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B-SPLINE COLLOCATION BASED APPROXIMATIONS FOR 
STRUCTURAL PROBLEMS OF FOURTH ORDER 
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Application of B-splines as approximating polynomials in collocation 
technique improves its accuracy and makes it suitable for numerical solutions of 
complex governing equations. In this paper a mathematical model of an available 
fourth order boundary value problem (governing equation of a beam) subjected to 
mechanical and thermo-mechanical load is considered. Also material non-linearity 
is taken into account through which behavior of functionally graded beam is 
analyzed. The approximate solution of the various problems addressed is 
approached using B-spline Collocation Technique and results are compared with 
those in available literature.  Through this work, suitability of B-Spline Collocation 
Technique for approximate solution of complex higher order boundary value 
problems has been reported. 
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1. Introduction 

The application of B-splines in Computer Aided Design and 
Manufacturing in the recent era has been tremendous. B-spline curves exhibit 
superior characteristics regarding the local control and adaptability. Owing to 
their accuracy in handling minute variations over specific regions without 
effecting the overall geometry of the curve makes it very elegant in CAD 
applications. Researchers feel that the characteristic of B-spline makes it suitable 
for wide application areas and not just limited to CAD/CAM.  

In recent era owing to technological advancements and high-performance 
computing, the demand for more precise predictions to match real life conditions 
is on rise. In this sequence, Hughes [1] has applied the concept of Non-uniform 
Rational B-splines (NURBS) in analysis procedure so as to update the classical 
Finite Element Techniques to match with modern CAD. Traditionally the concept 
of B-splines has been successfully implemented in curve fitting and several CAD 
applications. Its applications in linear regression models and applications in data 
mining, image processing etc. has also been of considerable impact. 
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 B-spline regression analysis is used along with traffic flow theory for data 
mining application by Sun et al [2]. Aguilera et al [3, 4] have reported the B-
spline approaches for the analysis of functional data. Zakaria et al [5] have used 
the fuzzy B-spline surface model based on fuzzy set theory to represent fuzzy 
data/ control points and thus modeled the data point uncertainty. Guo [6] has 
considered the splines for functional data analysis while Valenzuala and Pasadas 
[7] have used the cubic splines for fuzzy data approximation. Lehmann et al [8] in 
their work has reported the use of B-splines interpolation technique in image 
processing and author has also showed that the present technique gives very good 
interpolation results and Fourier properties within a reasonable time for 
computation. The concept of B-spline interpolation has been also used in signal 
processing by Unser and Blu [9]. From the above discussion it is clear that B-
splines as interpolation functions have wide applications and it may be good 
choice for data analysis as well.  

As B-splines have excellent properties regarding the local control and 
smoothness at the interfaces which makes it highly suitable for curve-fitting 
applications. This also makes such curves suitable for numerical techniques in 
finding approximate solutions of complex governing equations (with non-
linearities).  Collocation method is one of the simpler and fast methods to arrive at 
approximate solutions. However the accuracy of collocation is not high which 
limits its applicability to a relatively narrow area. However the accuracy can be 
improved substantially by using B-splines as approximating polynomials. The 
superior accuracy and smoothness of B-spline basis functions and low 
computational cost of collocation makes it very attractive. The collocation method 
using B-splines can prove efficient as compared to the traditional Finite Element 
(FEM) and Finite Difference Method (FDM) and can give results in piecewise 
continuous and closed form and it has much simpler application process to get 
results with satisfactory accuracy. A comparison of the FEM, FDM and B-spline 
collocation has been reported by Kadalbajoo and Yadaw [10] to show that the 
present technique gives better approximations and convergence and hence it may 
be useful for applications in simpler geometries like beams and plates. 

A number of works pertinent to application of B-spline collocation has 
been published. Fairweather [11] and Rashidiniya [12] have compiled a number of 
related works in their survey on B-spline collocation. It is seen that the 
effectiveness of the present method has been largely explored in thermal problems 
particularly to heat transfer and fluidics; however this method may be justifiably 
applied to structural problems as well. The authors Chawla et al [13] and Chawla 
[14] have successfully applied the collocation using b-splines to heat or mass 
transfer problem and radiation-conduction problem. Botella [15] has presented the 
numerical solution of Navier Stokes equation using B-spline collocation to obtain 
efficient results of desired accuracy. Kadalbajoo [16] used the collocation method 
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to solve boundary value problems of convection and diffusion; thus, obtain an 
approximate solution with sufficient accuracy level.  

In 1995, Bert [17] has applied the method of spline collocation to find 
approximate solution in statics of beams and plates. Wu [18] has used the Spline 
collocation technique to solve generalized problems of beam structures. The 
dynamics of non-uniform beams supported on elastic foundation and of pre-
twisted beams using Spline collocation with uniform knot span has been reported 
by Hsu [19, 20].  

The technique of B-spline collocation may also be extended to cover the 
variation in material behavior as in case of functionally graded materials (FGMs). 
These are advanced composites (mixture of different materials, arranged in certain 
form) whose parent materials are mixed in a desired form so as to obtain required 
properties. Hence the material anisotropy inherits material non-linearity in the 
defined problem. Shankar [21] studied the behavior of FG Euler-Bernoulli beam 
using elasticity approach. Chakraborty et al [22] have developed a new beam 
element that can be applied to a bi-material shear deformable beam with 
functionally graded intermediate layer and hence to determine its mechanical 
response to static and dynamic loads in a thermal environment. Li [23] reported a 
unique unified formulation for FG Timoshenko beam by reducing the three 
differential equations of displacement variables into a single fourth order 
equation.  

Recently, Isogeometric (IG) analysis [1] using NURBS, which is a refined 
formulation of B-splines, as shape functions, is increasingly attracting researchers 
for finding approximate solutions to complex problems. Auricchio et al [24] have 
reported the applications of IG collocation technique and applied it to theoretical 
analysis of many mathematical problems. Reali [25] has applied for the first time 
IG collocation to slender beams and plates and have illustrated the inherent 
potential of the method.  

Patlashenko et al [26] have applied the cubic B-spline collocation 
technique to study the behavior of panels subjected to mechanical and thermal 
loading. Patlashenko [27] extended his work to nonlinear analysis of laminated 
panels using two dimensional spline collocation methods. Mizusawa et al [28, 29] 
have used the concept of spline finite strip method to study the vibration 
characteristics of cross-ply and thick laminated cylindrical panes. Akhras et al 
[30] have applied the spline finite strip method to investigate the stability and 
vibration behavior of piezoelectric composite plates while Loja et al [31] have 
applied the B-spline finite strip technique to study the static and dynamic behavior 
of FG sandwiched plates with piezoelectric skins. In a recent paper, Provaditis 
[32] has used the B-spline collocation technique to obtain the natural frequencies 
of thin plates in bending. The results of [32] report the effectiveness of B-spline 
collocation technique over the cubic B-spline Galerkin-Ritz formulation. 
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From the above review of literature it is felt that though the technique is 
being used for last 3-4 decades but its application area is largely limited to thermal 
problems of interest. In structural problems its application is quite lean; 
considering the level of smoothness provided by this technique, its applications 
areas may further be explored to a wider scale. As mentioned above, in the present 
era, isogeometric analysis using NURBS (Non Uniform Rationalized B-splines) 
has been considered as a powerful tool in approximation theory. It is felt that 
application of B-splines in approximations can render results with satisfactory 
accuracy, at least for relatively simpler 1d- or 2d-problems of structural 
mechanics.   

In this paper the governing differential equation of a beam (fourth order 
boundary value problem) with known boundary conditions is solved numerically 
using B-spline collocation technique to find an approximate solution. Two types 
of loading are considered- purely mechanical load and thermo-mechanical load. 
The results are then verified with the known results from literature to obtain a 
perfect match. The effect of material non-linearity as in FGMs has also been 
addressed. 

2. Formulation 
2.1 B-Spline Basis Functions 

B-splines are piece-wise polynomials made up of linear combinations of b-
spline basis functions that can be used to approximate a solution to a 
mathematical problem. It is drawn in a parametric space‘t’. They are defined in 
terms of order/ degree of the curve and also depend upon a set of non-decreasing 
coordinates in parametric space which is called a knot-vector. It is assumed that 
the knot vector is of open uniform type given by: 

[ ]0 1 2 1  ,  ,  ,  n kT t t t t + += ……   (1) 

where, n+1 = no. of control points and ‘k’ is order of the polynomial spline. The 
b-spline basis of ‘kth’ order is defined recursively using the relation: 

( ) ( ) ( )
i i k

i,k i,k 1 i 1,k 1
i k 1 i i k i 1

t t t tN N N
t t t t

+
− + −

+ − + +

− −
= +

− −
  (2) 

In order to use the above relation we need to define the smallest basis 
function i.e. of first order: 
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Using (n+1) control points B0, B1... Bn, a B-spline function is defined as: 
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2.2. Collocation Technique 

In order to simplify the procedure we may assume (and in a general sense) 
that t0 = 0 and tn+k+1=L so as to merge the parametric space with real space; and 
thereby we may assume t = x as reported in [33]. Let the entire length of the beam 
be divided into ‘l’ spans. Let ‘k’ be the order of the spline function that is taken as 
the approximating polynomial in the present case. Each span is represented by a 
single spline function as such the total number of spline functions is equal to the 
no. of spans. As the continuity at the knots equals Ck-s-1, the number of 
smoothness conditions at the knots is (k-s) and hence depends upon the 
multiplicity ‘s’. Let iϑ  denote the number of smoothness conditions at each knot. 
Hence the no. of coefficients of ‘l’ piecewise polynomials which is equal to the 
no. of control points, 𝔑𝔑 , can be expressed as:  

ik.l ϑ= −∑N   (5) 

This leads to 𝔑𝔑 unknowns that are to be determined. If there are ‘m’ 
boundary conditions, then collocation points required will be given by 𝔑𝔑-m. In 
this work collocation points are calculated using the method of Greville abscissa 
as discussed in [33], defined for a knot vector, T = [t0, t1, t2……, tn+k+1] as: 

( )i i i 1 i n 1
1x t t t
n + + −= + +…+   (6) 

In Equation (6) ‘t’ represents the knots in B-spline and ‘n’ is equal to (k-1) 
and is the degree of b-spline curve used. The above leads to 𝔑𝔑 values of xi, the 
first and the last of which represent the boundaries which have been already used 
in boundary conditions hence must be omitted. Out of the remaining, points which 
are located towards centre are selected as collocation points. Thus we have 𝔑𝔑 
algebraic equations with 𝔑𝔑 unknowns. These can be solved to obtain a unique 
solution. 

2.3. Isotropic Beam Problem 

An isotropic Euler beam is considered for analysis. Its governing equation 
is a fourth order boundary value problem [34] given by: 

4

4 0wEI q
x

∂
+ =

∂
  (7) 

where EI is the flexural rigidity of the beam for bending, ‘w’ is transverse 
deflection of beam and ‘q’ is constant mechanical pressure applied at the top 
surface of the beam with known boundary conditions. The following boundary 
condition of the beam may be considered: 
a) Clamped-Free 
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b) Clamped-Simply supported 

    (9) 

c) Clamped-Clamped 
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d) Simply supported-Simply supported 
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When the aspect ratio (l/h) of the beam is less (l/h<10) there is substantial 
deformation owing to shear strain, under these conditions the above theory 
underestimates the actual deformation. Under such conditions Timoshenko beam 
theory is suitable that accounts for shear deformation also. The governing 
equation for Timoshenko beam is given by [34]: 

3

3 0EI q
x
φ∂
+ =

∂
       (12) 

where ‘𝜙𝜙’ is the slope of elastic curve. The boundary conditions are modified 
accordingly for the cases in which at least one of end condition is of clamped 

type. In all such cases w
x

φ∂
≠

∂
 as the shear deformation given by: 

0dw
dx

γ φ = − ≠ 
 

. The solution of the above equation will calculate the value of 𝜙𝜙 

that can be used to back calculate ‘w’. However we can simplify the process by a 
simple assumption as follows. We assume an independent parameter ‘F’ that 
relates the slope 𝜙𝜙 and transverse deflection ‘w’ [23] as: 
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Hence when substituted for ‘𝜙𝜙’ in Equation (12) we get: 
4

4 0FEI q
x

∂
+ =

∂
   (14) 

Once the parameter ‘F’ is calculated the slope and deflection terms for 
Timoshenko beams can be easily determined. The boundary conditions for a 
Timoshenko beam are: 
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a) Clamped-Free 
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b) Clamped-Simply supported 
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c) Clamped-Clamped 
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d) Simply supported-Simply supported 
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It can be observed through Equation (15) that if the value of ‘G’ is infinite then 
‘w’ is reduced to ‘F’, which mean Equation (15) and Equation (7) become 
identical. Thus only by assuming a finite value for ‘G’ we get Timoshenko 
deflection and correspondingly Euler deflection is obtained for its infinite value.  

2.4. Anisotropic Beam problem  

In this section B-spline collocation technique is used to numerically find 
the approximate solution of a beam with material non-linearity. The complexities 
arising due to such non-linearity makes the problem quite complex and it is very 
difficult to obtain a direct solution. The materials with such non-linearity in 
material behavior are called composite materials and the one considered in this 
work are called functionally graded materials. 

Functionally Graded Materials are advanced composite materials whose 
properties are tailored in a desired manner to obtain specific properties. The 
composition of the parent materials is varied in a specified manner to achieve 
such variation in the properties. In this work the variation of material properties is 
assumed to be according to power law function. The expression for power law is 
given by: 

( ) ( )
β

b t b
z 1z .
h 2

P P P P  = + − + 
 

  (19) 

where ‘P’ is any material property, ‘z/h’ represent the normalized distance from 
geometrical center. Here ‘h’ is the height of beam cross-section and the subscripts 
‘b’ and ‘t’ represents the bottom and top layer of the beam.  

Li [23] has derived the governing equation of a beam made up of functionally 
graded material such that its properties vary across the cross-section of the beam 
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given by power law function, Equation (20). The governing equation for a 
functionally graded beam as reported in [23] is given by: 

4
*

4

FD . q 0
x
∂

+ =
∂

  (20) 

Equation (21) is the governing equation for a functionally graded beam. It is 
very similar to the equation for isotropic beams and can be numerically solved 
using the B-spline collocation method. (D* is material property term and ‘F’ is a 
parameter that resembles transverse deflection of beam; both are explained in 
appendix-1).  

It can be noted that above Equation (21) is governing equation for a 
Timoshenko beam made up of functionally graded material. From the appendix-1 
it can be observed that the term ‘F’ depends on D* and K55 which are numerically 
constants for a particular beam. It reduces to ‘w’ when the value of K55 is infinite. 
Hence Equation (21) becomes the governing equation for Euler beams only by 
assuming the rigidity modulus to be infinite. Hence Equation (21) is applicable for 
both Euler and Timoshenko beams made up of functionally graded materials by 
constraining a suitable value to rigidity modulus.  

 The term ‘𝛽𝛽’, used in Equation (20), is called power law index and it 
represents the composition of a functionally graded material. When its value is 
zero then the material becomes isotropic, and constant terms reduce as D*=EI 
(flexural rigidity), K55=ksGA (shear rigidity), where ‘I’ is the moment of inertia of 
cross-section and ‘A’ is cross-section area. This means Equation (21) simplifies to 
isotropic Timoshenko beam if (𝛽𝛽=0), and to an Euler beam equation if (𝛽𝛽=0, 
G=infinite).  In the next section the deflections of Euler and Timoshenko beams 
have been compared for both isotropic as well as functionally graded materials. 

 
3. Numerical Experiments 

 
3.1. Case 1: Isotropic Beam subjected to only mechanical load 
 

A rectangular beam of uniform dimensions throughout the span is 
considered for analysis. Its length is assumed to be 0.5m, its height is 0.125m and 
width is assumed to be unity. Let the material of the beam be steel whose Young’s 
modulus is taken as 210GPa. The beam is loaded with a uniformly distributed 
load of 1 kN/m. Poisson’s ratio is assumed to be 𝜇𝜇=0.3. The shear correction 
factor, ks is calculated from ( )

( )
5 1
6 5sk µ

µ
+
+=  while rigidity modulus is calculated using 

( )2 1
EG µ+= . For Euler deflection a very large value (G=10100) is substituted in 

Matlab code.  
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In order to solve Equation (15) a sixth order B-spline basis function is 
considered as approximating polynomial. For simplicity the knot vector is 
selected so as to have a single span (0-1) given by: 

[ ]  0 0 0 0 0 0 1 1 1 1 1 1T =   (21) 

In this case 𝔑𝔑 = 6, and since we have four boundary conditions, we need 
two collocation points. The collocation points are calculated using Greville 
abscissa, i.e. Equation (6) : 

[ ]  0,  0.2000,  0.4000,  0.6000,  0.8000,1X =   (22) 

From the above we may select the middle points as collocation points (i.e. 
X = 0.4, 0.6). Using the above boundary conditions and collocation points we 
have six linear equations that can be easily solved to obtain the unknown 
parameters or the coefficients (Bi, i =1,2,…𝔑𝔑) of Equation (4). A MATLAB code 
is developed to generate the basis functions and then use them in collocation to 
find the approximate solution. 

 

  

 
   

Fig. 1 Deflection of beam (for l/h=4) using B-spline collocation and its validation  
a)C-F, b)S-S, c)C-S, d)C-C 

Using the boundary conditions i.e. Equations (8-11) corresponding to 
different beam types, the governing Equation (15) is solved using the MATLAB 
code and results are plotted in figure 1(a-d). The results are then verified with the 
standard results available in the literature [34].  
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An important observation in the figure 1(a-d) is that for smaller aspect 
ratio (l/h=4) there is a significant difference in the Timoshenko and Euler 
deflection. This is due to appreciable shear deformation observed in Timoshenko 
beams with a finite value of shear modulus. However, this deformation due to 
transverse shear decreases as the aspect ratio increase. For aspect ratio more than 
10, the difference between the two is very small and can be ignored. The same can 
be verified from figure 2 in which the aspect ratio has been increased to 40, other 
conditions remaining same. The elastic curves for both Timoshenko and Euler 
beam are practically undistinguishable for higher aspect ratio (l/h)of 40.  

 

 
Fig. 2 Comparison of Euler and Timoshenko deflection using B-spline collocation and its 

validation a)C-F, b)S-S, c)C-S, d)C-C 
 

Deflections under mechanical load for different end conditions, their 
comparisons with standard results in the available literature and the error in the 
results have been reported in Table-1. It is clear from the figure 1 & 2 and Table-1 
that B-spline collocation technique can be very effective in getting approximate 
solutions to a high level of accuracy (with error between the obtained and 
standard results differ in the order of 10-13). The level of accuracy achieved by this 
technique indicates that it can handle complex geometries and non-linearities as 
well. Hence beams subjected to thermo-mechanical loading and non-linearities 
associated with material properties have been considered in the successive 
sections. 

Table-1 
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 Error in the deflections obtained using B-spline collocation 
Position 
on the 

beam, x 
(m) 

Type of 
support 

Deflection (m) 

Error Present Work Reference 

0.1 

C-F -2.11e-08 -2.11e-08 1.38e-12 
S-S -1.41e-08 -1.41e-08 1.33e-13 
C-S -3.17e-09 -3.17e-09 6.00e-13 
C-C -1.95e-09 -1.95e-09 5.88e-13 

0.2 

C-F -6.47e-08 -6.47e-08 7.77e-14 
S-S -2.27e-08 -2.27e-08 1.11e-13 
C-S -8.05e-09 -8.05e-09 2.89e-13 
C-C -4.39e-09 -4.39e-09 3.55e-13 

0.3 

C-F -1.21e-07 -1.21e-07 2.89e-13 
S-S -2.27e-08 -2.27e-08 4.44e-14 
C-S -9.87e-09 -9.87e-09 2.66e-13 
C-C -4.39e-09 -4.39e-09 3.00e-13 

0.4 

C-F -1.81e-07 -1.81e-07 2.89e-13 
S-S -1.41e-08 -1.41e-08 8.88e-14 
C-S -6.83e-09 -6.83e-09 1.78e-13 
C-C -1.95e-09 -1.95e-09 4.44e-14 

3.2. Case 2: Isotropic Beam subjected to thermo-mechanical load 

In this section the case of thermal load being applied to the beam is 
considered. In order to validate the results, a problem from [35] is taken. A 
propped beam (i.e. clamped at left end and simply supported at the right end) is 
uniformly loaded with intensity ‘q’. The beam is also subjected to temperature 
distribution: 

( )b t b
zT T T T
h

1 = + − + 2 
  (23) 

where Tb and Tt are temperature of bottom and top surface respectively which is 
defined initially, and ‘h’ is beam depth. 

It is observed that the governing differential equation remains unchanged 
even after the incorporation of the thermal load and only boundary conditions are 
modified. The thermal load significantly changes the moment distribution across 
the beam length. The boundary condition for this problem will be obtained by 
modifying Equation (9) to incorporate thermal moment with mechanical moment 
as shown in Equation (25). Similarly, Equation (26) shows the modified boundary 
condition for propped beams loaded under temperature gradient. 
a) Clamped-Free (C-F) 

( ) ( ) ( )
2 3

2 30 0, L 0, L( ) (0) 0, ( ) 0) ( ( )moment
w wi w ii i wT
x x x

ii iv∂ ∂ ∂
= + = =
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=

∂
  (24) 
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b)      Clamped-Simply supported (C-S) 

( ) ( ) ( )
2

2( ) (0) 0, ( ) ( )0 0, L 0, L 0( )moment
w w T wi w i

x
i i

x
i ii v∂ ∂

= + == =
∂ ∂

  (25) 

The behavior of such beam is studied under thermo-mechanical load and 
Equation (7) is solved using B-spline collocation method and boundary conditions 
given by Equation (25-26) are substituted. A uniform mechanical pressure of 
10kN/m and thermal load (temperatures of top and bottom surfaces) is varied. 
Two types of boundary conditions i) Clamped-Free and ii) Clamped-Simply 
supported have been considered. Different types of thermal loading have been 
considered as given in Table-2. The coefficient of thermal expansion (α) for steel 
has been taken as 24e10-6/0C. The other data and procedure is similar to the 
previous case. The results are then verified with the results in [35] and found 
exact match as shown in fig. 3. In fig. 3(a-b), the thermal moment is opposite to 
the mechanical moment. Due to this with the increase in temperature gradient the 
deflection of beam changes sharply. This shows the pronounced effect of thermal 
gradient load in the behavior of isotropic beams. 

 
Fig. 3: Deflection under thermo-mechanical load a)C-F b)C-S 

3.3. Case 3: Beam made up of functionally graded material and subjected to 
purely mechanical load 

The governing equation for a FG beam given by Equation (13) is solved 
using B-spline collocation technique using the same procedure followed in 
example of Case 1. The material properties (Young’s modulus) vary according to 
power law given by Equation (20). The functionally graded material for the beam 
is assumed to be a mixture of steel and aluminum, the bottom fibers are steel in 
rich while the top surface is enriched with aluminum. Their Young’s modulus is 
taken as: Eb = Esteel = 210 GPa, Et = EAl = 70 GPa. The value of Poisson’s ratio is 
assumed to be a constant and taken as 0.3. The other parameters are same as taken 
in Case 1. In order to find an approximate solution a fifth degree/ sixth order B-
spline basis function is used. The results are validated using the results of [23] to 
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find an exact match as shown in figure 4(a-d). The deflection and corresponding 
error using present technique have been given in Table 3. It is observed that the 
computed root mean squared error is 5.62e10-13. Hence the method gives accurate 
results for complex cases of material inhomogeneity and anisotropy and may be 
extended to include different applications of non-linear behavior and critical 
loading conditions also. 
Table-2 Temperature distribution in 

beam Table-3 Error in deflection of FG beam (C-F) 
 

Case 
Temperature (0C) 

Top 
Surface 

Bottom 
Surface 

Ambient 
Temp. 

Case1a 31 33 30 
Case1b 31 35 30 
Case1c 31 37 30 
Case2a 33 31 30 
Case2b 35 31 30 
Case2c 37 31 30 

Position 
on the 
beam,  
x (m) 

Deflection (m) 
Error Present 

Work [Li, 2008] 

0.05 -1.11e-08 -1.11e-08 1.49e-12 
0.1 -3.38e-08 -3.38e-08 2.22e-14 

0.15 -6.58e-08 -6.58e-08 2.66e-13 
0.2 -1.05e-07 -1.05e-07 3.55e-13 

0.25 -1.49e-07 -1.49e-07 3.89e-13 
0.3 -1.96e-07 -1.96e-07 4.33e-13 

0.35 -2.45e-07 -2.45e-07 4.11e-13 
0.4 -2.95e-07 -2.95e-07 4.33e-13 

0.45 -3.45e-07 -3.45e-07 4.33e-13 
0.5 -3.95e-07 -3.95e-07 4.33e-13 

 

4. Conclusions 

B-splines are synthetic curves which have very good properties related to 
smoothness, local control and adaptability. These curves are used in different 
CAD applications. These curves, due to their flexibility, have high potential to be 
used in other applications also. The other application areas include curve fitting, 
numerical solution of differential equation, interpolations, image processing, data 
mining, fuzzy and many more. Recently, the concept of NURBS is used in 
mechanical analysis and design to give better results. In the present paper the 
concept of B-splines is used for numerical approximate solution of differential 
equation using collocation technique. Collocation is very fast and computationally 
efficient process, but it is also accompanied by poor accuracy at non-collocation 
points. The use of B-spline basis function in collocation improves its accuracy 
substantially.  

In this work a fourth order boundary value problem of a beam is 
numerically solved using B-spline collocation method. Three cases have been 
reported- a) Isotropic beam subjected to purely mechanical load, b) Isotropic 
beam subjected to thermo-mechanical load and c) functionally graded beam 
subjected to only mechanical load. Four different boundary conditions are 
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considered. The results obtained are compared and verified with standard results 
in literature. The following conclusions can be enumerated: 
• B-spline collocation method provide piece-wise closed form solution at very 

less computational cost and in effective time. 
The accuracy of the technique is also quite high and the method can be useful for 
complex cases also. 

  

 
 

 

Fig.4 Deflection of FG beam under purely mechanical load a)C-F, b) S-S, c)C-S, d)C-C 
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Appendix 1 
In the derivation of Equation (13) the following assumptions have been made- 
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where E(z) is the Young’s modulus and G(z) is the modulus of rigidity of the parent 
materials of FG beam while ks is shear correction factor which is a constant. ‘φ ’ and ‘w’ are 
slope and transverse deflection  
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