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MODIFIED ITERATIVE ALGORITHMS WITH ACCELERATION
TERMS FOR FIXED POINT AND EQUILIBRIUM PROBLEMS

Meixian Wang', Zhangsong Yao?, Tzu-Chien Yin®

This paper proposes a double inertial subgradient extragradient algorithm for
finding common solutions to pseudomonotone equilibrium problems and fized points of a
family of demicontractive mappings. The proposed method introduces a mon-monotone
step size selection strategy and sets up two steps inertial extrapolation process to accel-
erate the convergence speed. We establish strong convergence result for the algorithm
without requiring prior knowledge of the Lipschitz-type constants of the bifunction.

Keywords: equilibrium problem, fixed point problem, pseudomonotone bifunction, demi-
contractive mapping, inertial item.

MSC2020: 47HO05, 47J20, 47J25, 65K15, 90C25.

1. Introduction

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let f : Hx H —
R be a bifunction with f(z,2) = 0,Vax € C. The equilibrium problem is to find 2* € C
satisfying

flz*,y) >0, Yy € C. (1)

The solution set of problem (1) is denoted by EP(f,C). It is well known that equilibrium
problems can be applied to the study of a series of mathematical problems, such as variational
inequality problems, minimax problems, optimization problems, Nash equilibrium problems
and saddle point problems, see ([1, 9, 11, 19, 24, 25, 28, 33, 35, 38, 41, 42]). Due to the
significance of equilibrium problem, many authors have extensively investigated it in recent
years, see [8, 18, 34, 36]. One of the most popular methods is the proximal point method,
see [12, 17, 21]. However, if the bifunction f is pseudomonotone, the convergence of the
proximal method cannot be guaranteed. To overcome this issue, Tran et al. [26] employed
the idea of Korpelevichs extragradient method and proposed the following algorithm where
f is pseudomonotone and Lipschitz-type continuous:

1
Up = argmin{)\f(un,u) + §H1L—un||2 tu € C’},
2)
1 (
Upt1 = argmin{)\f(vmu) + §HU—U11||2 tu € C}.

This algorithm needs to calculate two strongly convex programming problems in each it-
eration step. However, in cases where the two-valued function or the feasible set has a
complex structure, the evaluation of the subprograms contained in the algorithm can be ex-
pensive. Lyashko et al. [14] adopted the slack projection technique, replaced the feasible set
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in the second step projection with a half space, and proposed the subgradient extragradient
method:

1
Uy = argmin{)\f(wn,u) + 5||ufwn||2 fu € C},
3)
1 (
Wn+1 = argmin{)\f(vn,u) + Ellu - wn”2 tu € Cn}y

where C,, is a half space. Several variant forms of (3) have been proposed and studied, see
[32, 34, 37, 43].

Use CB(H) to denote the family of all nonempty closed bounded subsets of H. Let
T : H — CB(H) be a multivalued mapping. Recall that the fixed point problem is to find
u € H such that

u € Tu. (4)

The solution set of problem (4) is denoted by F(T').

Iterative methods for fixed point problems are widely applied in optimization, image
processing, signal processing and related fields, see [4, 5, 20, 24, 27, 31, 39, 40]. A funda-
mental approach to solve fixed point problems is the Mann iteration algorithm [16], which
has the following manner: (i) {a,} C (0,1) and z¢ € H is any initial point; (ii) for known
T, define

Tpt1 = Ty + (1 — ap)wy, wy, € Txy,. (5)

Another interesting method for solving (4) is Halpern’s method [7] which generates a se-
quence {z,} as follows: (i) xo is an initial point and u € H is a fixed point; (ii) for given
Zn, the next step x,,41 is defined by

Tnt1 = apt + (1 — ap)wy, w, € Tx,. (6)

Due to the fact that some mathematical models’ constraints are expressed through fixed
points and equilibrium problems, such as in signal processing and image recovery, see
[6, 13, 15, 22, 23], many researchers have recently focused on the common solution of e-
quilibrium problems and fixed point problems, see [30, 37, 43]. Especially, Hieu [8] proposed
a subgradient extragradient method to solve fixed point problems and equilibrium problem-
s. Yang and Liu [32] proposed a subgradient extragradient algorithm that does not require
prior knowledge of the Lipschitz constants of f. In 2020, Jolaoso et al. [10] proposed an
inertial subgradient extragradient algorithm to solve the common solutions of equilibrium
problems and fixed point problems and provided strongly convergent results (Algorithm 1.1).
This method adopts an inertial extrapolation step to enhance the convergence speed of the
algorithm.

Algorithm 1.1. Initialization: Choose parameters \;1 > 0, 0 < p < 1 and o > 3. Pick
to,t1 € C, and put n = 1.
Step 1. Let t,_1 and t, be given and choose o, such that 0 < o, < @&y, where

. n—1 €n .
a, = {mln{n+o¢1’ Ten—tn_1]] }’ i tn # tn—1,

n—1 .
FE— otherwise.

Compute
Up =ty + ap(tn — th_1).
Step 2. Calculate

1
o = angmin { Ao 1r,9) + 510~ 9l y € C}.

If u,, = vy, then set u, = v, and go to Step 4. Otherwise, go to Step 3.
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Step 3. Choose g € Oaf (un, - )(vy) such that uy, — Angn — vn € Ne(v,). Compute

. 1
wn = angnin {0, (0n.1) + 5lhun =9Iy € 7o |
where
T, :={x € H: (up — Angn — Un,x — vy) < 0}.
Step 4. Compute
n
thy1 = 6n¢(tn) + (1 - 6n)(7n,0wn + Z’Yn,iyn,i)y
i=1
where yp; € T;(wy,). Update
: n—Un 2 Wp —Un 2 -
Mgl = {mln { 2[f(ii”,?;n)ijfgu:,‘ql)f)f}}(vlL,)wn)] s )\n} . if f(umwn) - f(unyvn) - f(vnvwn) # 0,

ns otherwise.

Step 5. Putn:=n+1 and go to Step 1.

Motivated by the work on algorithms for solving a common solution of pseudomono-
tone equilibrium problems and fixed point problems of demicontractive mappings, in this
paper, we propose a double inertial subgradient extragradient algorithm. The proposed
algorithm incorporates a non-monotone stepsize strategy and integrates an inertial extrap-
olation step inspired by Algorithm 1.1, thereby accelerating the convergence rate of the
algorithm. Our method combines the viscosity method and the Mann-type algorithm to
obtain the strong convergence result.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||. * =’

and ’ —' denote the strong convergence and the weak convergence, respectively. A mapping
S: H — H is said to be contractive if there exists p € [0,1) such that [|[Sx — Sy| <
plle —yl,Vo,y € H.

A subset A C H is called the proximal set if for any « € H, there exists y € A such
that ||z — y|| = d(x, A). The Hausdorff metric on CB(H) is defined as:

H(A, B) = max {sup d(x, B), sup d(y, A)} ,VA,B € CB(H).
€A yeB
Recall that a multivalued mapping T': H — CB(H) is called
(i) nonexpansive if H(Tz,Ty) < ||z — yl|,Vo,y € H.
(ii) quasi-nonexpansive if F(T) # 0 and H(Tz,Tp) < || —p||,Yx € H,p € F(T).
(iii) k-demicontractive if F/(T') # () and there exists x € [0,1) such that

H(Tx,Tp)* < ||z — p|? + wd(z, Tx)?, Vo € H,p € F(T).

A mapping I — T is said to be demiclosed at zero if for any sequence x,, C H with z,, — z*
and z,, — y, for y, € Tz, then «* € F(T).

Let C' be a nonempty closed convex subset of H. The metric projection Po : H — C
is defined as Po(z) = argmin{||x —y|| : y € C},Vz € H. For any © € H, z = Po(z) if and
only if (z —x,y —2) <0,Vy € C.

Let C be a nonempty closed convex subset of H. A bifunction f: H x H — R is
called

(i) strongly monotone on C' if there is p > 0 satisfying

f(U,U) + f(v,u) < _:U“”u - 'U”Z,VU,U € Cv
(ii) monotone on C if f(u,v) + f(v,u) < 0,Vu,v € C;
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(iii) pseudomonotone on C'if f(u,v) > 0= f(v,u) < 0,Vu,v € C;
(iv) strongly pseudomonotone on C' if there is p > 0 satisfying

flu,v) > 0= f(v,u) < —pllu—v|? Yu,v € C;
(v) Lipschtiz-type continuous on H if there are ¢; > 0 and ¢y > 0 such that
Flu,v) + f(v,u) > flu,w) — er]ju —v||* = e2|lv — wl|?, Yu,v,w € H.

A function g : H — R is lower semicontinuous at * € H if and only if for all z,, — z, we
have g(z) < liminf,, o g(x,). g is upper semicontinuous at x if —g is lower semicontinuous
at x.

For each z,y € H, the subdifferential of a convex function f(z,.) at y is denoted by
Oaf(x,y), ie., Oof(z,y) :={ue H: f(z,z) > f(z,y) + (u,z — y),Vz € H}. In particular,
Oaf(x,z)={ue H: f(z,z) > (u,z —x),Vz € H}.

Lemma 2.1 ([29]). Let {a,} C [0,400), {6} C (0,1) and {b,} C R be three real sequences
such that an+1 < (1 —0,)ay, + 0,b,,Yn > 1. Then,
(i) If {bn} is bounded, then {ay} is also bounded.
(ii) If 307 g 0n = +00 and limsup,,_, . b, <0, then lim,_,o a,, = 0.

Lemma 2.2 ([3]). Let C be a convex subset of H and f : C' — R be subdifferentiable on C.
Then, x* is a solution to the following convex problem:

min {f(z) : x € C}

if and only if 0 € Of(x*) + No(z*), where No(z*) :={y € H : {y,z —2*) <0,Vz € C} is
the normal cone of C' at x*.

Lemma 2.3 ([2]). Let H be a real Hilbert space, t; € H(1 <4 <n) and {8;} C (0,1) with
S Bi=1. Then,

n n n
1Y sitall> = Billtall® = D Bl — 1.
i=1 i=1 ij=1,i]
Lemma 2.4 ([15]). Let {ax} be a sequence of real numbers such that there exists a nonde-

creasing subsequence {ay, }of {ar} such that a, < ap,+1, for alli € N. Then there exists a
nondecreasing {mn,} C N such that hm my, = oo and the following properties are satisfied

for all (sufficiently large) numbers n E N

O, < Amp,+1 and  ap < G, 41

3. Main results

In this section, we introduce an algorithm for solving the equilibrium problem and
fixed point problem and prove a strong convergence result.

Assumption 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Fori e N, T, : H— CB(H) is k;-demicontractive mapping, I — T; is demiclosed at
zero and T;(z) = {x} for all x € F(T;). Let ¢ be a T-contractive on H. Suppose that
EP(f)N N2, F(T;) # 0. Let f : H x H — R be a bifunction satisfying the following
conditions (Al)-(A4):
(A1) for every x € H, f(x,.) is convex, subdifferentiable and lower semicontinous on H;
(A2) fis pbuedomonotone on C and f(z,z) =0,Vx € C,
(A3) f is Lipshitz-type continous on H;
(A4) for every y € C, f(-,y) is sequentially weakly upper semicontinuous on C.
Assume that the involved parameters satisfy the following conditions:
(B1) {d,} C (0,1), Jlim 6, = 0 and Yoo O = 00;
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. €n . . Vl N
(B2) {ea} € [0.00). {} € [0.00), lim &= =0.and lim 5 = 0;
(B3) {7m.i}20 C (0,1), X0 Yni = 1

(B4) liminf, o0 (Vn,0 — K)¥n,i > 0 and k = max{x;} for all i € N\ {0}.
Algorithm 3.1. Initialization. Choose parameters: A\ > 0, u,n € (0,1), 6,0 € [0,1),

€€ (0,1], {pn} C[0,00) and Y.° ; pn < o0. Take to,t, € C' and set n = 1.

Step 1. Given the current iterates tn—1 and t,, choose oy, By satisfying 0 < ay, < @y,
and 0 < B, < B,, where

. _{min{e,lt,f;;_ln}, if tn # taet,
o

‘ (7)
0, otherwise,
and
3 min | o, m—=—7 ¢, it th—1,
Bn = { ”tn—tn—l\l} f n 7& n—1 (8)
g otherwise.
Compute

Sp = tn + an(tn - tn—l)a
Uy =ty + ﬁn(tn - tnfl)'
Step 2. Calculate

1
o = angnin {0, (i) + o = vl € €.

If up, = vy, then put u, = v, and go to Step 4. Otherwise, go to Step 3.

Step 3. Choose g € Oaf (U, )(vy) such that up, — Angn — vn € Ne(vy).
Compute

. 1
wy, = arg min {5/\71,.]0 (0n, y) + 5 llun — vl y € Tn} ,
where

Tn:={r € H: (up — A\Gn — U, —v,,) <0}.
Step 4. Calculate
Ty = Yn,0Wn + Z?:l Yn,ilYn,is
Zn = (1 - n)sn + NTn,
tnyr = 0n@(2n) + (1 = 0p)Tn,
where yp ; € Ti(wy) and

. U(||un_U7LH2+Hwn_vn”2) }
min An n (o
{Q[f(unawn)_f(un;vn)_f(vnawn)], +p

Zf f(unawn) - f(uruvn) - f(vn>wn) > 07
An + Pns otherwise.

)\n+1 =

Step 5. Putn:=n+1 and go to Step 1.
Lemma 3.1. The sequence {\,} generated by Algorithm 5.1 satisfies: lim A\, = A and
n—oo

: H oo
————— A <A<\ + P, where P = n-
mln{?max {61,62}’ 1} =~ >~ A1l + , where Zn:lp
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Proof. {\,} is bounded. In fact, since f satisfies the Lipschtiz-type condition with constants
c1 and ca, when f(uy, wy) — f(tn,vn) — f(Vn, w,) > 0, we have

pllun = vall® + lwn = vall®) > p(ln = vall® + lwn = vall?)
2[f (un, wn) = fun,vp) = fon, wy)] — 2(crflun — vn* + c2llvn — wal[?)
.“(Hun*Un”Z+ [|wn 71}””2) o
~ 2max {c1, c2} (JJun — vnl]? + ||vn — wi||?) T 2max{cy,ca}

Y
2max {cy,co}’
prove the convergence of the sequence {\,}. From the definition of {)\,}, it follows that
S oAt = Ap) T <300 pn < 00 where (App1 — )T = max {0, A1 — An}, (Ang1 —
An)” = max {0, —(Ant1 — Ap)}. Thus, D% ((Ang1 — An)T is convergent. On the other
hand, suppose for contradiction that Y~ (An41 — An)~ is not convergent. Since

>\n+1 - )\n = ()\nJrl - )\n)+ - (AnJrl - )\n)_o

Using the definition of A, 1, we have min{ /\1} < A\, < A1 + P. Next, we

A1 = Ao =D (Angr = M) " =Y (Ansa = An) ™ 9)
n=0 n=0

From (9), if take m — oo, we obtain \,, — +o0o, which leads to a contradiction. Hence
32 o(Ant1—Xo)~ must be convergent. Applying m — oo in (9), we can conclude lim \, =
n—oo

n=0
I

A. It is evident that min{ ————,
2max {c1, co}

)\1}<)\<)\1+P. ]

Lemma 3.2. For allp € EP(f)N(\;2, F(T;) and n > 1, we have

An
[|wn, —p||2 < Jun _pH2 — (1 =& lup — wnH2 — (1~ M)\ +1)(Hun - Un”2 + [lwn — UnHQ)'

Proof. By the definition of w,, and Lemma 2.2, we have
1
0€ 02 {0 (0m,02) + gl = wn?  + N, (),

Then, there exist u € daf (v, wy) and ¢ € N, (wy,) such that

Epu+ wy, —up +q=0. (10)
By the subdifferentiability of f, we have
Fn,y) — fon,wn) > (u,y —wy),Vy € C. (11)
Besides, from ¢ € Nt (w,,), we have
(¢, w, —y) > 0,YVy € T,. (12)
By combining (10) and (12), we derive
(Up, = Wiy Y — W) < EXN (U, y — wi,), Vy € Ty (13)

From (11) and (13) to get (up — Wn,y — wn) < EX[f(Vn,y) — f(on,wn)], Yy € T,,. Let
Yy=pE€ EP(f7 C) C C C Ty, we have <un = Wn, P — wn> < fAn[f(vnvp) - f(vnywn)]' Since
f is pseudomonotone and v,, € C, we obtain f(v,,p) < 0. Then,
gAnf(Unawn) < <Un — Wn, Wp — p)- (14)
Similarly, since ¢, € 92 f(un, - )(vy), we obtain
flun, 2) = f(tun,vn) > {gn,z —vn),Vz € H.

Choose z = w,, to obtain
f(unawn) - f(unavn) Z <gn; Wy — Un)- (15)
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Since w,, € T),, we have (un — Apgn — Un, Wy — vy) < 0. It follows that
Al Gns Wr — V) = (U, — Uy, Wy, — Up). (16)
Combining (15) and (16), we have
A (f (U, wp) — f(n,vn)) = (Un — O, Wy — V). (17)

Note that Apt1(f(wn, wn) — f(tn,vn) — flvn, wy)) < %(Hun — v |? + |Jwn — va]?). Tt is
equivalent to

An p
. 7(||un_vnH2+ Hwn_vnHQ)- (18)

An(f(u’mu}n) - f(unavn) - f(vnawn)) S )\n + 1 2

From (14), (17) and (18), we have

M)::L (ltn — vnll® + [[wn — val|?) = 2(ts — vy, W — V) + %(un — W, P — Wy).
On the other hand, since 2(u, — vy, Wy — Vn) = ||t — v ||? + |wp — vul|? = [Jttn — wy]|?, and
2t = wn, p = wn) = [t = wnl|* + [p = wa|* = [lun = p*,
we deduce

An
Hwn_p”2 < ||un_p||2_(1_§)||un_wn||2_§(l_ﬂ>\ +1)(||un_UnHQ""Hwn_Un”Q)' (19)
n

O

Theorem 3.1. Suppose that conditions (A1)-(A4)and (B1)-(B5) hold. Then, the sequence
{tn} generated by Algorithm 3.1 converges strongly to p, where p = Ppp(5)nne=, r(1;)(D)-
Proof. By Lemma 2.3, we have
n = Bl = lmotn + 3 it — I

i=1

2

n n
< Ynollwn = pl* + Z'Yn,i”yn,i —pl* - ZVH,O’YH,Z'Hwn ~ Yni

i=1 i=1

n n
< Amollwn = pI? + > Yo i H(Tiwn, Tip) =Y Vo0l
=1 =1

I?

Wn — Yn,i

Wp — yn,i”z

n n
< mollon Pl + 3 il = Bl + rillwn = il = > A7
i=1 1=1
n
= ”wn —p||2 - Z(’Yn,o - H)7n7i||wn - yn,i|
=1

’ (20)

< llwn — pll*.

Since € € (0,1], pr € (0,1) and lim A, = A, we have that there exists N; > 0 such that for
n—oo

An
all n > Ny, £(1 — e ) > 0. By (19), we have |Jw,, — p||*> < |[u, — p||?. Therefore, from
n+1
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the definition of z,,, we have
lzn = pll = (1 = n)sn + nrn —
< (1 =n)llsn —pll +nllz, — pll
< @ =n)lsn —pll +nllun — pll
< (T =nltn =2l + A = n)antn — ta-all + nlltn — pll + 1Bulltn — tn-1]
= [[tn — 2l + [(X = m)en + nBn]lltn — tn-1ll-
Combining the above inequality with the definition of ¢,,41, we get
[tn+1 = pll = 16n¢(2n) + (1 = 6n)zn — p
= [16n(¢(zn) —p) + (1 = 0n)(zn — p)
< Onll@(zn) = pll + (1 = n)[|lzn — pll
= 0nllé(2n) — &(p) + &(p) — pll + (1 = 6n)lwn — pll
< On7llzn = pll + 0nllé(p) — pll + (1 = 6n)[[un — pll
= 0n7llzn — Pl + 0nllé(p) — pll + (1 = 0n)[[tn + Br(tn — tn-1) — pl|
< On7llzn = pll + 0nll¢(p) — pll + (1 = 6n) ([tn — pll + Bulltn — tn-l)
< On7lltn = pll + [(1 = n)am +1Bn + (1 = 6n)Bullltn — tn-1ll
+ (1 = 0n)[tn — pll + dnllé(p) — pll

= (U= (=)t ] + (1 = )i, (S22
(1 B 77)0% + 77»371 + (1 - 5n)ﬂn
+ 5n(1—7) th*tn—l‘”'
Let M = 2max {”d)(m_pn,supnNV (1 =m)an + 1B + (1 = 0n)Bn It — tn_1|}. Then,
1—7 = On(l—17)

we have
[tns1 —pll < (1= (1 —=7)dn)lltn — pll +1— 7M.

Applying Lemma 2.1(i), we conclude that {||t,+1 — p||} is bounded. This implies that {t,}

is bounded. Therefore, {s,}, {un}, {w,}, {vn} and {T;w,} are bounded.
By the definition of u,,, we have

lun = plI* = [ltn + Bultn = ta-1) — p|I?
< Nltn = plI* + Balltn — ta—1l® +28alltn — plllitn — ta—l
= lItn = pI* + Bulitn — ta-1l(Bulitn — ta-1ll + 2lltn — plI)
< ltn =PI + B M |ltn — tna ]
where My = sup,,> n, (Bnlltn — tn—1ll + 2[|t, — p||). Hence,
[tn41 = pII* = 1026 (20) + (L = 8n)zn — pf?
< (1= 0n)?[lwn = plI* + 26 (b (2n) = P, tns1 = p)
< (1= 00)?llun = plI* + 26,16 (2n) — $(@)l|tns1 — pl
+ 26,(0(p) = P, tnt1 — p)
< (1= 60)2(Itn = plI* + BuMilltn — ta—1ll) + 26u7 |20 — pll[tn+1 — pll
+ 200 (¢(p) — Py tns1 — p)
< (1= 62)2(Itn = plI* + BuMilltn — to1ll) + 6u7 (|20 — plI*+
[tn+1 = plI%) + 260 (6 (P) — P, tns1 — p)-
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Note that
ll2n — p”2 < (it = pll + (1 = m)an + nBn) Itn — tn71||)2
= Itx —p||2 + (1 =n)an + nﬁn]Qth - tn—1H2
+ 2[(1 = n)a +nBa]lltn — plllltn — tn-1ll- (22)
Combining (21) and (22), we have
1— 26, + 0,7 52
_ 2 < n n 2 n 2
e e e
BnMi(1—6,)? SnT[(1 = n)awn + nBa)?
+ﬁ”tn_tn—1”+ ]_—(5 - ||tn_tn—lH2
25717—[(1 B 77)0471 + nﬂn]
tn — tn —th_
O [
20,
+1o 5”((25(19) —Pytnt1 — D)
20, (1 —17) 9 52 9
— 1 [ . tn — ___n t” _
(1= 220Dy, = pl o 2 g
BnMi(1—6,)? on7[(1 = n)an + 1Ba)?
+ﬁ”tn_tnfl”+ 176 p ||tn_tn71H2
25717—[(1 B 77)0411 + nﬂn]
tn — tn —th_
O [
20,
+ ((p) = Pstns1 — D). (23)
1—96,7

We investigate two possible cases: Case 1 and Case 2.
Case 1. There is N > Ny such that {||t, — p||*} is a non-increasing sequence for all n > N.

This implies the existence of lim ||¢, — p||?. Since {t,} is bounded, we have
n—oo
lim ([[tn = pl* = [[tns1 — p[*) = 0.
n— oo
From (20), we have

||tn+1 - p”2 < (1 - 6n)||xn *PHQ + 25n<¢(zn) — Dyt *p>

n

< (1 - 5n)[||wn _p||2 - Z(%,O - H)’Yn,inwn — Yn,i
=1

+ 26, (A(2n) — Py tni1 — D)

n

< (1= 8)llun = pI2 = 3 o = W) Vil = Yo
=1

+ 25n<¢(zn) 2 tn+1 _p>
< (1 - 5n)[||tn - p”2 + ﬁanth - tanH

N

N

- Z(’Yn,o - K)’Yn,i“wn - yn,i”2] + 25n<¢(zn) —Dytnt1 — p>.
=1

Then

? < (1= 6u)litn = plI* = ltns1 — pII?

(1—16n) Z(’Yn,o = K)Vn,illWn = Yn,i
i=1

+25n<¢(zn) - D, tn+1 7p> + (1 - 5n)ﬂnM1||tn - tn—l”'
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Since lim 6, =0 and lim S,||t, — tn—1|| = 0, we have
n—oo n— oo

2=0.

Jm 3 0mo = e~ i
According to (B4), we obtain
lim ||wy, — ynl| = 0.
n—00
Based on (19), we obtain
[tner = plI* < (1= 8n)llzn — plI* +200(p(20) = P, tnsr —p)
< (1 - 6ﬂ)||wn - pH2 + 26n<¢(zn) —Ditnt1 _p>
An

< (1= 0n)lllun = pl* = (1 = €)llun — wall* — (1~ M

([Jun — Un”2 + [lwn, — vnHQ)] + 28,(¢(2n) — Py tnt1 — D)
< (1= 0n)lItn _pH2 + Bu M|ty — tn—1l| = (1 = &) llun — wn”2

An
-1 —p

/\n+1
This implies that

)

>\7L
(1= 0)[(1 = O)llun — wa]|* + (1 — M/\HH)(HUn = Vn|® + lwn = va*)]

< (1= 60)[ltn =PI = [[tngr = pI* + (1 = 62) Bu M [tn — 1|
+ 2§n<¢(’zn) - b tn+1 - p>'

Similarly, we have

. An
lim (1= &)lfun = wall* + &(1 = =) (Ifun = vnI* + [[wn = va]*) = 0.

n— oo n+1

An
Since ¥n > N, 5(1—u>\ ) >0, £ €(0,1], we have

n+1
lim |lu, —v,| =0,
n—oo
and
lim |lw, —v,| = 0.
n—oo
Combining (25) and (26), we have
lim |lu, —wy| = 0.
n— oo

From the definition of 8,, (24) and §,, — 0, we have

It~ wnll = Balltn = tusll = 52t — ta 1150 =0,
n

n
[Zn — wall = Yn,0llwn — wall + Z Yn,i —wnl — 0,
i=1
and
[tnt1 = @nll = dnlld(zn) — zn | + (1 = 6n)llzn — zn] — 0.
Take into account of (27)-(30), we obtain

nh—>H;o [tns1 — tull = 0.

(| — 'UnH2 + Hwn - Un||2)] + 20, ((2n) — Dy tny1 — D).
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Since {¢,} is bounded, there exists a subsequence {t,, } of {¢,} such that ¢,, —t € H and
lim sup {¢(p) —p,tn —p) = lim (¢(p) = p,tn, —p) = ($(p) =Pt —p).

n— oo
So,
lim sup (¢(p) — p,tn —p) = (#(p) —p,t —p) <0. (32)
n— o0
Combining (31) and (32), we get
lim sup (¢(p) — p,tnt1 —p) < 0. (33)
n— oo

Using (25)-(28), we have v, — t, wy,, — t and u,, —t, as k — oo. Since C is closed and
convex set, so C' is weakly closed, we can deduce that t € C. From the definition of A4
and (17), we have

§>\nk f(vnkay) 2 gAnk f(vnk,wnk) + <unk - wnkay - w’nk>

I
> E)\nk(f(unk’wnk) - f(unk7vnk) - 7(Hu’ﬂk - UﬂkHQ
2)\nk+1
+ ||wnk — Uny H2)) + <unk — Wny,Y — wnk>
A
> £<u’ﬂk — Unygs Wny, — Unk> - gﬂ . ||unk - Unk,”Q
2>\nk+1
A
- g'u ok Hwnk - 'Unk||2 + <un;€ - wnkay - wnk>7vy S C
2)‘nk+1

Taking the limit as £k — oo on the right-hand side of the above inequality and using the
sequentially weakly upper semicontinutity of f, we have
0 < limsup f(vn,,y) < f(t,y),Vy € C.

n—r oo

Hence, we get t € EP(f,C). Since T; are demiclosed at zero and (24), we obtain t € F(T;).
Therefore, t € EP(f) N2y F(T5).
It follows that

. ﬁan(l - 571)2 6717—[(1 — 77)04n + nﬁn]Q 2
nlggo( 2, [tn — tn-1ll + 2, tn — tn—1ll
20, 7[(1 — n)om + 1] 52 ~
2, th - pHth - tn71|| + 2., ||tn - p” ) =0. (34)

Using (24), (34) and Lemma 2.1(ii), we have
lim ||t, —p|| =0.
n— oo
Case 2. Suppose that {||t,, — p[|*} is not non-increasing. There exists a subsequence { ||t,, — p||* }

of {||t,, — pl|*} such that {||tn, — p||*} < {|ltn.+1 — pl|*} holds for all i € N. Then, accord-
ing to Lemma 2.4, there exists a non-decreasing sequence {my} such that lim m, = oo
n—oQ

and
ltm, —pI* < ltm,+1 —plI> and  ||tn — pl|*> < [[tm,+1 — plI*,Vn € N.

Following a similar argument as in Case 1, we get

B [, g, [ =0, lim [, — v, | =0,
B [, — v, | =0, T [, — tn, -l =0,

lwm, = Ym,ill =0 and limsup(p(p) — p,tm,+1 —p) < 0.

lim
n—oo n—oo
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By (23), we have

0 < [ftm,+1 = pI* = ltm, —pl*

26m (I_T) 2 572n 2
< (1=, — — b, —
< (1= =, =l + T e,
B, Mi(1 = bm,, ) Om, T[(1 = M)vm,, + 1Bm, | 2
n e g n n SN
T, =t + T -
200, T[(1 — n)am,, + 1Bm.,
g 2T 2Pl iy, — 1,
20m 2
T (d(p) — Pyt 1 — B) — tm, — Dl
+175mn7<¢>(p) Pitm,+1 =) = [[tm, — Dl
Therefore, we obtain
2(1—17) 9 m o Bm, Mi(1 =6, )*
2, =l < — ity — n "t — o, —
Tl = DI € e, — gl + Pt e |
7[(1 = n)am, + nBm,|?
+ 1 _5 T ||tmn _-lf"nn_l”2
27[(1 — n)om,, + 1Bm, ]
e E050 e plltm, — b
2
+ 1-96 7_<¢(p) _p;tmn-l—l _p>

As n — oo, the right-hand side of the above inequality tends to 0. This implies that
lim ||, — p||> = 0. Therefore, we have
n—oo

0 < [|tn —PH2 <t +1 —p||2 — 0,n — oo.

Hence, we conclude that the sequence {t¢,} converges strongly to p. O

4. Conclusion

In this paper, we introduce a strongly convergent iterative algorithm that approxi-
mates the common solution of the pseudomonotone equilibrium problem and the fixed point
problem of demicontractive mappings. The algorithm we proposed sets up two inertial ex-
trapolation steps, combines the Mann-type method and the viscosity approximation method,
and involves the non-monotone stepsize rule. The strong convergence theorem is given under
mild conditions.
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