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GNU COMPILER COLLECTION BACKEND PORT FOR THE 
INTEGRAL PARALLEL ARCHITECTURE 

Radu HOBINCU1, Valeriu CODREANU2, Lucian PETRICĂ3 

Lucrarea de față prezintă procesul de portare a compilatorului GCC oferit 
de către Free Software Foundation pentru arhitectura hibridă Integral Parallel 
Architecture, constituită dintr-un controller multithreading și o mașina vectorială 
SIMD. Este bine cunoscut faptul că motivul principal pentru care mașinile hibride 
ca și cele vectoriale sunt dificil de utilizat eficient, este programabilitatea. În 
această lucrare vom demonstra că folosind un compilator open-source și facilitățile 
de care acesta dispune, putem ușura procesul de dezvoltare software pentru 
aplicații complexe. 

This paper presents the process of porting the GCC compiler offered by the 
Free Software Foundation, for the hybrid Integral Parallel Architecture composed 
of an interleaved multithreading controller and a vectorial SIMD machine. It is well 
known that the main reason for which hybrid and vectorial machines are difficult to 
use efficiently, is programmability. In this paper we well show that by using an 
open-source compiler and the features it provides, we can ease the software 
developing process for complex applications. 

Keywords: integral parallel architecture, multithreading, interleaved 
multithreading, bubble-free embedded architecture for multithreading, 
compiler, GCC, backend port 

 
1. Introduction 
 
The development of hardware technology in the last decades has required 

the programmers to offer support for the new features and performances of the last 
generation processors. This support comes as more complex compilers that have 
to use the machines' capabilities at their best, and more complex operating 
systems that need to meet the users' demand for speed, flexibility and 
accessibility. 
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The problem, as always, is that the more the software grows, the more 
complex it becomes, and harder to control. One of the ways to fight the growing 
complexity is the use of abstract high level languages with which you can 
describe complex behavior by using simple syntax. Compilers for these languages 
however, are inherently complex and you cannot always use a compiler to 
compile a compiler. As a programmer for such software, you need intimate 
knowledge of the architecture of the machine you are working with and 
experience with low level programming. This is the reason why compilers are the 
most difficult software systems to implement, and the most difficult to optimize. 

The aim of this paper is to detail the porting process of the retargetable 
GCC compiler suite for a heterogeneous system composed of an interleaved 
multithreading controller and a SIMD (Single Instruction Multiple Data) engine. 
The ported compiler can and has been used for writing various kernels in the C 
high level language. 

 
2. Compilers and GCC 
 
The role of a compiler is to translate the high level syntax of the language 

it has been designed for into assembler code for a specific target machine. Good 
compilers also analyze the input code and try to optimize certain constructs and 
map them as best as possible to the machine’s capabilities. This is usually done in 
three steps: 

• Translation of the High Level Language in an internal tree representation; 
• Optimization of the tree structure; 
• Translation of the tree in assembly language 
 

 
 

 
Fig. 1. Compilation flow example 
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After the assembly code is generated, an assembler is used to translate it 
into machine code and save it in an object file (.o in Linux or .dll in Windows). 
Several object files can be merged together by a linker in order to generate a 
statically linked executable [1]. 

Compilers, like all other software nowadays come in two flavors: 
proprietary and open-source. Each major processor manufacturer has developed a 
set of tools for its own architecture. These mainly consist of an assembler, a 
compiler and a simulator. Clients are often charged for these tools, as the producer 
offers support and consultants to help integrate the client’s application with the 
developing environment. Open-source software on the other hand, comes with no 
support other than public forums and mailing lists, which is the reason why 
companies prefer the much more costly proprietary version. 

The performance of a compiler is given by the level of optimization it is 
able to make on the code and the capacity to use all the available machine 
instructions in order to translate the HLL code in the most optimal way.  

The GNU Compiler Collection (usually shortened to GCC) is a compiler 
system produced by the GNU Project supporting various programming languages. 
GCC is a key component of the GNU toolchain. As well as being the official 
compiler of the unfinished GNU operating system, GCC has been adopted as the 
standard compiler by most other modern Unix-like computer operating systems, 
including GNU/Linux, the BSD family and Mac OS X. GCC has been ported to a 
wide variety of processor architectures, and is widely deployed as a tool in 
commercial, proprietary and closed source software development environments. 
GCC is also available for most embedded platforms, for example Symbian, 
AMCC and Freescale Power Architecture-based chips. The compiler can target a 
wide variety of platforms, including videogame consoles such as the PlayStation 2 
and Dreamcast. Several companies make a business out of supplying and 
supporting GCC ports to various platforms, and chip manufacturers today 
consider a GCC port almost essential to the success of any architecture [2]. 

In order to port GCC to a different architecture, this architecture needs to 
be defined. The definition is made up of a header file and a machine description 
(.md) file. The header file contains macro definitions of the machine’s properties 
like endianess, supported data types, size of the register file and register width, 
addressing modes, etc. The .md file contains the description of the instruction set 
in a syntax called RTL. 

GCC is open-source. It is provided by the Free Software Foundation under 
the GNU General Public License (GNU GPL). 

So, in theory, GCC is a retargetable compiler which can be ported to new 
architectures with relatively little effort. However, the original project was not 
intended for vectorial machines and although the developing community is 
working continuously to add new features to the suite, it is still difficult to 
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describe architectures that do not meet certain constrains. This will be developed 
more in the following sections. 

3. Integral Parallel Architecture 
 
The architecture used in this paper is being developed both as a 

commercial product as well as a PhD project in the University “Politehnica” of 
Bucharest. It has been described in detail in [3] and it can be seen in Fig. 2. 

 

 
The system is composed of a BEAM multithreading processor [4] and a 

vectorial SIMD machine [5]. In order to make the software development easier, 
the instruction set has been unified for both processors so they can execute largely 
the same instructions. In order to differentiate between the two execution units, 
we have created a virtual register files in which the first 16 registers belong to the 
sequential controller, and the last 16 are vectorial registers. 

The first step in starting the actual porting of the compiler backend is to 
make a list of the machine architecture attributes. These include data types, 
endianess, register count and size, addressing modes, instruction size, number of 
pipeline levels, etc. The BEAM controller has the following attributes: 

• 16 registers, 32 bits wide, numbered from R0 to R15 (per thread); 
• 1 32-bit extension register for mul/div operations (per thread); 
• 1 32-bit read-only program counter (per thread); 

 
 

Fig. 2.  Integral Parallel Architecture [3] 
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• Integer only ALU (no floating point operations currently 
supported); 

• Dedicated load/store instructions with 32-bit, 16-bit and 8-bit data 
access and little endian convention (register indirect); 

• Dedicated indexed load/store 32-bit word instructions for stack 
manipulation; 

• 32-bit fixed size RISC type instruction set; 
• 2 levels of pipeline (fetch-decode and read-execute-writeback). 
• 512MB of byte-access addressable RAM memory space mapped 

from 0x00000000 to 0x1FFFFFFF (29 effective bits); 
• 192MB of byte-access addressable peripheral space mapped from 

0x20000000 to 0x2BFFFFFF. 
The ConnexArray SIMD engine has the following attributes: 

• 128 processing elements (also called cells in this paper), highly 
scalable; 

• 16 vectorial registers, 16-bit wide, numbered from R16 to R32 (per 
cell); 

• 1 16-bit extension register for mul/div operations (per cell); 
• 1 16-bit shift register with left-right connections in order to transfer 

data between cells (per cell). 
• Integer only ALU (no floating point operations supported) (per 

cell); 
• Dedicated load/store instructions for accessing the local vectorial 

memory; 
• 32-bit fixed size RISC type instruction set; 
• 1024 of 16-bit access addressable local RAM memory space 

mapped from 0x00000000 to 0x00000C00 (11 effective bits, last 2 
bits discarded); 

• Distribution network for loading scalar values into vectors; 
• Reduction network (log2128 latency) for computing scalar results 

from vectors (possible operations are SUM, MAX, and Boolean 
OR); 

• Boolean engine for selecting/ masking cells for conditional 
operations. 

The instructions formats for the BEAM controller and ConnexArray are 
presented in Fig. 3.1 and the formats for the Boolean section in the SIMD engine 
are presented in Fig. 3.2. 
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4. GCC Backend Development 
 
We will call the new architecture for GCC “connex”. In order to be able to 

build a C compiler for a specific architecture, entries for that architecture need to 
be added in the config.sub and gcc/config.gcc files as follows: 

• In connex.sub, under “$basic_machine” at line 143, “connex” 
architecture name must be added, and also “connex*‐*” in order 
to also match the architecture with company name; 

• In gcc/config.gcc, at line 265, under “case ${target} in”, the 
following entry must be added: 

Connex*‐*‐*) 
    cpu_type=connex 
    ;; 

• In gcc/config.gcc, around line 600, under “case  ${target} 
in”, the following entry must be added: 

connex*‐*‐*) 
      gas=no 
  gnu_ld=no 
  tm_file=connex/${target_noncanonical}.h 
  md_file=connex/${target_noncanonical}.md 
  out_file=connex/${target_noncanonical}.c 
  tm_p_file=connex/${target_noncanonical}‐
protos.h 
        ;; 

Each port for the GCC suite has a series of description files found in the 
<root>/gcc/config directory where <root> is the root folder of the GCC 

Value 0 opCode boolInsn right left dest 
Bit Size 1 8 8 5 5 5 

 
Value 1 opCode immediate left dest 

Bit Size 1 5 16 5 5 
 

Fig. 3.1 – BEAM Controller Instruction Formats 
 

Value 0000 boolOpCode 
Bit Size 4 4 

 
Value boolOpCode flagIndex 

Bit Size 4 4 
 

Fig. 3.2. Boolean Instruction Formats 
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distribution package. The entry above tells the compiler that the definition files 
for the “connex” target are in <root>/gcc/config/connex directory as follows: 

• connex.h – the header file in which all macros and architecture 
properties are defined; 

• connex.md – the machine description file which contains RTL 
code for instruction pattern matching and generation; 

• connex.c – implementations of any functions needed in the header 
file; 

• connex-protos.h – prototypes for public functions in the connex.c 
file. 

In the connex.h file, there are many macros that need to be defined in 
order for the compiler to work properly. However, we will only describe here the 
ones that are architecture dependent and have a meaning for our implementation. 

 
Table 1 

Macro List Description for Architecture Properties 
#define BYTES_BIG_ENDIAN 0  This macro tell the compiler that the system 

memory access is in little endian mode 
#define STACK_BOUNDARY 32  This is the minimum alignment enforced by 

hardware for the stack pointer on this machine. 
Since the 32bits access is just as fast as the byte 
access, we prefer to keep the stack aligned to 32bits 
as well. 

#define SLOW_BYTE_ACCESS 1  The byte and word accesses are just as fast for this 
machine, so we define this in order to tell the 
compiler that the byte access is slow and he should 
use word access when possible. 

#define  FIRST_PSEUDO_REGISTER 
35 

The first pseudo register is the first index after all 
the hardware registers. So we have 16 scalar 
registers, 16 vectorial registers, 1 scalar extension 
register, 1 vectorial extension register and 1 shift 
register that make out 35 total registers (from 0 to 
34). 

#define  FIXED_REGISTERS  \ 
{0,0,0,0,  \ 
 0,0,0,0,  \ 
 1,1,1,0,  \ 
 0,1,1,1,  \ 
 0,0,0,0,  \ 
 0,0,0,0,  \ 
 0,0,0,0,  \ 
 0,0,0,0,  \ 
 1,1,1} 

The fixed registers are the ones with special 
functions during the program execution and are not 
allocated for general computation. In our case, 
register R8 is dedicated for protected mode return 
address from a software interrupt function, R9 is 
dedicated for protected mode return address from a 
hardware interrupt function, register R10 is the 
stack pointer during protected mode kernel 
execution. R13 and R14 are the frame, and 
respectively the stack pointer in user mode and the 
register R15 is the link register in user mode. 
Registers R32, R33 and R34 are the scalar 
extension register, vectorial extension register and 
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shift register. 
#define  STACK_POINTER_REGNUM 
14 
#define 
HARD_FRAME_POINTER_REGNUM 13 

Definition for the stack and frame pointer. 

#define 
FUNCTION_VALUE_REGNO_P(REGN) 
((REGN) == 12 || (REGN) == 31) 

Definition for the return value registers (returns 1 if 
the REGN argument is valid for returning a value. 

 
The contents of the connex.c file are too large to go into but we need to 

point out that this C source code contains functions needed for prologue and 
epilogue operations during calls and returns, maps data types to registers by 
telling the compiler how many registers are needed to hold a particular data type, 
which data types can a particular register hold, how many registers must be saved 
for a certain call instruction, which address constructs are valid and can be used as 
addresses and just as important, how to output the assembly code. 

The machine description file contains RTL code for pattern matching and 
generation. Relevant examples from several instruction types can be found in 
table 2. 

 
Table 2 

Machine Description Pattern Examples 
(define_insn "jnz" 
  [(set (pc) 
  (if_then_else   (ne 
(match_operand:SI 0 "register_operand" 
"r") (const_int 0))   (label_ref 
(match_operand 1 "" "")) 
(pc)) 
)] 
"" 
"jnz %0,%l1") 

This control instruction defines a 
pattern for a jump-if-not-zero. It is 
used for matching the specified 
pattern and generates the “jnz” 
assembly instruction. 

(define_expand "call" 
  [(call (match_operand:SI 0 "" "") 
    (match_operand:SI 1 "" "")) 
  (clobber (reg:SI 15))] 
"" 
" 
  operands[0] = force_reg(SImode, 
XEXP(operands[0], 0)); 
") 

This is an interesting example of an 
expanded pattern. The call 
instruction takes the argument out 
of a register and not as an 
immediate value as most processors 
do. So this define_expand forces the 
address argument into a SImode 
register (Standard Integer). 

(define_insn "" 
  [(set  (match_operand:QI 0 
"register_operand" "=r,r")  
  (match_operand:QI 1 
"nonmemory_operand" "r,I") 

This is an example of a pattern used 
for byte constant loading and 
register moving. Letter “r” stands 
for general purpose register and “I” 
is a 16 bits signed integer. This is a 
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  )] 
  "" 
  "@ 
  move %0,%1 
  vload %0,%c1" 
) 

meta-pattern specifying transfers 
from “r” to “r” (move) and from “I” 
to “r” (vload). 

(define_insn "" 
  [(set  (mem:SI (plus:SI 
(match_operand:SI 0 "register_operand" 
"r") (match_operand:SI 1 
"const_short_operand" "I"))) 
  (match_operand:SI 2 
"register_operand" "r") 
  )] 
  "" 
    "iwr %0,%2,%c1" 
) 

Pattern for indexed memory writes. 
It specifies a base register and 16 
bits signed constant that is added to 
the base to form the final address. 
Also specifies the register for the 
value to be written. 

(define_expand "divmodsi4" 
  [(parallel [(set (match_operand:SI 0 
"register_operand" "") 
   (div:SI (match_operand:SI 1 
"register_operand" "") 
   (match_operand:SI 2 register_operand" 
""))) 
  (set (reg:SI EXT) (mod:SI 
(match_dup 1) (match_dup 2)))]) 
  (set (match_operand:SI 3 
"register_operand" "") (reg:SI EXT)) 
  (use (match_dup 0)) 
  (clobber (reg:SI EXT))] 
  "" 
  "" 
) 

This is the expansion for the 
division and remainder operation. 
Since the “div” instruction also 
places the remainder of the 
operation in the extension register, 
this pattern tells the compiler that he 
should then move the result of the 
modulo operation into its final 
destination, and that in this process, 
the extension register is clobbered 
(overwritten). 

(define_insn "subv128hi3" 
  [(set (match_operand:V128HI 0 
"register_operand" "=v") 
  (minus:V128HI 
(match_operand:V128HI 1 
"register_operand" "v") 
(match_operand:V128HI 2 
"nonmemory_operand" "v")) 
  )] 
  "" 
  "add %0,%1,%2") 

This is an example for a vectorial 
addition pattern. Notice the V128HI 
mode which translates as a vector of 
128 elements of half-integer values. 

 
The most difficult problem while trying to describe a heterogeneous 

system for the GCC, is its lack of flexible stack support. This is mostly due to the 
fact that GCC was originally designed for old fashioned serial architectures like 
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the x86 and all future development has been done as demanded by the evolution 
of the modern machines which currently only support SIMD operations for 
narrow data types. 

That means that GCC can only be aware of one stack pointer so any 
argument passing on the stack and any spill/ fill operations needed for any data 
types are done on that one stack. Unfortunately our system contains two different 
RAM memories: the general 512MB DDR system memory, and the 1024 vector 
local memory inside the Connex Array. We were hoping to adapt the stack 
mechanism in GCC to support two stack pointers, one for scalar variables, and 
one for vectors, each pointing to addresses in these two different memories. 
However, since that proved to be difficult, the solution was to define a global 
variable in one of our library files which maps the entire Array local memory. 
This allows the programmer full access to that resource but limits the compiler 
flexibility since stack operations for vectors are not supported. 

 
5. Assembler Inline 
 
Several of the features of the Connex System cannot be defined in the 

compiler backend. This means that the compiler itself is not aware of all the 
things the processors can do. In order to give the programmer access to these 
features, we created macros and functions which manually insert the required 
instructions in the assembly file. Some examples are shown in table 3. 

Table 3 
Inline Assembly Examples 

#define  compareAndSwap(address, 
valueToCompare,  valueToWrite)    \
  __asm__ __volatile__(  \
    "cas %0,%1,%2"  \
    :  "=r"  (valueToWrite)\
    :  "r"  (address),  "r" 
(valueToCompare)       \ 
) 

This is a description of a compare-and-
swap type operation required for mutex 
implementation. It tells the compiler that it 
should emit a “cas” assembler instruction 
in which the first operand is a destination 
and it corresponds to the “valueToWrite” 
variable and the last two operands 
correspond to the variables “address” and 
“valueToCompare”, all stored in general 
purpose registres. 

#define INDEX       \
  ({register vector i;  \
  __asm__  __volatile__("ldix 
\t%0"          \
    :"=v" (i)    \
    );i;})      

This macro is used for loading an index 
vector in a vectorial register. The index 
vector is a vector in which all cells contain 
the index of their position (0 in the first 
cell, 1 in the seconds, 2 in the third, etc.). 
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6. Compilation Results 
 
After the successful porting of the compiler, we have written several 

applications for testing purposes with results published in [6]. Even though the 
generated code is not as efficient as assembly programming, it shows a high level 
of optimization, especially for the controller instructions. Some examples of 
compiled code are shown in table 4. 

 
Table 4 

Compiled Code Examples 
int mutex_lock(struct mutex * mtx) { 
  int _originalPid = 
getSWThreadId(); 
  int _pid = _originalPid; 
  do{ 
    compareAndSwap(&mtx‐
>threadId, 0, _pid);   
    //if mtx‐>threadId == 0, 
it means the mutex is free, so lock it 
    _pid = _originalPid;
     
  compareAndSwap(&mtx‐>threadId, 
_originalPid, _pid);    //if 
mtx‐>threadId == _originalPid means 
the lock is ours 
  }while(_pid != _originalPid); 
  mtx‐>lockCount++; 
  return 0; 
} 

  .align 1024 
  .globl mutex_lock 
mutex_lock: 
  write R14,R15 
  iwr R14,R14,‐4 
  iwr R14,R13,‐8 
  move R13,R14 
  iwr R13,R0,‐12 
  iwr R13,R1,‐16 
  iwr R13,R2,‐20 
  iwr R13,R3,‐24 
  iadd R14,R13,‐28 
  ird R3,R13,4 
  vload 
R0,HIGH(getSWThreadId) 
  vlload 
R0,R0,LOW(getSWThreadId) 
  call R0 
  iadd R0,R3,4 
  vload  R2,0 
L8: 
;# 14 "mutex.c" 1 
  cas R1,R0,R2 
;# 16 "mutex.c" 1 
  cas R1,R0,R12 
  eq R1,R12,R1 
  jz R1,L8 
  read R3,R0 
  iadd R0,R0,1 
  write R3,R0 
  vload  R12,0 
  ird R0,R13,‐12 
  ird R1,R13,‐16 
  ird R2,R13,‐20 
  ird R3,R13,‐24 
  move R14,R13 
  ird R13,R14,‐8 
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  read R14,R15 
  ajmp R15 

  vector *outputFrame = 
&localMemory[_offset]; 
  vector *inputFrame = 
&localMemory[FRAME_HEIGHT + _offset]; 
  int i; 
  register vector _tmp1; 
  register vector _tmp2; 
  lock(index); 
  read(inputFrame, 
FRAME_HEIGHT/THREADS, inBuffer + 
_offset * 2 * FRAME_WIDTH); 
  unlock(index); 
  for (i = _offset == 0; i < 
FRAME_HEIGHT/THREADS ‐ (_offset == 
(FRAME_HEIGHT ‐ FRAME_HEIGHT / 
THREADS)); i++){ 
    /* apply filter vertically */ 
    outputFrame[i] = 
bitRightShift(inputFrame[i‐1] + 
bitLeftShift(inputFrame[i],1) + 
inputFrame[i+1], 2); 
  } 

 
  ird R1,R13,4 
  vload 
R2,HIGH(localMemory) 
  vlload 
R2,R2,LOW(localMemory) 
  read R2,R2 
  ishl R3,R1,2 
  add R0,R2,R3 
  iwr R13,R0,‐48 
  iadd R0,R1,120 
  ishl R0,R0,2 
  add R0,R2,R0 
  vload  R12,0 
  jnz R1,L7 
  vload  R12,1 
  add R3,R0,R3 
  iadd R1,R0,4 
  iwr R13,R1,‐52 
  move R2,R1 
  iadd R1,R0,8 
  ird R4,R13,‐48 
  iadd R6,R4,4 
  move R5,R12 
  vload  R7,2 
L8: 
  read R2,R31 
;# 38 "image_filter_mth.c" 1 
  shl   R31,R31,R5 
  read R3,R16 
  add R31,R31,R16 
  read R1,R16 
  add R31,R31,R16 
;# 38 "image_filter_mth.c" 1 
  shr   R31,R31,R7 
;# 42 "image_filter_mth.c" 1 
  lshr R31,R5 
;# 42 "image_filter_mth.c" 1 
  shwait 
;# 42 "image_filter_mth.c" 1 
  shget R17 
;# 43 "image_filter_mth.c" 1 
  rshr R31,R5 
;# 43 "image_filter_mth.c" 1 
  shwait 
;# 43 "image_filter_mth.c" 1 
  shget R16 
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  add R31,R31,R31 
  add R31,R17,R31 
  add R31,R16,R31 
;# 44 "image_filter_mth.c" 1 
  shr   R31,R31,R7 
  write R6,R31 
  iadd R12,R12,1 
  iadd R3,R3,4 
  iadd R2,R2,4 
  iadd R1,R1,4 
  iadd R6,R6,4 
  vload  R11,118 
  gt R4,R12,R11 
  jz R4,L8 

 
The results show that for scalar operands, the compiler generates 

optimized code. However, due to its inability to handle multiple stacks, the use of 
inlined assembly instructions results in suboptimal constructs for parallel 
operands.   

 
7. Conclusions  
 
Although new architectures definitions (back-ends) can be added to the 

GCC, this is not a straightforward operation. These definitions are done in a non-
standard format (the RTL syntax) which needs to be understood before the actual 
porting takes place. Also, several components of the compiler middle-end (tree 
parser, optimizer, etc.) make assumptions about the machine which are not always 
correct (like the maximum width of a SIMD operand). Moreover, the middle and 
back-end sometimes cooperate in ways that are not described in the 
documentation and can confuse a person that is not familiar with the actual 
implementation of the compiler. That means that there are cases in which, for 
non-standard machine architectures, the porting of the compiler is not limited to 
the description of the back-end, but also requires the adaptation of the middle-end 
and perhaps even the adding of additional passes or RTL constructs. 

In this current case, the lack of support for wide vectorial and multi-
memory machines is the greatest drawback of the GNU Compiler which has been 
bypassed by using suboptimal inline assembly constructs. Adding said support 
would require extensive modification of the middle-end and intimate knowledge 
of the compiler implementation. 

In the end, we can conclude that the porting effort of the GCC was 
required to further develop complex applications for the Connex System in order 
to prove its superiority in both performance and power consumption over 
traditional machines. This paper can also be used as a starting point for similar 
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projects, especially considering the low amount of documentation available for 
the GCC suite. 
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