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The purpose of this paper is to highlight how the concept of antifragility can 

be introduced in the design stage of evolved manufacturing systems, considered as 

complex adaptive systems capable of maintaining the functionality at optimal 

parameters under adverse conditions caused by unforeseen changes in context. The 

paper presents in detail how this approach was applied on a manufacturing line 

through the development of a digital twin model where uncertainty is handled 

through decision-making based on failure modes and effects analysis. 
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1. Introduction 

Considered to be the "fourth industrial revolution", Industry 4.0 brought as 

the main novelty the concept of industrial digitization, supported by three other 

conceptual pillars: Smart Manufacturing (SM), Smart Factory (SF) and Industrial 

Internet of Things (IIoT). Industrial areas are overwhelmed with the need to go 

digital. Digitalization in supply chain management (SCM) in recent years has 

opened up a broad area for academic research, especially oriented to boost supply 

chain (SC) efficiency internally and externally. The most substantial increase in 

performance is expected to be in fields of competitiveness, flexibility, and 

working environment. 

As the complexity of the processes driven by SM increases, the methods 

of monitoring the functioning state and maintaining the performance at optimal 

parameters became more sophisticated. Preventive maintenance consisting of 

periodic interventions to verify and correct deviations from normal status based 

on scenarios built on historical data records is gradually replaced by predictive 

maintenance solutions that use continuous real-time measurements to detect 

behavioral anomalies that can lead to failures, but which did not have an obvious 
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causality. Limitations of probabilistic approaches based on predefined scenarios 

can no longer cope with the uncertainty caused by this increasing complexity.  

A novel, but somewhat risky solution is to combat uncertainty on the basis 

of the antifragility paradigm. Antifragility is a concept introduced and developed 

by Nassim Nicholas Taleb in his book “Antifragile: Things That Gain from 

Disorder” [1]. According to Taleb, antifragility is more than robustness (the 

ability to withstand or overcome adverse conditions and therefore to recover from 

failure) and more than resilience (the ability to resist failure). By definition, 

antifragility is a property of systems that increase in capability, resilience, or 

robustness as a result of harmful actions of stressors, shocks, noise, mistakes, 

faults, attacks, or failures. In other words, the concept of antifragility is that 

certain things can improve and even grow stronger when subjected to stress.  

This paper states that ensuring antifragility property is the safest way to 

exploit smart manufacturing systems under uncertain conditions, using an 

association of emerging technologies, such as Artificial Intelligence, Cloud 

Computing, Big Data Analytics and Digital Twin.  The main driving problem for 

such a system is that the fulfilling of the particular objectives is often conflicting 

and therefore requires compromise solutions. In our opinion, an utility that 

ensures the fulfilment of antifragile engineering goals is the Automatization of 

Predictive Maintenance (APM). 

2. Related works 

A large group of works is that related to the development of SM 

applications (derived from the Industry 4.0 paradigm) based on IIoT. Paper [2] is 

one of the first dedicated to smart manufacturing, describing several scenarios 

having a logistic-based life-cycle model compatible with Industry 4.0 

requirements on efficiency improvement and decentralization assurance. In [3] the 

authors propose an automatic data acquisition mechanism using IoT technology to 

ensure predictive maintenance in order to optimize assets management. Paper [4] 

develops an analysis framework for IIoT that can be used to enumerate and 

characterize IIoT and Edge devices when studying system architectures and 

analyzing security threats and vulnerabilities.  

Another sector rich in references is the one dedicated to including SCM in 

the wider SM framework, through digital transformation and digital connection in 

collaborative networks. In paper [5] a supply chain model which allows to assess 

its performance in a compactly interconnected with IIoT and Edge devices 

environment is proposed. The purpose of [6] is to highlight how digitalization 

ensures the transfer of current knowledge about the supply chain risk into 

practical solutions to prevent it. Paper [7] describes the expected changes in the 

control and planning processes determined by the use of Digitalization Elements 
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and proposes an original method of designing them according to the requirements 

of Industry 4.0 regarding SCM. 

The literature on the use of DT in the industrial environment is rich and 

rapidly expanding. However, we looked only for recent works that associate DT 

with artificial intelligence, cyber-physical systems or hierarchical computer 

networks, with the main objective of real-time simulation. Among these, [8] 

justifies the need to use DT in combination with other technologies and in 

different fields, including the relation to asset management, and predictive 

maintenance. In [9], through the association of DT and Big Data, there is 

presented a method for designing products on manufacturing lines using DT, 

mentioning the maintenance operation, which includes three stages: performance 

prediction (without reference to equipment status), manufacturing process 

verification and function verification. In [10] the author points out that using the 

information provided by the DT we can predict how the manufactured product 

will be and then compare the result with the specification in the design phase, an 

observation that actually underlies the predictive maintenance. Paper [11] points 

out the importance of including in simulation hazards and uncertainties, which is 

also a concern of the testing within the simulation framework offered by DT. In 

[12] the authors point out the use of DT in cooperation with cyber-physical 

models in predictive maintenance. 

3. Automatization of predictive maintenance in smart manufacturing 

systems 

APM facilities are important attributes of the general control system of a 

manufacturing process, because they allow the migration of control procedures to 

mixed control, security and maintenance solutions. A first solution is the 

elaboration of the so-called system models, which are capable of automatically 

and permanently producing quality forecasts, to indicate the problems and failures 

at an early stage or to diagnose the future abnormal behaviors of the process. Such 

models can detect trends in process evolution, and thus can anticipate to what 

extent the model's outputs correspond to consistent results. On the other hand, the 

consistency of the models may be affected by the lack of expertise on new 

processes, still unverified, or evaluated on an insufficient historical database.  

An important breakthrough in this direction is the integration of APM 

technology with a new simulation technology, called Digital Twin (DT) [13] A 

DT is a virtual representation of a real asset. More than a model, DT can receive 

continuous real-time data from the process and so can virtually monitor it. A 

simulation platform based on DT offers a framework for replacing a real device 

with its virtual counterpart, so as to allow efficient life cycle management, design 

and reconfiguration of the industrial equipment by performing virtual mapping of 
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the available assets (such as components, software, documents, services, robots, 

logistics facilities, sensors, units and control components) from the real world in 

the digital information world.  The main strategy in providing APM based on DT 

technology is to take action when the components or parts exhibit certain 

behaviors that usually result in a malfunction of the machine, a poor performance 

or a decrease in product quality.  

Predictive maintenance (PdM) is one of the main tools proposed by 

Industry 4.0 paradigm for improving productivity and optimizing Assets 

Management. The fulfillment of these objectives is based on three pillars: 1) the 

collection and primary real-time processing of the data regarding the status of the 

production process and the resources involved in the work; 2) early detection of 

anomalies in the evolution of the process or of failures of machines and 

equipment; 3) accurate prediction of the time interval until the final fall and 

support for the decision to solve the critical situation in this interval. Therefore, 

for an antifragile system the optimization algorithms are multi-objective, aiming 

at the same time to ensure the robustness and resilience of the production process, 

the optimization of asset management and the optimization of the PdM 

intervention.  

To minimize the differences between real challenges (process control, 

context awareness, antifragile operation) and control software, focused more on 

improving production, maintenance and logistic support we developed a method 

to be applied in a virtual environment.  

Failure Mode and Effects Analysis (FMEA) is a structured technique 

defined in IEC 60812 [14]. Using FMEA allows identification of several 

performance indicators: 

• Failure cause: why the process element failed 

• Failure mode: how the process element failed 

• Failure effect: the consequence of a defect mode regarding element 

operation, function or state 

• Failure severity: grading the severity associated with the failure of the 

specific analyzed element or over interconnected elements 

• Failure identification: Approach which considers correlated failure 

severity and frequency of occurrence 

To apply this test method on a manufacturing line, we consider splitting it 

into operational units, and for each component of each unit failure modes must be 

defined. The effects produced by each failure mode, the severity of the impact on 

the current unit and potential causes are examined. The initial frequency of 

occurrence of each failure mode is estimated by experienced engineers. 

The cause-effect chain analyzed in a FMEA stage is illustrated in Fig. 1. 

Each failure mode has a cause, and each consequence is associated with a failure 

mode. A consequence can lead to unexpected behavior. The severity describes the 
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importance and priority required by a scenario. The occurrence indicator is given 

by the statistical probability of failure for the specific element.   

 
Fig.1. Cause-effect elements in FMEA 

4. Dealing with uncertainties in antifragile manufacturing system 

The struggle with the uncertainties is given by specific methods following 

three main principles. The basic principle to be applied is that a decision is good 

in the same extent that the information on which it is based is good. A second 

principle is that uncertainty must be overcome at every stage of the life cycle of a 

project, because it can surprise us with its ambiguity and unpredictability both in 

the planning stage, in the production launch phase, in the execution phase, even in 

the completion phase. Finally, the third principle is that uncertainty management 

is more comprehensive and much more different than just applying risk 

management techniques, and as such requires more cutting-edge solutions and 

perhaps surprising ones. 

The antifragile approach of the decision process regarding the 

establishment and reconfiguration of the working parameters opens the way to 

solve a multi-objective optimization problem (MOP) in conditions of uncertainty. 

The main MOP challenge is the need to simultaneously optimize several 

contradictory objectives in the context of uncertain input data. In this respect, the 

biggest problem is that disturbances can occur in the input data and will propagate 

through the model affecting the values of the quality parameters. Thus, the 

propagation of uncertainties affects both the optimization process and the 

decision-making process. An antifragile MOP can be solved considering that for a 

system that has been designed to be robust and resilient, i.e. to keep its outputs 

relatively insensitive in the presence of uncertain inputs. Specifically, objective 

functions are calculated based on the expected uncertainty estimation using the 

same method which takes robustness into account. 
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Fig. 2. DT for risk assessment methodology 

 

To support the development of such an approach we propose the use of a 

digital twin (DT) as a reference for normal process operation, so that deviations 

can be rapidly identified. We consider a systems approach, where we use data 

available in the physical process to capture not only individual equipment 

behavior, but also device-to-device interactions, allowing identification of 

possible correlations between such deviations. A decisive role is to perform 

process modelling as a DT representation of the system, with all phases, nodes 

and dependencies. As illustrated in Fig. 2 this can be done through an FSM (Finite 

State Machine) representation of the process where different diagrams capture 

different detail levels of the plant, as well as dependencies between different 

nodes, allowing a nested top-bottom approach.  

Fig. 3 illustrates the steps required to build a behavioural model in such an 

approach. The system is split in several independent phases, each defined by 

inputs, events and outputs. Each phase is represented by branch and nodes or final 

elements. A phase may include several branches, representing different operation 

flows. A risk factor is assigned to each element, taking into consideration the 

severity of possible failures, the occurrence and detectability probability. The risk 

factor of a phase or branch consists in the sum of all included elements. 

According to this data, a criticality matrix is built to represent elements failure 

along with their occurrence and severity. The model is updated with real process 

data, enabling both the verification of the virtual model in an initial testing and 

validation phase, and also the anomalies identification and classification during 

process operation. 
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Fig.2. Building the behavior model 

5. Experimental results 

Testing and validation of the method was carried out on the testbed called 

SMART Flexible Assembly System offered by the Laboratory L9: Innovative 

Products and Processes to Increase Life Quality from the Research Center for 

Smart Products, Processes and Innovative Services (PRECIS) of the Faculty of 

Automatic Control and Computers, Politehnica University Bucharest, having as 

main objective the use of advanced modeling and simulation technologies for 

performance assessment of manufacturing mechatronic lines.  The logistic support 

for performing the tests is a laboratory model for a flexible assembly line of 

industrial products with 5 workstations (WS 1…WS 5), presented in Fig.3. 

 

 
Fig. 3. Block diagram of the mechatronic assembly line 

 

The technological flow consists in the succession of several processing 

phases, one at each workstation. At the first workstation a pallet base used to store 

the parts of the finished product is placed on the conveyor belt. At the second 

workstation on the pallet is placed the first piece (the basis) of the product.  At the 

third workstation, the robotic arm executes assembly with several small parts. The 

fourth workstation ensures the mounting of the last piece and so a compact 

product is completed. The fifth workstation is responsible for stacking the 
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product. The local operation of the physical process is implemented using 

Siemens PLCs, while the DT model was implemented in Node-Red. Standard 

Modbus communication protocol is used for data acquisition.  

For each station of the manufacturing line a FSM (Finite State Machine) 

representation was built, as a virtual DT representation of the physical process. 

For example, Station 1 (Fig. 4) was modelled using 10 states and 12 transitions. 

The states are represented by nr_pf, the number of products, and nr_pi, the 

number of components for each product, given by the PLC, two inductive sensors, 

SP1 and SP2, showing the product entered or exited the conveyor belt, 1 RFID 

sensor, RFID1, to identify the stop position, one optical sensor SO1, to check 

pallets availability in the rack, two feedback sensors SF1 and SF2, which confirm 

the element is in the correct position and can be released from the stack, a 

capacitive sensor SC for confirming the element reached the belt and B2_free, a 

parameter confirming the next station accepts new elements. The transitions 

represented through elements P1 to P12 check the cumulative conditions required 

for each step for the element to be correctly processed until it leaves the station.  

 

 

Fig.4. Behavior model example for station 1 

We considered for each transition in the FSM model a time parameter, 

representing the time required to pass from one operational stage to another. This 

parameter was determined during the initial testing and validation phase by 

extracting the time between successive events, using the timestamp value of each 

detected event. Statistical processing functions like mean and standard deviation 

are used to identify faults from real-time data. This way we can determine, for 

example, the expected time between the moment a piece handled by the 
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manufacturing line entered a processing phase, and when it should exit towards 

the next stage. Abrupt changes in the estimated processing time or the measured 

tendency to go beyond the normal operation range will be signalled either as 

warnings or as faults, depending on the event severity. 

The FMEA analysis was applied on this station taking into consideration 

for each element possible failure modes, causes and effects and assigning a risk 

considering a factor between 1 and 10 for the severity of the event, the probability 

of occurrence and the ease of detecting it. By multiplying these indices, we 

obtained a risk factor which varies from 1 to 1000. The risk value is denoted RPN 

(Risk Priority Number). 

Starting from the FMEA analysis in our method we consider, at the 

beginning, the same occurrence index for all elements, with the value 1, thus 

making the initial risk of operation lower, corresponding to a proper operation. 

The risk index for an individual element is computed as the maximum value 

between all RPNs associated with that element. By overlapping the risk indices 

over the elements represented in the FSM diagram we can compute in real time 

the overall risk factor as the sum of all possible risks of all linked elements, 

according to the state of each element. In a manufacturing line where 

reconfiguration is possible, these values should be computed for all possible links, 

and are set for each element thought the normal behaviour of the manufacturing 

line.  

We assign these values on each node of the behaviour model illustrated in 

Fig. 4. During process operation, these values are adjusted to reflect the current 

risk according to received process data. Fig. 5 illustrates the data acquisition and 

processing modules, in this case applied for reading signal SP1. Data is collected 

from the physical process using a Modbus TCP connection and stored in a local 

database. The real-time value is displayed in the dashboard. Changes in the sensor 

state trigger the acquisition of a new value. The time between successive data 

acquisitions is be used to estimate the duration of a phase.  

 

Fig. 5. Signal acquisition, processing and storage example for SP1 

We defined blocks to compute the mean and standard deviation for the 

phase duration (Fig. 6). For this, we created a table for active signals which will 

store each activation of the inductive sensors, as well as the timestamp of this 

event. We chose not to store the values for these statistical parameters, but rather 

to compute them online using database interrogation functions. The standard 
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deviation was computed as: SELECT AVG ((SP1.time - sub.a) * (SP1.time - 

sub.a)) as var from SP1, SELECT AVG(time) AS a FROM SP1) AS sub. The 

mean was computed as SELECT value, time, time - LAG (time, 1, 0) OVER 

(ORDER BY value) diferenta FROM SP1.  

 

 

Fig. 6. Detail on computing signal attributes 

The following cases are considered for fault identification:  

- Communication link state: in case the Modbus client does not receive a 

response from the server device it automatically triggers an alarm, visible 

in the dashboard. The link will be marked as ACTIVE if the 

communication works properly, otherwise INACTIVE.  

- Bad value received from the sensor: this is signalled by the 

communication protocol in case the corresponding register is unavailable. 

In this case the signal is marked as INACTIVE. 

- Untrusted value: each value is analysed according to the mean and 

standard deviation of its previous values (to determine outlier behaviour), 

relative to the values of its correlated parameters (to determine either a 

root or independent failure) or and or/relative to its variation slope (to 

measure the tendency of exceeding operational limits or under optimal 

operation). If any of these cases are identified the received signal will be 

marked as untrusted. 

Fig. 7 shows how this information is used to update the parameters of the 

RPN and adjust its value in real-time, during process operation. For this we 

compute a new occurrence value according to detected faults, the severity 

according to the cross-correlation with other parameters and the detection 

probability according to the percentage of false failure detection in case of signals 

marked as untrusted values. We used a join node to build a vector from these three 

values and obtained the RPN values by multiplying these three parameters. 
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Fig. 7. Example on computing RPN value associated with SP1 

The presented results showed how a DT approach can be used to extend 

traditional monitoring and control applications to support operational activities 

and provide insight on the process state through a systematic view. The use of 

Node-Red for the implementation provided flexibility in the integration interfaces 

with both process and operational levels and in implementing the processing 

functions. The results of this analysis can be forwarded to predictive maintenance 

modules or updated to allow process reconfiguration based on alternative routes 

defined in the FSM model. 

4. Conclusions 

In this paper we tried to discuss the possibility of designing a special 

category of complex adaptive systems that permanently maintain performance at 

optimum parameters, extending the operating time as much as possible, by 

assuming calculated risk forms. In this aim we proposed an antifragile mechanism 

that combine a predictive maintenance procedure with a procedure that combats 

the negative effects of the uncertainties. This implies a fundamental change in 

process planning policy. For example, if we consider as optimum policy a non-

delay schedule, which avoids idle time in the execution phase, the unexpected 

changes in the environment may cause partially or totally revision of the initial 

planning, depending on the robustness requirements proposed by the production 

control antifragile solution. Therefore, the goal is to design a joint model that 

integrates proactively the production scheduling and the preventive maintenance 

procedure that will allow the optimization with the double objective of 

improvement for both quality robustness and functional robustness. 

Adding to this bold proposal for dynamic optimization procedure with 

discrete and continuous variables the real-time simulation facilities in the Digital 

Twin framework, we consider that the proposed mechanism offers the chance to 

detect and eliminate hidden vulnerabilities and to facilitate learning and isolation 

of wrong behavior processes. 
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