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INFLUENCE OF THE DISCRETIZATION STEP ON THE POSITIVITY

OF CONFORMABLE FRACTIONAL LINEAR SYSTEMS

Kamel Benuettou1, Mohammed Amine Ghezzar2, Djillali Bougada3

The effectiveness of this work lies in the influence of the discretization
step on the positivity of the one-dimensional conformable fractional linear systems. A

piecewise constant approximation method which converts a continuous fractional order

derivative into a discrete time equation is presented as an alternative approach. It aims
at investigating whether, how and when this step affects the positive continuous times

models. To accomplish this research, a new test was developed and implemented in which

the positivity conditions of the considered system was examined both before and after
being exposed to the sampling step. i.e., under which conditions the one-dimensional

discrete-time linear system obtained by discretization from the one-dimensional contin-

uous time linear systems will be also positive if the one-dimensional continuous time
linear system is positive. The new method presented is suggested to test the influence

of the discretization step on the positivity of this class of systems. Finally, we discuss
some numerical examples to illustrate the validity of the provided results.
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1. Introduction

In recent years, there has been a growing interest in fractional systems that are
subjected to positivity constraints on their dynamical variables. Positive fractional systems
appear naturally in a variety of control theory applications, including for examples: cir-
cuits systems and signal processing, image analysis, heat transfer equation, digital filter,
automatic, Boolean networks, neural computing and applications and population dynamics
[5, 7, 10, 12, 14, 16]. The most known fractional derivatives do not satisfy the fundamental
properties of the classical derivative. To overcome certain of these problems, Khalil et al. in
[1, 11, 15, 17] have introduced the concept of a new class of fractional derivatives known as
conformable fractional derivatives which offers two improvements over the classical deriva-
tives in fractional calculus, such as Caputo or Riemann-Liouville. First, the new concept
of conformable fractional derivative serves the majority of the properties of the mathemat-
ical essential derivative, including Rolle’s theorem ,linearity , the fractional derivative of a
constant function, product rule, quotient rule, chain rule, and power rule [11, 15]. Addition-
ally, the conformable derivative is useful for modelling many physical problems. Note that
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the differential equations with conformable fractional derivatives are simpler to solve com-
putationally compared to those using Caputo or Riemann-Liouville fractional derivatives
[1, 3, 11, 17, 19]. Various applications of the conformable fractional derivative have been
investigated in many areas, such as: artificial neural networks, thermal and environmental
processes, Laplace’s Equation, diversity of wave structures, digital and image processing,
and chemical reaction problems [8, 9, 11, 18, 20, 21].

The positivity conditions in dynamical systems and control theory have been studied
and illustrated by several practical examples and some applications in [5, 10, 14]. Indeed,
positive systems have attracted several researchers, Kaczorek in [11] proposed an important
result concerning the positivity and stability conditions for the conformable fractional sys-
tems, Lam et al. in [16] have presented an innovative contributions on positive switched
systems and stochastic positive systems. Meanwhile, The influence of discretization steps
on positivity for a certain class of fractional continuous-discrete time systems has been pre-
sented in [4, 7, 11] using the finite difference method to discretize the Caputo fractional
derivative. Many of the fractional models having positive fractional linear systems be-
haviour can be found in control theory, engineering, mechanics, medicine, chemical reaction
problems, economics, management, and electrical circuits [11, 12, 13, 14].

The paper is organized as follows. In subsection 3.1 we studies the discretization
and the solution of the conformable systems using the piecewise constant approximation.
Then, the main purpose of this work is to propose the necessary and sufficient conditions
for preserving the positivity of the model obtained by the discretization. Eventually, some
numerical examples are provided to illustrate the effectiveness of our results.

2. Preliminaries

There are several types of fractional derivatives in mathematics, including Caputo,
Riemann-Liouville, and Hadamard, as well as others. Recently, a new definition of the
fractional derivative known as the conformable derivative has been presented by Khalil and
Kaczorek [11, 15]. In the following we recall some needed definitions and properties of the
considered fractional derivative based on [1, 11, 15].

Definition 2.1. [1] Let x be a function x : [0,+∞[ → R. The conformable derivative of the
function x of order α where 0 < α ≤ 1 is defined by the following relation

Tαx(t) = lim
ε→0

x(t+ εt1−α)− x(t)

ε
(1)

If (1) exists, then the function x is called α−differentiable.

Theorem 2.1. [15] Let x(t) and y(t) be defined on [0,+∞[ α−differentiable, where 0 < α ≤
1. Then for all a, b real numbers, we have the following relations

Tα[ax(t) + by(t)] = aTαx(t) + bTαy(t) ∀t ∈ [0,+∞[ (2)

Tα[x(t)y(t)] = x(t)Tαy(t) + y(t)Tαx(t) (3)

Tα
[
x(t)

y(t)

]
=
Tα[x(t)]y(t)− Tα[y(t)]x(t)

[y(t)]2
(4)

Tα[tq] = qtq−α (5)

Tα[eqt] = qt1−αeqt (6)

3. Discretization and positivity of the conformable fractional systems

In this section, the positivity problem for the discrete-time systems is developed.
Necessary and sufficient conditions are given which guarantee whether the discrete-time
system obtained by discretization retains positivity when the continuous system is assumed
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to be positive. New results on the influence of discretization step on the positivity of
conformable fractional linear systems are then established.

We consider in the following the conformable fractional continuous-time linear sys-
tems described by

Tαx(t) = Ax(t) +Bu(t) (7)

y(t) = Cx(t) +Du(t) (8)

where Tαx(t) stands for the conformable fractional derivative of the function x(t),
0 < α ≤ 1, t ∈ R+, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) the
vector of the output. A ∈ Rn×n, B ∈ Rn×m ,C ∈ Rq×n, D ∈ Rq×m, the boundary condition
x(0) is given.

3.1. Discretization and solution of conformable system

This section is designed to present some needed definitions and results that concern
the problem of discretization of the conformable fractional continuous time linear systems.
In this work, a piecewise constant approach is applied to discretize the considered model,
contrary to what is mentioned in other research, which uses the finite difference approach
to discretize the fractional derivative [7, 12].

Definition 3.1. [11] The systems (7) and (8) are said to be positive if and only if all the
states and all the outputs are positive: x(t) ∈ Rn+, y(t) ∈ Rn+ for all x0 ∈ Rn+ et u0 ∈ Rn+.

Definition 3.2. [11] A = [aij ] is a Metzler matrix if aij ≥ 0 for i 6= j and i, j = 1 · · ·n, the
set of Metzler matrices will be denoted by Mn.

Theorem 3.1. [11] The systems (7) and (8) are said to be positive if and only if:

A ∈Mn, B ∈ Rn×m+ , C ∈ Rq×n+ , D ∈ Rq×m+ (9)

Based on [19], the following discretization of the systems (7), (8) is given.

Theorem 3.2. [19] Consider the following conformable derivative system

Tαx(t) = f(x(t)), 0 < t ≤ T, x(0) = x0 (10)

using the conformable discretization by piecewise constant approximation, we obtain the
following discretization of (10)

xn+1 = xn +
hα

α
f(xn)

yn = Cxn +Dxn

(11)

where h is the steps of discretization and t = nh, with n ∈ N∗

By applying the theorem (3.2) to the systems (7) and (8) we deduce the next result.

Theorem 3.3. Let’s consider h > 0. The systems (7) and (8) are discretized to the corre-
sponding discrete-time systems defined by

xn+1 = Ãxn + B̃un (12)

yn = Cxn +Dun (13)

with

Ã =

[
hα

α
A+ I

]
and B̃ =

hα

α
B (14)
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Proof. We take f(x(t)) = Ax(t) + Bu(t) in the equation (10), and by the formula (11) we
deduce that

xn+1 =xn +
hα

α
[Axn +Bun]

xn+1 =

[
hα

α
A+ I

]
xn +

hα

α
Bun

(15)

If we put

Ã =

[
hα

α
A+ I

]
and B̃ =

hα

α
B (16)

Hence

xn+1 = Ãxn + B̃un (17)

yn = Cxn +Dun (18)

which completes the proof of the proposed theorem. �

Remark 3.1. We note that this discretization approach transforms a continuous fractional
order system to a classical discrete model.

The solution of the discrete system obtained by discretization is given by the following
theorem.

Theorem 3.4. [2] The solution of system (12) is given by

xn = Ã
n
x0 +

n−1∑
i=0

Ã
n−1−i

B̃ui (19)

and its output

yn = Cxn +Dun (20)

3.2. Influence of discretization step on the positivity

Our study is based on the following question: if the systems (7)-(8) are positive,
does that mean that the systems (12)-(13) remain positive? If so, what are the proposed
conditions? The following theorem is given to help us with the concerned condition.

Theorem 3.5. The systems described by the equations (12) and (13) are positive if and
only if

Ã ∈ Rn×n+ , B̃ ∈ Rn×m+ , C ∈ R+q×n , D ∈ Rq×m+ (21)

Proof. (1) Sufficient condition:

If A ∈ Rn×n+ , B ∈ Rn×m+ , C ∈ Rq×n+ , D ∈ Rq×m+ and ui ∈ Rm+ with all the ini-

tial conditions are positive, then Ã
n
x0 is positive. Similarly, for

∑n−1
i=0 Ã

n−1−i
B̃ui,

we deduce that xn is positive.
(2) Necessary condition:

We assume that x0 = ei (the ithcolumn of the matrix identity and un = 0 of the
equation (12) we find,

x1 = Ãx0 = Ãei = ãi (22)

Knowing that ãi is the ith column of the matrix Ã , so ãi = x1 ∈ Rn+. Continuing

our reasoning for the other columns, we deduce that Ã is positive.

In the same way, for x0 = 0 we find B̃u0 ∈ Rn+ which implies that B̃ ∈ Rn+ since
u0 ∈ Rn+ is arbitrary.
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For the output yn, if un = 0 then : y0 = CX0 ∈ Rq+ and C ∈ Rq×n+ since x0 is

arbitrary. and if x0 = 0 then : y0 = Du0 ∈ Rq+ and D ∈ Rq×m+ because u0 is arbitrary.
�

By the following theorem, we will show the conditions that guarantee the positivity
of the system (12) and (13).

Theorem 3.6. Let’s consider h > 0 be the discretization step. If the conditions of theorem
3.1 are satisfied, then one of the following two cases is satisfied

1): If A is a Metzler positive matrix, the systems described by the equations (12) and
(13) remains positive.

2): If A is Metzler non positive matrix the systems described by the equations (12) and
(13) remains positive if and only if

0 < h≤
(

α

max |aii|

) 1
α

(23)

where aii are the diagonal entries of the matrix A.

Proof. Let us consider h > 0 and suppose that the system described by the equations (7)
and (8) is positive, this if and only if,

A ∈ Rn×n+ , B ∈ Rn×m+ , C ∈ Rq×n+ , D ∈ Rq×m+

with A is a Metzler matrix. Since 0 < α ≤ 1 and h > 0 and using the discretization of
our systems, then using the theorem 3.5 the discrete-time systems (12) and (13) remains

positive if and only if the matrix Ã ∈ Rn×n+ .

We have Ã = hα

α A + I with A is a Metzler matrix. Then two cases need to be
considered,

(1) If A is Metzler positive, Ã = hα

α A+I is positive, then the first relation of the theorem
is deduced.

(2) If A is Metzler non-positive, there is at least one diagonal entry of the matrix A which
is strictly negative, hence the matrix A is not necessarily positive.

(a) Necessary condition: Since all the non diagonal entries of the matrix A are posi-
tive and those of the matrix −αhα I are all equal zero. So we need to compare the

diagonal elements of A and the value −αhα . They are two cases,

* For a first case: aii ≥ 0 ⇒ aii ≥ 0 ≥ −αhα .

** For the second case: 0 ≥ aii ≥ −α
hα the diagonal elements of Ã are positive

thus

hα

α
aii + 1≥0 (24)

hα

α
aii≥− 1 (25)

hα

α
(−aii)≤1 (26)

hα

α
| − aii|≤1 (27)

this inequality holds true for any value of i, it also holds true for max|aii|.
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hα

α
max|aii|≤1 (28)

hα ≤ α

max|aii|
(29)

h ≤
(

α

max|aii|

) 1
α

(30)

(b) Sufficient condition: Suppose thatA is a Metzler matrix with at least one diagonal

strictly negative coefficient and prove that Ã is positive. As a result, the diagonal
coefficients of the matrix A are positive if aii ≥ 0. For the strictly negative
diagonal coefficients of the matrix A verifying

h ≤
(

α

max|aii|

) 1
α

(31)

in this case we have

hα ≤ α

max|aii|
(32)

therefore

max|aii|
hα

α
≤ 1 (33)

which gives us,

|aii|
hα

α
≤ max|aii|

hα

α
≤ 1 (34)

Hence
hα

α
|aii| ≤ 1 (35)

and since aii < 0

− hα

α
aii ≤ 1 (36)

We get
hα

α
aii ≥ −1 (37)

thus
hα

α
aii + 1 ≥ 0 (38)

We deduce that all the diagonal coefficients of the matrix Ã is positive.

�

Example 3.1. Consider the systems (7) and (8) for α = 0.5 and system matrices

A =

[
−8 2
1 −7

]
, B =

[
1
1

]
, u(t) = 1

Using a positivity theorem from [11], we find that our system is positive, and since A is a
non-positive Metzler matrix, we must ensure that the value step verifies the positivity of the
system obtained by discretization

h ≤
(

0.5

max|aii|

) 1
0.5

(39)

then

0 < h ≤ 0.0039 (40)
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(1) Let ε1 = 0.03, h1 = 0.0039 + ε1 = 0.0339. The systems obtained by discretization with
this value step h1 is not positive because

Ã =

[
−1.9462 0.7365
0.3683 −1.5779

]
is not positive. Hence, the following figure shows us that the solution is not positive.
(see Figure 1)

(2) Let ε2 = 0.001, h2 = 0.0039− ε2 = 0.0029. the system obtained by discretization with
this value step h2 is positive because

Ã =

[
0.1374 0.2156
0.1078 0.2453

]
is positive. The figure below illustrates that the solution is positive. (see Figure 2)
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Figure 1. State vector of the system from Example 3.1 with h = 0.0339.
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Figure 2. State vector of the system from Example 3.1 with h = 0.0029.
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Example 3.2. Consider the systems (7) and (8) for α = 0.5 and system matrices

A =

 −10 0 0
1 −13 0
2 0 −12

 , B =

 1
1
1

 , u(t) = 1

Applying a positivity theorem in [11], we conclude that our systems are positive and
since A is non-positive Metzler matrix , we must take the step h that verifies the positivity
of the system obtained by discretization

h ≤
(

0.5

max|aii|

) 1
0.5

(41)

then

0 < h ≤ 0.0015 (42)

(1) Let ε1 = 0.01, h1 = 0.0015 + ε1 = 0.0115. the system obtained by discretization with
this value step h1 is not positive because

Ã =

 −1.1428 0 0
0.2143 −1.7857 0
0.4286 0 −1.5714


is not positive. The figure below proves that the solution is not positive (see Figure 3).

(2) Let ε2 = 0.001, h2 = 0.0015− ε2 = 0.0005. the system obtained by discretization with
this value step is positive because

Ã =

 0.5621 0 0
0.0438 0.4308 0
0.0876 0 0.4746


is positive. The figure below confirms that the solution is not positive (see Figure 4).
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Figure 3. State vector of the system from Example 3.2 with h = 0.0115.
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Figure 4. State vector of the system from Example 3.2 with h = 0.0005.

4. Concluding remarks

In this paper, the influence of discretization step on positivity of conformable frac-
tional linear systems have been investigated. The novelty of our contributions is to use
the new approach of discretization by piecewise constants to discretize the one-dimensional
conformable fractional continuous systems. Then we use the obtained models to study the
influence of the sampling step of discretization on the positivity of the discrete time models.
Necessary and sufficient positivity conditions are developed, and two numerical examples
that illustrate the applicability and effectiveness of our results are provided.
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