler beam equation if (=0,
G=infinite). In the next section the deflections of Euler and Timoshenko beams
have been compared for both isotropic as well as functionally graded materials.

3. Numerical Experiments

3.1. Case 1: Isotropic Beam subjected to only mechanical load

A rectangular beam of uniform dimensions throughout the span is
considered for analysis. Its length is assumed to be 0.5m, its height is 0.125m and
width is assumed to be unity. Let the material of the beam be steel whose Young’s
modulus is taken as 210GPa. The beam is loaded with a uniformly distributed
load of 1 kN/m. Poisson’s ratio is assumed to be u=0.3. The shear correction

factor, ks is calculated from k, = (Séz‘;)) while rigidity modulus is calculated using

G =51,y For Euler deflection a very large value (G=10'%) is substituted in

Matlab code.
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In order to solve Equation (15) a sixth order B-spline basis function is
considered as approximating polynomial. For simplicity the knot vector is
selected so as to have a single span (0-1) given by:

T =[000000111111] (21)

In this case 9t = 6, and since we have four boundary conditions, we need
two collocation points. The collocation points are calculated using Greville
abscissa, i.e. Equation (6) :

X = [0, 0.2000, 0.4000, 0.6000, 0.8000,1] (22)

From the above we may select the middle points as collocation points (i.e.
X = 0.4, 0.6). Using the above boundary conditions and collocation points we
have six linear equations that can be easily solved to obtain the unknown
parameters or the coefficients (Bi, i =1,2,...%) of Equation (4). A MATLAB code
is developed to generate the basis functions and then use them in collocation to
find the approximate solution.
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Fig. 1 Deflection of beam (for I/h=4) using B-spline collocation and its validation
a)C-F, b)S-S, ¢)C-S, d)C-C
Using the boundary conditions i.e. Equations (8-11) corresponding to
different beam types, the governing Equation (15) is solved using the MATLAB
code and results are plotted in figure 1(a-d). The results are then verified with the
standard results available in the literature [34].
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An important observation in the figure 1(a-d) is that for smaller aspect
ratio (I/h=4) there is a significant difference in the Timoshenko and Euler
deflection. This is due to appreciable shear deformation observed in Timoshenko
beams with a finite value of shear modulus. However, this deformation due to
transverse shear decreases as the aspect ratio increase. For aspect ratio more than
10, the difference between the two is very small and can be ignored. The same can
be verified from figure 2 in which the aspect ratio has been increased to 40, other
conditions remaining same. The elastic curves for both Timoshenko and Euler
beam are practically undistinguishable for higher aspect ratio (I/h)of 40.

x18°3 x18°*
(i - g
- ) 1/h=40 - —&— Timoshenko Beam 1/h=40
s . 5 —-i== Euler Beam
- -
£ - £ F
= =
c -l — c -l —
=] =]
=1 L -~ -
+ +
b b
3 15 — E -15 —
Y= . Y=
2 - —&— Timoshenko Beam 2 -
Ty -&- Euler Beam Ty
- a) - b)
25 L ] L I 1 l 1 | L 25 L | L | L ] L ] L
2] 1 2 3 4 5 2] 1 2 3 4 5
Length of beam (m) Length of beam (m)
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@ [l
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Fig. 2 Comparison of Euler and Timoshenko deflection using B-spline collocation and its
validation a)C-F, b)S-S, ¢)C-S, d)C-C

Deflections under mechanical load for different end conditions, their
comparisons with standard results in the available literature and the error in the
results have been reported in Table-1. It is clear from the figure 1 & 2 and Table-1
that B-spline collocation technique can be very effective in getting approximate
solutions to a high level of accuracy (with error between the obtained and
standard results differ in the order of 10°2%). The level of accuracy achieved by this
technique indicates that it can handle complex geometries and non-linearities as
well. Hence beams subjected to thermo-mechanical loading and non-linearities
associated with material properties have been considered in the successive

sections.
Table-1
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Error in the deflections obtained using B-spline collocation

Position Deflection (m)
on the Type of Error
beam, x support Present Work Reference
(m)
C-F -2.11e-08 -2.11e-08 1.38e-12
01 S-S -1.41e-08 -1.41e-08 1.33e-13
' C-S -3.17e-09 -3.17e-09 6.00e-13
C-C -1.95e-09 -1.95e-09 5.88e-13
C-F -6.47e-08 -6.47e-08 7.77e-14
0.2 S-S -2.27e-08 -2.27e-08 1.11e-13
' C-S -8.05e-09 -8.05e-09 2.89%-13
C-C -4.39%-09 -4.3%-09 3.55e-13
C-F -1.21e-07 -1.21e-07 2.89%-13
0.3 S-S -2.27e-08 -2.27e-08 4.44e-14
' C-S -9.87e-09 -9.87e-09 2.66e-13
C-C -4.39%-09 -4.3%-09 3.00e-13
C-F -1.81e-07 -1.81e-07 2.89%-13
0.4 S-S -1.41e-08 -1.41e-08 8.88e-14
' C-S -6.83e-09 -6.83e-09 1.78e-13
C-C -1.95e-09 -1.95e-09 4.44e-14

3.2. Case 2: Isotropic Beam subjected to thermo-mechanical load

In this section the case of thermal load being applied to the beam is
considered. In order to validate the results, a problem from [35] is taken. A
propped beam (i.e. clamped at left end and simply supported at the right end) is
uniformly loaded with intensity ‘q’. The beam is also subjected to temperature
distribution:

T=T +(T, —Tb)[%ﬂ (23)

where Ty, and Tt are temperature of bottom and top surface respectively which is
defined initially, and ‘h’ is beam depth.

It is observed that the governing differential equation remains unchanged
even after the incorporation of the thermal load and only boundary conditions are
modified. The thermal load significantly changes the moment distribution across
the beam length. The boundary condition for this problem will be obtained by
modifying Equation (9) to incorporate thermal moment with mechanical moment
as shown in Equation (25). Similarly, Equation (26) shows the modified boundary
condition for propped beams loaded under temperature gradient.

a) Clamped-Free (C-F)

(Hw(0) =0, (ii);—“;v(o) = 0, (iii)

82W A 83W
x> (L) +Tm0ment =0, (IV)E( L) =0 (24)
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b)  Clamped-Simply supported (C-S)
()w(0)=0 (ii)@(o)zo (iii) o'w
T ox T ox?
The behavior of such beam is studied under thermo-mechanical load and
Equation (7) is solved using B-spline collocation method and boundary conditions
given by Equation (25-26) are substituted. A uniform mechanical pressure of
10kN/m and thermal load (temperatures of top and bottom surfaces) is varied.
Two types of boundary conditions i) Clamped-Free and ii) Clamped-Simply
supported have been considered. Different types of thermal loading have been
considered as given in Table-2. The coefficient of thermal expansion (o) for steel
has been taken as 24e10%/°C. The other data and procedure is similar to the
previous case. The results are then verified with the results in [35] and found
exact match as shown in fig. 3. In fig. 3(a-b), the thermal moment is opposite to
the mechanical moment. Due to this with the increase in temperature gradient the
deflection of beam changes sharply. This shows the pronounced effect of thermal
gradient load in the behavior of isotropic beams.
x10°% x18-%

2 30
a) b) —— Case 2a
- I —A— Case 2b

(L)+T,

moment

=0,(iv)w(L)=0 (25)
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] 8.1 8.2 8.3 0.4 8.5 ] 8.1 8.2 8.3 8.4 8.5
Length of beam (m) Length of beam (m)

Fig. 3: Deflection under thermo-mechanical load a)C-F b)C-S

3.3. Case 3: Beam made up of functionally graded material and subjected to
purely mechanical load

The governing equation for a FG beam given by Equation (13) is solved
using B-spline collocation technique using the same procedure followed in
example of Case 1. The material properties (Young’s modulus) vary according to
power law given by Equation (20). The functionally graded material for the beam
Is assumed to be a mixture of steel and aluminum, the bottom fibers are steel in
rich while the top surface is enriched with aluminum. Their Young’s modulus is
taken as: Ep = Estel = 210 GPa, Et = Eal = 70 GPa. The value of Poisson’s ratio is
assumed to be a constant and taken as 0.3. The other parameters are same as taken
in Case 1. In order to find an approximate solution a fifth degree/ sixth order B-
spline basis function is used. The results are validated using the results of [23] to
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find an exact match as shown in figure 4(a-d). The deflection and corresponding
error using present technique have been given in Table 3. It is observed that the
computed root mean squared error is 5.62e10°3. Hence the method gives accurate
results for complex cases of material inhomogeneity and anisotropy and may be
extended to include different applications of non-linear behavior and critical

loading conditions also.

Table-2 Temperature distribution in Table-3 Error in deflection of FG beam (C-F)

beam
Temperature (°C) POSit:]OH Deflection (m)
Case To Bottom | Ambient on the
Surfarl)ce Surface | Temp. E’(e?r'%’ P\;\(jgfﬂt [Li, 2008] rrer
gzzziz 21 22 28 0.05 | -1.11e-08 | -1.11e-08 | 149-12
Caselc 31 37 30 0.1 -3.38e-08 | -3.38e-08 2.22e-14
Caseoa 33 31 30 0.15 -6.58e-08 | -6.58e-08 2.66e-13
Caseb 35 31 30 0.2 -1.05e-07 | -1.05e-07 3.55e-13
Case2e 37 31 30 0.25 -1.49e-07 | -1.49e-07 3.89%e-13
0.3 -1.96e-07 | -1.96e-07 4.33e-13
0.35 -2.45e-07 | -2.45e-07 4.11e-13
0.4 -2.95e-07 | -2.95e-07 4,33e-13
0.45 -3.45e-07 | -3.45e-07 4,33e-13
0.5 -3.95e-07 | -3.95e-07 4,33e-13

4. Conclusions

B-splines are synthetic curves which have very good properties related to
smoothness, local control and adaptability. These curves are used in different
CAD applications. These curves, due to their flexibility, have high potential to be
used in other applications also. The other application areas include curve fitting,
numerical solution of differential equation, interpolations, image processing, data
mining, fuzzy and many more. Recently, the concept of NURBS is used in
mechanical analysis and design to give better results. In the present paper the
concept of B-splines is used for numerical approximate solution of differential
equation using collocation technique. Collocation is very fast and computationally
efficient process, but it is also accompanied by poor accuracy at non-collocation
points. The use of B-spline basis function in collocation improves its accuracy
substantially.

In this work a fourth order boundary value problem of a beam is
numerically solved using B-spline collocation method. Three cases have been
reported- a) Isotropic beam subjected to purely mechanical load, b) Isotropic
beam subjected to thermo-mechanical load and c) functionally graded beam
subjected to only mechanical load. Four different boundary conditions are
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considered. The results obtained are compared and verified with standard results

in literature. The following conclusions can be enumerated:

e B-spline collocation method provide piece-wise closed form solution at very
less computational cost and in effective time.

The accuracy of the technique is also quite high and the method can be useful for

complex cases also.

Fig.4 Deflection of FG beam under purely mechanical load a)C-F, b) S-S, ¢)C-S, d)C-C
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Appendix 1

In the derivation of Equation (13) the following assumptions have been made-

—h/2 —h/2
A, = J E(z)l.dz By = j E(z).z.dz
h/2 h/2
-h/2 h/2
D, = I E(z).z%dz K= | k,.G(z).dz
h/2 —h/2
2 * A2
D*:&_Dn W= _D_a_fZ: ¢=—ﬁ
A, Kgs OX OX

where E(z) is the Young’s modulus and G(z) is the modulus of rigidity of the parent
materials of FG beam while ks is shear correction factor which is a constant. * ¢ * and ‘w’ are
slope and transverse deflection
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