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MODIFIED ITERATIVE ALGORITHMS WITH ACCELERATION

TERMS FOR FIXED POINT AND EQUILIBRIUM PROBLEMS

Meixian Wang1, Zhangsong Yao2, Tzu-Chien Yin3

This paper proposes a double inertial subgradient extragradient algorithm for

finding common solutions to pseudomonotone equilibrium problems and fixed points of a
family of demicontractive mappings. The proposed method introduces a non-monotone

step size selection strategy and sets up two steps inertial extrapolation process to accel-

erate the convergence speed. We establish strong convergence result for the algorithm
without requiring prior knowledge of the Lipschitz-type constants of the bifunction.
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1. Introduction

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let f : H×H →
R be a bifunction with f(x, x) = 0,∀x ∈ C. The equilibrium problem is to find x∗ ∈ C
satisfying

f(x∗, y) ≥ 0, ∀y ∈ C. (1)

The solution set of problem (1) is denoted by EP (f, C). It is well known that equilibrium
problems can be applied to the study of a series of mathematical problems, such as variational
inequality problems, minimax problems, optimization problems, Nash equilibrium problems
and saddle point problems, see ([1, 9, 11, 19, 24, 25, 28, 33, 35, 38, 41, 42]). Due to the
significance of equilibrium problem, many authors have extensively investigated it in recent
years, see [8, 18, 34, 36]. One of the most popular methods is the proximal point method,
see [12, 17, 21]. However, if the bifunction f is pseudomonotone, the convergence of the
proximal method cannot be guaranteed. To overcome this issue, Tran et al. [26] employed
the idea of Korpelevichs extragradient method and proposed the following algorithm where
f is pseudomonotone and Lipschitz-type continuous:

vn = arg min

{
λf(un, u) +

1

2
‖u− un‖2 : u ∈ C

}
,

un+1 = arg min

{
λf(vn, u) +

1

2
‖u− un‖2 : u ∈ C

}
.

(2)

This algorithm needs to calculate two strongly convex programming problems in each it-
eration step. However, in cases where the two-valued function or the feasible set has a
complex structure, the evaluation of the subprograms contained in the algorithm can be ex-
pensive. Lyashko et al. [14] adopted the slack projection technique, replaced the feasible set
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in the second step projection with a half space, and proposed the subgradient extragradient
method: 

vn = arg min

{
λf(wn, u) +

1

2
‖u− wn‖2 : u ∈ C

}
,

wn+1 = arg min

{
λf(vn, u) +

1

2
‖u− wn‖2 : u ∈ Cn

}
,

(3)

where Cn is a half space. Several variant forms of (3) have been proposed and studied, see
[32, 34, 37, 43].

Use CB(H) to denote the family of all nonempty closed bounded subsets of H. Let
T : H → CB(H) be a multivalued mapping. Recall that the fixed point problem is to find
u ∈ H such that

u ∈ Tu. (4)

The solution set of problem (4) is denoted by F (T ).
Iterative methods for fixed point problems are widely applied in optimization, image

processing, signal processing and related fields, see [4, 5, 20, 24, 27, 31, 39, 40]. A funda-
mental approach to solve fixed point problems is the Mann iteration algorithm [16], which
has the following manner: (i) {αn} ⊂ (0, 1) and x0 ∈ H is any initial point; (ii) for known
xn, define

xn+1 = αnxn + (1− αn)wn, wn ∈ Txn. (5)

Another interesting method for solving (4) is Halpern’s method [7] which generates a se-
quence {xn} as follows: (i) x0 is an initial point and u ∈ H is a fixed point; (ii) for given
xn, the next step xn+1 is defined by

xn+1 = αnu+ (1− αn)wn, wn ∈ Txn. (6)

Due to the fact that some mathematical models’ constraints are expressed through fixed
points and equilibrium problems, such as in signal processing and image recovery, see
[6, 13, 15, 22, 23], many researchers have recently focused on the common solution of e-
quilibrium problems and fixed point problems, see [30, 37, 43]. Especially, Hieu [8] proposed
a subgradient extragradient method to solve fixed point problems and equilibrium problem-
s. Yang and Liu [32] proposed a subgradient extragradient algorithm that does not require
prior knowledge of the Lipschitz constants of f . In 2020, Jolaoso et al. [10] proposed an
inertial subgradient extragradient algorithm to solve the common solutions of equilibrium
problems and fixed point problems and provided strongly convergent results (Algorithm 1.1).
This method adopts an inertial extrapolation step to enhance the convergence speed of the
algorithm.

Algorithm 1.1. Initialization: Choose parameters λ1 > 0, 0 < µ < 1 and α ≥ 3. Pick
t0, t1 ∈ C, and put n = 1.

Step 1. Let tn−1 and tn be given and choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =

{
min

{
n−1

n+α−1 ,
εn

‖tn−tn−1‖

}
, if tn 6= tn−1,

n−1
n+α−1 , otherwise.

Compute

un = tn + αn(tn − tn−1).

Step 2. Calculate

vn = arg min

{
λnf (un, y) +

1

2
‖un − y‖2, y ∈ C

}
.

If un = vn, then set un = vn and go to Step 4. Otherwise, go to Step 3.
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Step 3. Choose gn ∈ ∂2f(un, · )(vn) such that un − λngn − vn ∈ Nc(vn). Compute

wn = arg min

{
ξλnf (vn, y) +

1

2
‖un − y‖2, y ∈ Tn

}
,

where

Tn := {x ∈ H : 〈un − λngn − vn, x− vn〉 ≤ 0} .
Step 4. Compute

tn+1 = δnφ(tn) + (1− δn)(γn,0wn +

n∑
i=1

γn,iyn,i),

where yn,i ∈ Ti(wn). Update

λn+1 =

{
min

{
µ(‖un−vn‖2+‖wn−vn‖2)

2[f(un,wn)−f(un,vn)−f(vn,wn)] , λn

}
, if f(un, wn)− f(un, vn)− f(vn, wn) 6= 0,

λn, otherwise.

Step 5. Put n := n+ 1 and go to Step 1.

Motivated by the work on algorithms for solving a common solution of pseudomono-
tone equilibrium problems and fixed point problems of demicontractive mappings, in this
paper, we propose a double inertial subgradient extragradient algorithm. The proposed
algorithm incorporates a non-monotone stepsize strategy and integrates an inertial extrap-
olation step inspired by Algorithm 1.1, thereby accelerating the convergence rate of the
algorithm. Our method combines the viscosity method and the Mann-type algorithm to
obtain the strong convergence result.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. ′ →′
and ′ ⇀′ denote the strong convergence and the weak convergence, respectively. A mapping
S: H → H is said to be contractive if there exists µ ∈ [0, 1) such that ‖Sx − Sy‖ ≤
µ‖x− y‖,∀x, y ∈ H.

A subset A ⊂ H is called the proximal set if for any x ∈ H, there exists y ∈ A such
that ‖x− y‖ = d(x,A). The Hausdorff metric on CB(H) is defined as:

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,∀A,B ∈ CB(H).

Recall that a multivalued mapping T : H → CB(H) is called
(i) nonexpansive if H(Tx, Ty) ≤ ‖x− y‖,∀x, y ∈ H.
(ii) quasi-nonexpansive if F (T ) 6= ∅ and H(Tx, Tp) ≤ ‖x− p‖,∀x ∈ H, p ∈ F (T ).
(iii) κ-demicontractive if F (T ) 6= ∅ and there exists κ ∈ [0, 1) such that

H(Tx, Tp)2 ≤ ‖x− p‖2 + κd(x, Tx)2,∀x ∈ H, p ∈ F (T ).

A mapping I − T is said to be demiclosed at zero if for any sequence xn ⊂ H with xn ⇀ x∗

and xn → yn for yn ∈ Txn, then x∗ ∈ F (T ).
Let C be a nonempty closed convex subset of H. The metric projection PC : H → C

is defined as PC(x) = arg min {‖x− y‖ : y ∈ C} ,∀x ∈ H. For any x ∈ H, z = PC(x) if and
only if 〈z − x, y − z〉 ≤ 0,∀y ∈ C.

Let C be a nonempty closed convex subset of H. A bifunction f : H × H → R is
called
(i) strongly monotone on C if there is µ > 0 satisfying

f(u, v) + f(v, u) ≤ −µ‖u− v‖2,∀u, v ∈ C;

(ii) monotone on C if f(u, v) + f(v, u) ≤ 0,∀u, v ∈ C;
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(iii) pseudomonotone on C if f(u, v) ≥ 0 =⇒ f(v, u) ≤ 0,∀u, v ∈ C;
(iv) strongly pseudomonotone on C if there is µ > 0 satisfying

f(u, v) ≥ 0⇒ f(v, u) ≤ −µ‖u− v‖2,∀u, v ∈ C;

(v) Lipschtiz-type continuous on H if there are c1 > 0 and c2 > 0 such that

f(u, v) + f(v, u) ≥ f(u,w)− c1‖u− v‖2 − c2‖v − w‖2,∀u, v, w ∈ H.

A function g : H → R is lower semicontinuous at x ∈ H if and only if for all xn → x, we
have g(x) ≤ lim infn→∞ g(xn). g is upper semicontinuous at x if −g is lower semicontinuous
at x.

For each x, y ∈ H, the subdifferential of a convex function f(x, .) at y is denoted by
∂2f(x, y), i.e., ∂2f(x, y) := {u ∈ H : f(x, z) ≥ f(x, y) + 〈u, z − y〉,∀z ∈ H}. In particular,
∂2f(x, x) = {u ∈ H : f(x, x) ≥ 〈u, z − x〉,∀z ∈ H}.

Lemma 2.1 ([29]). Let {an} ⊂ [0,+∞), {θn} ⊂ (0, 1) and {bn} ⊂ R be three real sequences
such that an+1 ≤ (1− θn)an + θnbn,∀n ≥ 1. Then,

(i) If {bn} is bounded, then {an} is also bounded.
(ii) If

∑∞
n=0 θn = +∞ and lim supn→∞ bn ≤ 0, then limn→∞ an = 0.

Lemma 2.2 ([3]). Let C be a convex subset of H and f : C → R be subdifferentiable on C.
Then, x∗ is a solution to the following convex problem:

min {f(x) : x ∈ C}

if and only if 0 ∈ ∂f(x∗) + NC(x∗), where NC(x∗) := {y ∈ H : 〈y, z − x∗〉 ≤ 0,∀z ∈ C} is
the normal cone of C at x∗.

Lemma 2.3 ([2]). Let H be a real Hilbert space, ti ∈ H(1 ≤ i ≤ n) and {βi} ⊂ (0, 1) with∑n
i=1 βi = 1. Then,

‖
n∑
i=1

βiti‖2 =

n∑
i=1

βi‖ti‖2 −
n∑

i,j=1,i6=j

βiβj‖ti − tj‖2.

Lemma 2.4 ([15]). Let {ak} be a sequence of real numbers such that there exists a nonde-
creasing subsequence {aki}of {ak} such that aki < aki+1, for all i ∈ N . Then there exists a
nondecreasing {mn} ⊂ N such that lim

n→∞
mn =∞ and the following properties are satisfied

for all (sufficiently large) numbers n ∈ N :

amn
≤ amn+1 and an ≤ amn+1.

3. Main results

In this section, we introduce an algorithm for solving the equilibrium problem and
fixed point problem and prove a strong convergence result.

Assumption 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. For i ∈ N , Ti : H → CB(H) is κi-demicontractive mapping, I − Ti is demiclosed at
zero and Ti(x) = {x} for all x ∈ F (Ti). Let φ be a τ -contractive on H. Suppose that
EP (f) ∩

⋂∞
i=1 F (Ti) 6= ∅. Let f : H × H → R be a bifunction satisfying the following

conditions (A1)-(A4):
(A1) for every x ∈ H, f(x, .) is convex, subdifferentiable and lower semicontinous on H;
(A2) f is psuedomonotone on C and f(x, x) = 0,∀x ∈ C;
(A3) f is Lipshitz-type continous on H;
(A4) for every y ∈ C, f(·, y) is sequentially weakly upper semicontinuous on C.
Assume that the involved parameters satisfy the following conditions:

(B1) {δn} ⊂ (0, 1), lim
n→∞

δn = 0 and
∑∞
n=1 δn =∞;
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(B2) {εn} ⊂ [0,∞), {νn} ⊂ [0,∞), lim
n→∞

εn
δn

= 0 and lim
n→∞

νn
δn

= 0;

(B3) {γn,i}∞i=0 ⊂ (0, 1),
∑n
i=0 γn,i = 1;

(B4) lim infn→∞(γn,0 − κ)γn,i > 0 and κ = max{κi} for all i ∈ N\ {0}.

Algorithm 3.1. Initialization. Choose parameters: λ1 > 0, µ, η ∈ (0, 1), θ, σ ∈ [0, 1),
ξ ∈ (0, 1], {ρn} ⊂ [0,∞) and

∑∞
n=0 ρn <∞. Take t0, t1 ∈ C and set n = 1.

Step 1. Given the current iterates tn−1 and tn, choose αn, βn satisfying 0 ≤ αn ≤ ᾱn
and 0 ≤ βn ≤ β̄n, where

ᾱn =

{
min

{
θ, εn
‖tn−tn−1‖

}
, if tn 6= tn−1,

θ, otherwise,
(7)

and

β̄n =

{
min

{
σ, νn
‖tn−tn−1‖

}
, if tn 6= tn−1,

σ, otherwise.
(8)

Compute {
sn = tn + αn(tn − tn−1),

un = tn + βn(tn − tn−1).

Step 2. Calculate

vn = arg min

{
λnf (un, y) +

1

2
‖un − y‖2, y ∈ C

}
.

If un = vn, then put un = vn and go to Step 4. Otherwise, go to Step 3.
Step 3. Choose gn ∈ ∂2f(un, · )(vn) such that un − λngn − vn ∈ Nc(vn).

Compute

wn = arg min

{
ξλnf (vn, y) +

1

2
‖un − y‖2, y ∈ Tn

}
,

where

Tn := {x ∈ H : 〈un − λngn − vn, x− vn〉 ≤ 0} .
Step 4. Calculate 

xn = γn,0wn +
∑n
i=1 γn,iyn,i,

zn = (1− η)sn + ηxn,

tn+1 = δnφ(zn) + (1− δn)xn,

where yn,i ∈ Ti(wn) and

λn+1 =


min

{
µ(‖un − vn‖2 + ‖wn − vn‖2)

2 [f(un, wn)− f(un, vn)− f(vn, wn)]
, λn + ρn

}
,

if f(un, wn)− f(un, vn)− f(vn, wn) > 0,

λn + ρn, otherwise.

Step 5. Put n := n+ 1 and go to Step 1.

Lemma 3.1. The sequence {λn} generated by Algorithm 3.1 satisfies: lim
n→∞

λn = λ and

min

{
µ

2 max {c1, c2}
, λ1

}
≤ λ ≤ λ1 + P, where P =

∑∞
n=1 ρn.
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Proof. {λn} is bounded. In fact, since f satisfies the Lipschtiz-type condition with constants
c1 and c2, when f(un, wn)− f(un, vn)− f(vn, wn) > 0, we have

µ(‖un − vn‖2 + ‖wn − vn‖2)

2 [f(un, wn)− f(un, vn)− f(vn, wn)]
≥ µ(‖un − vn‖2 + ‖wn − vn‖2)

2(c1‖un − vn‖2 + c2‖vn − wn‖2)

≥ µ(‖un − vn‖2 + ‖wn − vn‖2)

2 max {c1, c2} (‖un − vn‖2 + ‖vn − wn‖2)
≥ µ

2 max {c1, c2}
.

Using the definition of λn+1, we have min

{
µ

2 max {c1, c2}
, λ1

}
≤ λn ≤ λ1 + P . Next, we

prove the convergence of the sequence {λn}. From the definition of {λn}, it follows that∑∞
n=0(λn+1 − λn)+ ≤

∑∞
n=0 ρn < ∞ where (λn+1 − λn)+ = max {0, λn+1 − λn} , (λn+1 −

λn)− = max {0,−(λn+1 − λn)} . Thus,
∑∞
n=0(λn+1 − λn)+ is convergent. On the other

hand, suppose for contradiction that
∑∞
n=0(λn+1 − λn)− is not convergent. Since

λn+1 − λn = (λn+1 − λn)+ − (λn+1 − λn)−,

λm+1 − λ0 =

m∑
n=0

(λn+1 − λn)+ −
m∑
n=0

(λn+1 − λn)−. (9)

From (9), if take m → ∞, we obtain λm → +∞, which leads to a contradiction. Hence∑∞
n=0(λn+1−λ0)− must be convergent. Applying m→∞ in (9), we can conclude lim

n→∞
λn =

λ. It is evident that min

{
µ

2 max {c1, c2}
, λ1

}
≤ λ ≤ λ1 + P . �

Lemma 3.2. For all p ∈ EP (f) ∩
⋂∞
i=1 F (Ti) and n ≥ 1, we have

‖wn − p‖2 ≤ ‖un − p‖2 − (1− ξ)‖un − wn‖2 − ξ(1− µ
λn
λn+1

)(‖un − vn‖2 + ‖wn − vn‖2).

Proof. By the definition of wn and Lemma 2.2, we have

0 ∈ ∂2

{
ξλnf(vn, wn) +

1

2
‖wn − un‖2

}
+NTn(wn).

Then, there exist u ∈ ∂2f(vn, wn) and q ∈ NTn(wn) such that

ξλnu+ wn − un + q = 0. (10)

By the subdifferentiability of f , we have

f(vn, y)− f(vn, wn) ≥ 〈u, y − wn〉,∀y ∈ C. (11)

Besides, from q ∈ NTn
(wn), we have

〈q, wn − y〉 ≥ 0,∀y ∈ Tn. (12)

By combining (10) and (12), we derive

〈un − wn, y − wn〉 ≤ ξλn〈u, y − wn〉,∀y ∈ Tn. (13)

From (11) and (13) to get 〈un − wn, y − wn〉 ≤ ξλn[f(vn, y) − f(vn, wn)],∀y ∈ Tn. Let
y = p ∈ EP (f, C) ⊂ C ⊂ Tn, we have 〈un − wn, p− wn〉 ≤ ξλn[f(vn, p)− f(vn, wn)]. Since
f is pseudomonotone and vn ∈ C, we obtain f(vn, p) ≤ 0. Then,

ξλnf(vn, wn) ≤ 〈un − wn, wn − p〉. (14)

Similarly, since gn ∈ ∂2f(un, · )(vn), we obtain

f(un, z)− f(un, vn) ≥ 〈gn, z − vn〉,∀z ∈ H.
Choose z = wn to obtain

f(un, wn)− f(un, vn) ≥ 〈gn, wn − vn〉. (15)
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Since wn ∈ Tn, we have 〈un − λngn − vn, wn − vn〉 ≤ 0. It follows that

λn〈gn, wn − vn〉 ≥ 〈un − vn, wn − vn〉. (16)

Combining (15) and (16), we have

λn(f(un, wn)− f(un, vn)) ≥ 〈un − vn, wn − vn〉. (17)

Note that λn+1(f(un, wn) − f(un, vn) − f(vn, wn)) ≤ µ

2
(‖un − vn‖2 + ‖wn − vn‖2). It is

equivalent to

λn(f(un, wn)− f(un, vn)− f(vn, wn)) ≤ λn
λn+ 1

µ

2
(‖un − vn‖2 + ‖wn − vn‖2). (18)

From (14), (17) and (18), we have

µ
λn
λn+1

(‖un − vn‖2 + ‖wn − vn‖2) ≥ 2〈un − vn, wn − vn〉+
2

ξ
〈un − wn, p− wn〉.

On the other hand, since 2〈un− vn, wn− vn〉 = ‖un− vn‖2 + ‖wn− vn‖2−‖un−wn‖2, and

2〈un − wn, p− wn〉 = ‖un − wn‖2 + ‖p− wn‖2 − ‖un − p‖2,

we deduce

‖wn−p‖2 ≤ ‖un−p‖2− (1− ξ)‖un−wn‖2− ξ(1−µ
λn
λn+1

)(‖un− vn‖2 +‖wn− vn‖2). (19)

�

Theorem 3.1. Suppose that conditions (A1)-(A4)and (B1)-(B5) hold. Then, the sequence
{tn} generated by Algorithm 3.1 converges strongly to p, where p = PEP (f)∩

⋂∞
i=1 F (Ti)(p).

Proof. By Lemma 2.3, we have

‖xn − p‖2 = ‖γn,0wn +

n∑
i=1

γn,iyn,i − p‖2

≤ γn,0‖wn − p‖2 +

n∑
i=1

γn,i‖yn,i − p‖2 −
n∑
i=1

γn,0γn,i‖wn − yn,i‖2

≤ γn,0‖wn − p‖2 +

n∑
i=1

γn,iH
2(Tiwn, Tip)−

n∑
i=1

γn,0γn,i‖wn − yn,i‖2

≤ γn,0‖wn − p‖2 +

n∑
i=1

γn,i(‖wn − p‖2 + κi‖wn − yn,i‖2)−
n∑
i=1

γn,0γn,i‖wn − yn,i‖2

= ‖wn − p‖2 −
n∑
i=1

(γn,0 − κ)γn,i‖wn − yn,i‖2 (20)

≤ ‖wn − p‖2.

Since ξ ∈ (0, 1], µ ∈ (0, 1) and lim
n→∞

λn = λ, we have that there exists N1 ≥ 0 such that for

all n ≥ N1, ξ(1 − µ λn
λn+1

) ≥ 0. By (19), we have ‖wn − p‖2 ≤ ‖un − p‖2. Therefore, from
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the definition of zn, we have

‖zn − p‖ = ‖(1− η)sn + ηxn − p‖
≤ (1− η)‖sn − p‖+ η‖xn − p‖
≤ (1− η)‖sn − p‖+ η‖un − p‖
≤ (1− η)‖tn − p‖+ (1− η)αn‖tn − tn−1‖+ η‖tn − p‖+ ηβn‖tn − tn−1‖
= ‖tn − p‖+ [(1− η)αn + ηβn]‖tn − tn−1‖.

Combining the above inequality with the definition of tn+1, we get

‖tn+1 − p‖ = ‖δnφ(zn) + (1− δn)xn − p‖
= ‖δn(φ(zn)− p) + (1− δn)(xn − p)‖
≤ δn‖φ(zn)− p‖+ (1− δn)‖xn − p‖
= δn‖φ(zn)− φ(p) + φ(p)− p‖+ (1− δn)‖wn − p‖
≤ δnτ‖zn − p‖+ δn‖φ(p)− p‖+ (1− δn)‖un − p‖
= δnτ‖zn − p‖+ δn‖φ(p)− p‖+ (1− δn)‖tn + βn(tn − tn−1)− p‖
≤ δnτ‖zn − p‖+ δn‖φ(p)− p‖+ (1− δn)(‖tn − p‖+ βn‖tn − tn−1‖)
≤ δnτ‖tn − p‖+ [(1− η)αn + ηβn + (1− δn)βn]‖tn − tn−1‖

+ (1− δn)‖tn − p‖+ δn‖φ(p)− p‖

= (1− (1− τ)δn)‖tn − p‖+ (1− τ)δn[
φ(p)− p

1− τ

+
(1− η)αn + ηβn + (1− δn)βn

δn(1− τ)
‖tn − tn−1‖].

Let M = 2 max

{
‖φ(p)− p‖

1− τ
, supn≥N1

(1− η)αn + ηβn + (1− δn)βn
δn(1− τ)

‖tn − tn−1‖
}

. Then,

we have
‖tn+1 − p‖ ≤ (1− (1− τ)δn)‖tn − p‖+ 1− τδnM.

Applying Lemma 2.1(i), we conclude that {‖tn+1 − p‖} is bounded. This implies that {tn}
is bounded. Therefore, {sn}, {un}, {wn}, {vn} and {Tiwn} are bounded.

By the definition of un, we have

‖un − p‖2 = ‖tn + βn(tn − tn−1)− p‖2

≤ ‖tn − p‖2 + β2
n‖tn − tn−1‖2 + 2βn‖tn − p‖‖tn − tn−1‖

= ‖tn − p‖2 + βn‖tn − tn−1‖(βn‖tn − tn−1‖+ 2‖tn − p‖)
≤ ‖tn − p‖2 + βnM1‖tn − tn−1‖.

where M1 = supn≥N1
(βn‖tn − tn−1‖+ 2‖tn − p‖). Hence,

‖tn+1 − p‖2 = ‖δnφ(zn) + (1− δn)xn − p‖2

≤ (1− δn)2‖wn − p‖2 + 2δn〈φ(zn)− p, tn+1 − p〉
≤ (1− δn)2‖un − p‖2 + 2δn‖φ(zn)− φ(p)‖‖tn+1 − p‖

+ 2δn〈φ(p)− p, tn+1 − p〉
≤ (1− δn)2(‖tn − p‖2 + βnM1‖tn − tn−1‖) + 2δnτ‖zn − p‖‖tn+1 − p‖

+ 2δn〈φ(p)− p, tn+1 − p〉
≤ (1− δn)2(‖tn − p‖2 + βnM1‖tn − tn−1‖) + δnτ(‖zn − p‖2+

‖tn+1 − p‖2) + 2δn〈φ(p)− p, tn+1 − p〉. (21)
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Note that

‖zn − p‖2 ≤ (‖tn − p‖+ ((1− η)αn + ηβn)‖tn − tn−1‖)2

= ‖tn − p‖2 + [(1− η)αn + ηβn]2‖tn − tn−1‖2

+ 2[(1− η)αn + ηβn]‖tn − p‖‖tn − tn−1‖. (22)

Combining (21) and (22), we have

‖tn+1 − p‖2 ≤ (
1− 2δn + δnτ

1− δnτ
)‖tn − p‖2 +

δ2
n

1− δnτ
‖tn − p‖2

+
βnM1(1− δn)2

1− δnτ
‖tn − tn−1‖+

δnτ [(1− η)αn + ηβn]2

1− δnτ
‖tn − tn−1‖2

+
2δnτ [(1− η)αn + ηβn]

1− δnτ
‖tn − p‖‖tn − tn−1‖

+
2δn

1− δnτ
〈φ(p)− p, tn+1 − p〉

= (1− 2δn(1− τ)

1− δnτ
)‖tn − p‖2 +

δ2
n

1− δnτ
‖tn − p‖2

+
βnM1(1− δn)2

1− δnτ
‖tn − tn−1‖+

δnτ [(1− η)αn + ηβn]2

1− δnτ
‖tn − tn−1‖2

+
2δnτ [(1− η)αn + ηβn]

1− δnτ
‖tn − p‖‖tn − tn−1‖

+
2δn

1− δnτ
〈φ(p)− p, tn+1 − p〉. (23)

We investigate two possible cases: Case 1 and Case 2.
Case 1. There is N ≥ N1 such that

{
‖tn − p‖2

}
is a non-increasing sequence for all n ≥ N .

This implies the existence of lim
n→∞

‖tn − p‖2. Since {tn} is bounded, we have

lim
n→∞

(‖tn − p‖2 − ‖tn+1 − p‖2) = 0.

From (20), we have

‖tn+1 − p‖2 ≤ (1− δn)‖xn − p‖2 + 2δn〈φ(zn)− p, tn+1 − p〉

≤ (1− δn)[‖wn − p‖2 −
n∑
i=1

(γn,0 − κ)γn,i‖wn − yn,i‖2]

+ 2δn〈φ(zn)− p, tn+1 − p〉

≤ (1− δn)[‖un − p‖2 −
n∑
i=1

(γn,0 − κ)γn,i‖wn − yn,i‖2]

+ 2δn〈φ(zn)− p, tn+1 − p〉
≤ (1− δn)[‖tn − p‖2 + βnM1‖tn − tn−1‖

−
n∑
i=1

(γn,0 − κ)γn,i‖wn − yn,i‖2] + 2δn〈φ(zn)− p, tn+1 − p〉.

Then

(1− δn)

n∑
i=1

(γn,0 − κ)γn,i‖wn − yn,i‖2 ≤ (1− δn)‖tn − p‖2 − ‖tn+1 − p‖2

+2δn〈φ(zn)− p, tn+1 − p〉+ (1− δn)βnM1‖tn − tn−1‖.
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Since lim
n→∞

δn = 0 and lim
n→∞

βn‖tn − tn−1‖ = 0, we have

lim
n→∞

n∑
i=1

(γn,0 − κ)γn,i‖wn − yn,i‖2 = 0.

According to (B4), we obtain

lim
n→∞

‖wn − yn,i‖ = 0. (24)

Based on (19), we obtain

‖tn+1 − p‖2 ≤ (1− δn)‖xn − p‖2 + 2δn〈φ(zn)− p, tn+1 − p〉
≤ (1− δn)‖wn − p‖2 + 2δn〈φ(zn)− p, tn+1 − p〉

≤ (1− δn)[‖un − p‖2 − (1− ξ)‖un − wn‖2 − ξ(1− µ
λn
λn+1

)

(‖un − vn‖2 + ‖wn − vn‖2)] + 2δn〈φ(zn)− p, tn+1 − p〉
≤ (1− δn)[‖tn − p‖2 + βnM1‖tn − tn−1‖ − (1− ξ)‖un − wn‖2

− ξ(1− µ λn
λn+1

)(‖un − vn‖2 + ‖wn − vn‖2)] + 2δn〈φ(zn)− p, tn+1 − p〉.

This implies that

(1− δn)[(1− ξ)‖un − wn‖2 + ξ(1− µ λn
λn+1

)(‖un − vn‖2 + ‖wn − vn‖2)]

≤ (1− δn)‖tn − p‖2 − ‖tn+1 − p‖2 + (1− δn)βnM1‖tn − tn−1‖
+ 2δn〈φ(zn)− p, tn+1 − p〉.

Similarly, we have

lim
n→∞

(1− ξ)‖un − wn‖2 + ξ(1− µ λn
λn+1

)(‖un − vn‖2 + ‖wn − vn‖2) = 0.

Since ∀n ≥ N , ξ(1− µ λn
λn+1

) ≥ 0, ξ ∈ (0, 1], we have

lim
n→∞

‖un − vn‖ = 0, (25)

and

lim
n→∞

‖wn − vn‖ = 0. (26)

Combining (25) and (26), we have

lim
n→∞

‖un − wn‖ = 0. (27)

From the definition of βn, (24) and δn → 0, we have

‖tn − un‖ = βn‖tn − tn−1‖ =
βn
δn
‖tn − tn−1‖δn → 0, (28)

‖xn − wn‖ = γn,0‖wn − wn‖+

n∑
i=1

‖yn,i − wn‖ → 0, (29)

and

‖tn+1 − xn‖ = δn‖φ(zn)− xn‖+ (1− δn)‖xn − xn‖ → 0. (30)

Take into account of (27)-(30), we obtain

lim
n→∞

‖tn+1 − tn‖ = 0. (31)
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Since {tn} is bounded, there exists a subsequence {tnk
} of {tn} such that tnk

⇀ t ∈ H and

lim sup
n→∞

〈φ(p)− p, tn − p〉 = lim
k→∞

〈φ(p)− p, tnk
− p〉 = 〈φ(p)− p, t− p〉.

So,

lim sup
n→∞

〈φ(p)− p, tn − p〉 = 〈φ(p)− p, t− p〉 ≤ 0. (32)

Combining (31) and (32), we get

lim sup
n→∞

〈φ(p)− p, tn+1 − p〉 ≤ 0. (33)

Using (25)-(28), we have vnk
⇀ t, wnk

⇀ t and unk
⇀ t, as k →∞. Since C is closed and

convex set, so C is weakly closed, we can deduce that t ∈ C. From the definition of λn+1

and (17), we have

ξλnk
f(vnk

, y) ≥ ξλnk
f(vnk

, wnk
) + 〈unk

− wnk
, y − wnk

〉

≥ ξλnk
(f(unk

, wnk
)− f(unk

, vnk
)− µ

2λnk+1
(‖unk

− vnk
‖2

+ ‖wnk
− vnk

‖2)) + 〈unk
− wnk

, y − wnk
〉

≥ ξ〈unk
− vnk

, wnk
− vnk

〉 − ξµλnk

2λnk+1
‖unk

− vnk
‖2

− ξµλnk

2λnk+1
‖wnk

− vnk
‖2 + 〈unk

− wnk
, y − wnk

〉,∀y ∈ C.

Taking the limit as k → ∞ on the right-hand side of the above inequality and using the
sequentially weakly upper semicontinutity of f , we have

0 ≤ lim sup
n→∞

f(vnk
, y) ≤ f(t, y),∀y ∈ C.

Hence, we get t ∈ EP (f, C). Since Ti are demiclosed at zero and (24), we obtain t ∈ F (Ti).
Therefore, t ∈ EP (f) ∩

⋂∞
i=1 F (Ti).

It follows that

lim
n→∞

(
βnM1(1− δn)2

2δn
‖tn − tn−1‖+

δnτ [(1− η)αn + ηβn]2

2δn
‖tn − tn−1‖2

+
2δnτ [(1− η)αn + ηβn]

2δn
‖tn − p‖‖tn − tn−1‖+

δ2
n

2δn
‖tn − p‖2) = 0. (34)

Using (24), (34) and Lemma 2.1(ii), we have

lim
n→∞

‖tn − p‖ = 0.

Case 2. Suppose that
{
‖tn − p‖2

}
is not non-increasing.There exists a subsequence

{
‖tni
− p‖2

}
of
{
‖tn − p‖2

}
such that

{
‖tni
− p‖2

}
≤
{
‖tni+1 − p‖2

}
holds for all i ∈ N . Then, accord-

ing to Lemma 2.4, there exists a non-decreasing sequence {mn} such that lim
n→∞

mn = ∞
and

‖tmn − p‖2 ≤ ‖tmn+1 − p‖2 and ‖tn − p‖2 ≤ ‖tmn+1 − p‖2,∀n ∈ N.

Following a similar argument as in Case 1, we get

lim
n→∞

‖umn
− wmn

‖ = 0, lim
n→∞

‖wmn
− vmn

‖ = 0,

lim
n→∞

‖umn
− vmn

‖ = 0, lim
n→∞

‖tmn
− tmn−1‖ = 0,

lim
n→∞

‖wmn
− ymn,i‖ = 0 and lim sup

n→∞
〈φ(p)− p, tmn+1 − p〉 ≤ 0.
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By (23), we have

0 ≤ ‖tmn+1 − p‖2 − ‖tmn
− p‖2

≤ (1− 2δmn
(1− τ)

1− δmn
τ

)‖tmn
− p‖2 +

δ2
mn

1− δmn
τ
‖tmn

− p‖2

+
βmn

M1(1− δmn
)2

1− δmn
τ

‖tmn
− tmn−1‖+

δmn
τ [(1− η)αmn

+ ηβmn
]2

1− δmn
τ

‖tmn
− tmn−1‖2

+
2δmnτ [(1− η)αmn + ηβmn ]

1− δmn
τ

‖tmn
− p‖‖tmn

− tmn−1‖

+
2δmn

1− δmn
τ
〈φ(p)− p, tmn+1 − p〉 − ‖tmn

− p‖2.

Therefore, we obtain

2(1− τ)

1− δmn
τ
‖tmn

− p‖2 ≤ δmn

1− δmn
τ
‖tmn

− p‖2 +
βmnM1(1− δmn)2

δmn
(1− δmn

τ)
‖tmn

− tmn−1‖

+
τ [(1− η)αmn + ηβmn ]2

1− δmn
τ

‖tmn
− tmn−1‖2

+
2τ [(1− η)αmn

+ ηβmn
]

1− δmnτ
‖tmn − p‖‖tmn − tmn−1‖

+
2

1− δmn
τ
〈φ(p)− p, tmn+1 − p〉.

As n → ∞, the right-hand side of the above inequality tends to 0. This implies that
lim
n→∞

‖tmn
− p‖2 = 0. Therefore, we have

0 ≤ ‖tn − p‖2 ≤ ‖tmn+1 − p‖2 → 0, n→∞.

Hence, we conclude that the sequence {tn} converges strongly to p. �

4. Conclusion

In this paper, we introduce a strongly convergent iterative algorithm that approxi-
mates the common solution of the pseudomonotone equilibrium problem and the fixed point
problem of demicontractive mappings. The algorithm we proposed sets up two inertial ex-
trapolation steps, combines the Mann-type method and the viscosity approximation method,
and involves the non-monotone stepsize rule. The strong convergence theorem is given under
mild conditions.
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