
U.P.B. Sci. Bull., Series D, Vol. 87, Iss. 2, 2025                                                     ISSN 1454-2358 

NOTE ON THE SPHERE MOTION IN CONFINED GEOMETRY 

István MAGOS1, Corneliu BALAN2 

  The paper communicates an experimental study of sphere motion in 
confined domains. The sphere is falling free under gravity in square-cross glass 
vessels  filled with a viscous Newtonian liquid. The dynamics are analyzed using the 
image processing of direct visualizations of the sphere’s displacement recorded with 
a high-speed camera. The corresponding velocity of the sphere and the drag 
coefficient 𝐶𝐶𝑥𝑥  are calculated for the experiments performed. The following 
perturbations on the sphere motion are investigated: (i) the wall influence, (ii) the 
end-effect induced by the bottom wall of the domain, (iii) the presence of free 
surface/air cavities, and (iv) the sphere’s acceleration. The results are original since 
these phenomena are scarcely analyzed in literature, even though the sphere motion 
is a classical topic in fluid mechanics.  
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1. Introduction 
The sphere motion in viscous fluids is the most studied and investigated 

subject in fluid mechanics and rheometry. It is probably the main benchmark 
problem for any scientist working in the fundamental or applied domains where the 
interaction between a body and a fluid is important. The flow of the viscous fluid 
generated by the motion of a sphere was first modeled by Stokes at the middle of 
the XIX century, [1]. Remarkable contributions on the subject were made by 
Boussinesq [2],  and at the beginning of the last century by Allen [3], Einstein in 
his PhD thesis [4], Oseen (1910) and Goldstein (1929), [5].  The analytical solution 
of Stokes at low Reynolds number (Re << 1), and its extension by Oseen and 
Goldstein (Re < 2), are present in almost all advanced fluid mechanics lecture notes, 
started with Lamb’s book [6] (1st edition published in 1916), see also [7] for a 
reference in Romanian.  

The experimental data related to flows around spheres were obtained by 
numerous scientists, we mention here the Prandtl’s group from Göttingen [8] and 
the references from  
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Churchill [9]. The forces acting of rigid spheres falling in viscous liquids at low 
Reynolds numbers, especially the drag in relation to settling velocity, were 
intensively investigated in the last decades of the XX century, e.g. [10], [11], [12], 
the topic being recently reviewed, [13], [14]. Numerous numerical solutions of 
flows around spheres have been published in relation to vary applications: testing 
novel numerical techniques [15], heat transfer [16], [17], turbulence [18].  

It is important to mention that investigations and solutions of the flows 
around sphere consider often the fluid domain infinite, the influence of walls on the 
sphere motion and drag being scarce under investigations. The corrections 
introduced to the drag Stokes formula by the confined geometry are presented by 
Happel & Brenner [19], one on the most cited classical book dedicated to 
hydrodynamics at low Reynolds numbers.  

The communication is focused on the visualizations, measurements and 
computation of  the sphere’s velocity, falling free in a confined geometry filled with  
a viscous Newtonian liquid. The main aim of the work is to establish an 
experimental procedure to determine the influences of the walls and free surface on 
the drag coefficient of spheres.   

2. Experimental 
 
In a quasi-stationary isothermal flow, the one-directional equilibrium of 

forces acts on a falling sphere under gravity in a Newtonian fluid (viscosity 𝜂𝜂0 =
constant) is given by the relation: 

𝐹𝐹𝑥𝑥 =  𝐹𝐹𝐺𝐺 − 𝐹𝐹𝐴𝐴,        (1) 
where the drag force has the expression, 

𝐹𝐹𝑥𝑥 =  𝐶𝐶𝑥𝑥
2
𝜌𝜌0𝜋𝜋𝑅𝑅2𝑣𝑣02.       (2) 

Here 𝐹𝐹𝐺𝐺 =  𝜌𝜌𝑠𝑠𝑔𝑔𝑔𝑔 is the weight of the sphere,  𝐹𝐹𝐴𝐴 =  𝜌𝜌0𝑔𝑔𝑔𝑔 is the bouyancy force, 𝜌𝜌0 
is the fluid density,  𝜌𝜌𝑠𝑠 is the sphere density, V is the sphere volume and 𝑑𝑑 = 2𝑅𝑅 is 
its diameter, Fig. 1.a. In (2) 𝑣𝑣0 is the constant velocity of the sphere and 𝐶𝐶𝑥𝑥 is the 
drag coefficient. 

It is important to remark that relation (1) becomes more complicated in the 
case of non-stationary sphere motion (i.e. the sphere’s velocity is not constant – 𝒗̇𝒗 ≠
0),  

𝜌𝜌𝑠𝑠𝑉𝑉 𝒗̇𝒗  =  𝑭𝑭G −  𝑭𝑭A −  𝑭𝑭𝑥𝑥 −  𝑭𝑭𝑚𝑚𝑚𝑚 −  𝑭𝑭𝐵𝐵,          (3) 

where three supplementary forces are present, [10-13] : (i) sphere inertia (left term), 

(ii) 𝑭𝑭𝑚𝑚𝑚𝑚 = (𝜌𝜌0 2⁄ )𝑉𝑉 𝒗̇𝒗,  added mass force (generated by unsteady pressure 

distribution around sphere), (iii) 𝑭𝑭𝐵𝐵 = (3 2⁄ )𝑑𝑑2�𝜋𝜋𝜌𝜌0𝜂𝜂0 ∫
𝒗̇𝒗(𝜉𝜉)
�𝑡𝑡−𝜉𝜉

𝑑𝑑𝑑𝑑𝑡𝑡
0  the Basset force 
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induced by the transitory friction in boundary layer (generated by unsteady shear 

stress over sphere), [14, 20, 21]. 

 
 

Fig. 1. a) Forces acting on a sphere in motion with constant velocity 𝑣𝑣0 in a vertical tube with 
diameter 𝑑𝑑𝑐𝑐; b) laboratory test configuration; the sphere is located on one axis of symmetry of the  

square cross-section vessel (the sphere is falling free along the vertical coordinate z = -x3). 
 

The measure of the drag force is the drag coefficient 𝐶𝐶𝑥𝑥.  In a steady motion, 
𝐶𝐶𝑥𝑥 depends on the Reynolds number 𝑅𝑅𝑅𝑅 = 𝜌𝜌0𝑑𝑑𝑣𝑣0 𝜂𝜂0⁄  and on the configuration of 
the flow domain [19],   

𝐶𝐶𝑥𝑥(𝑅𝑅𝑅𝑅,𝑑𝑑 𝑑𝑑𝑐𝑐 , 𝛿𝛿 𝑑𝑑𝑐𝑐, 𝜀𝜀/𝑑𝑑⁄⁄  ),      (4) 
Fig. 1, respectively. In (4) 𝜀𝜀 is the distance of the sphere from the bottom-wall of 
the domain. 

In the case of an infinite domain, 𝑑𝑑𝑐𝑐 → ∞, far away for any walls, 𝜀𝜀 → ∞, 
the drag coefficient for steady motion depends exclusively on the Reynolds number. 
The solution was obtained by Stokes   [1, 6, 7] at 𝑅𝑅𝑅𝑅 ≪ 1, 𝐶𝐶𝑥𝑥0 = 24 𝑅𝑅𝑅𝑅⁄ , 
respectively; only in this hypothesis  the drag force has an exact analytical solution, 
𝐹𝐹𝑥𝑥 = 3𝜋𝜋𝜂𝜂0𝑑𝑑𝑣𝑣0, which was used also by Eistein to calculate the diffusion coefficient 
of the solute in a solvent, [4]. We mention that Stokes solution was obtained by 
integration of the stresses distribution (pressure and viscous shear) on the sphere 
surface, where the fluid adheres.  

Approximative solutions of the dependence 𝐶𝐶𝑥𝑥(𝑅𝑅𝑅𝑅) at small (Re < 3) and 
medium (Re < 1000) Reynolds numbers are shown in literature [5, 7, 19], e.g. 

 𝐶𝐶𝑥𝑥∗ = 𝐶𝐶𝑥𝑥0�1 + 𝑅𝑅𝑅𝑅2 3⁄ /6�,       (5) 
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[22]. However, in the laminar flow regime the decreasing of drag coefficient with 
Reynolds number follows with a fair approximation the power law function,  

𝐶𝐶𝑥𝑥~𝑅𝑅𝑅𝑅−𝑛𝑛.         (6) 
Experimental diagrams for the whole range of Reynolds numbers, from 

laminar (including Stokes flows) to developed turbulence, can be found in any 
applied fluid mechanics lectures, [9]. Excepting few publications, [19], and 
published numerical solutions, [23, 24], there are no available data for the 
dependence of drag coefficient on Reynolds number in confined geometries.  

It is assumed that forces 𝑭𝑭𝑚𝑚𝑚𝑚 and 𝑭𝑭𝐵𝐵 have a minor influence in our case, 
therefore the expression form (3) of the drag coefficient is given by, 

 𝐶𝐶𝑥𝑥𝑥𝑥 = 4𝑑𝑑
3𝜌𝜌0𝑣𝑣2

(∆𝜌𝜌𝜌𝜌 − 𝜌𝜌𝑠𝑠𝑎𝑎),     (7) 
where the sign of acceleration 𝑎𝑎 = 𝑣̇𝑣 is negative in the case of deceleration.  
 The experiments performed in the REOROM laboratory used a steel sphere 
with diameter  
𝑑𝑑 = 10 𝑚𝑚𝑚𝑚 and mass 𝑚𝑚 = 4.08 𝑔𝑔 (corresponding density 𝜌𝜌𝑠𝑠 ≅ 7800 kg/m3). The 
sphere is dropped in glass vessels with square cross sections 𝑏𝑏 × 𝑏𝑏 (b = 30 mm and 
b = 50 mm, respectively; 275 mm height, the thickness of the assembled glass walls 
being 3 mm), filled with a  Newtonian silicone oil:  density 𝜌𝜌0 = 960 kg/m3 and 
viscosity 𝜂𝜂0 = 0.98 Pas. The visualizations of the sphere motion in the fluid sample 
were obtained with a high-speed camera: Phantom VEO-E 340L at 2800 fps 
(resolution 1024x1024 pixels, pixel size 10 microns). All experiments were 
performed at a temperature of 23o C (room temperature in the laboratory). 

Photos at prescribed times are extracted from the movies, Fig. 2, the 
sphere’s advance H(t) inside the liquid is measured, and the corresponding falling 
velocity is calculated, 𝑣𝑣(𝑡𝑡) = Ḣ(𝑡𝑡), Fig. 3. Finally, the dependences 𝐶𝐶𝑥𝑥(𝑅𝑅𝑅𝑅) are 
represented for the analyzed cases.  

2.1 Wall influence  
 In the flow configuration from Fig. 1.b the immersed sphere is dropped from 
z = 250 mm, with initial velocity 𝑣𝑣(0) = 0, at different distances 𝛿𝛿 from the wall, 
Tab. 1.  The position of the sphere on z-axis is recorded in the interval 𝑧𝑧 ∈ [80, 130] 
mm, H ∈ [0, 50] mm respectively.   
 During tests the distance of the sphere to the vessel’s lateral walls is 
maintained constant, the displacement of sphere within the fluid being measured by 
processing the images extracted from the recorded movies at certain moments of 
time. In Fig. 2 are represented four images for a sphere falling in the very vicinity 
of the wall (𝛿𝛿 ≅ 0). 
 In Fig. 3 the measured heights H(t) and the corresponding falling velocities 
of the spheres are represented, where the origin of time, t = 0, corresponds to the 
height H = 0 (z = 80 mm), where steady velocity 𝑣𝑣0 is reached, Fig. 1b. The 
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dependences H(t) are almost linear, the velocities being slightly increasing with z-
coordinate decreasing. With fair approximation one can consider the flow regime 
in the recorded interval as quasi-stationary. 
 The values for the Reynolds number and the drag coefficient are shown in 
Tab. 1. It is observed from Fig. 3 that for 𝛿𝛿 > 10 mm the velocity of the sphere is 
nearly constant (the middle of the vessel corresponds to 𝛿𝛿 = 25 mm).  
 

 
Fig. 2. Series of photos of the falling sphere in the very vicinity of the walls; corresponding 

between height H and time t (the sphere sliding at the corner of the vessel, 𝛿𝛿 ≅ 0, case a00 in Fig. 
3). The dark lines are shadows of the transparent glass walls, the ruler being attached to the wall 

outside the vessel. 

 
Fig. 3. Dependences H(𝑡𝑡) and the steady values 𝑣𝑣0 of velocity as function of the sphere’s distance 
from the wall (case a00 corresponds to the corner of the vessel). Velocity of the sphere is slightly 

increasing  to 𝑣𝑣0 from H = 50 mm to H = 0 mm (the linear dependence H(t) is represented with 
dash line), so the influence of acceleration is not relevant in this case. 
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Table 1.  
The values of the quasi-steady velocity, Reynolds number and the drag coefficients.   
The values of 𝐶𝐶𝑥𝑥  are calculated assuming constant velocity, i.e. 𝑎𝑎 = 0 in (7).𝜹𝜹  wall t 

𝜹𝜹  wall distance 𝑎𝑎00 − corner 2 [mm] 11 – 20 [mm] 

𝒗𝒗𝟎𝟎 [m/s] 0.13 0.2 0.22 

Re [-] 1.27 1.95 2.16 

𝑪𝑪𝒙𝒙𝒙𝒙 =  𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹�  [-] 19 12.3 11.0 

𝑪𝑪𝒙𝒙∗ = 𝑪𝑪𝒙𝒙𝒙𝒙�𝟏𝟏 + 𝑹𝑹𝑹𝑹𝟐𝟐 𝟑𝟑⁄ /𝟔𝟔� 22.7 15.48 14.05 

𝑪𝑪𝒙𝒙 [-] 55 23.2 19.2 

𝑪𝑪𝒙𝒙/𝑪𝑪𝒙𝒙∗  2.4 1.5 1.36 

𝑪𝑪𝒙𝒙/𝑪𝑪𝒙𝒙𝒙𝒙 2.9 1.9 1.75 

 
The drag coefficient 𝐶𝐶𝑥𝑥  is decreasing with increasing Re-number and  the 

distance from the wall of the vessel. The ratio 𝐶𝐶𝑥𝑥 𝐶𝐶𝑥𝑥0⁄  is 2.9 at the wall and 1.75 in 
the center of the vessel. The correction due to Reynolds number, (5), increases 𝐶𝐶𝑥𝑥0 
with factor 1.27 in the center, therefore the confined square geometry increases the 
drag coefficient calculated for an infinite domain with factor 1.36 relative to 𝐶𝐶𝑥𝑥∗ and 
1.76 relative to 𝐶𝐶𝑥𝑥0, respectively. There are no available data in literature for a 
square flow section, but for a circular section, Fig. 1.a, 𝐶𝐶𝑥𝑥 ≅ 1.68 ∙ 𝐶𝐶𝑥𝑥0 for 
𝑑𝑑 𝑑𝑑𝑐𝑐 = 0.2⁄  (in our experiments 𝑑𝑑 𝑏𝑏 ≅ 0.2⁄ ) assuming a perfect concentricity of the 
sphere with the cylindrical wall and Re < 1,  [19]. Appling the two corrections to 
𝐶𝐶𝑥𝑥 in the center of the domain, one can remark that measurements give a fair 
estimation of the confinement influence on the sphere motion, i.e.  𝐶𝐶𝑥𝑥 = 19.2 
(measured value) against 𝐶𝐶𝑥𝑥 ≅ 18.48 (approximative value calculated from 
literature, [19]). 

 

2.2  End effect influence 
The end-effect is observed in the vicinity of the bottom wall of the vessel, 

where the sphere’s velocity is decreasing from the steady velocity 𝑣𝑣0 to the settle 
(impact with the bottom) velocity 𝑣𝑣𝑠𝑠. The sphere is launched in a vessel with a 
square-cross section, b = 30 mm, filled with fluid up to z = 175 mm. The impact 
velocity of the sphere on the free surface is 𝑣𝑣𝑖𝑖 ≅ 1.4 m/s and its motion are recorded 
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starting at t = 0 from H = 60 mm (where steady velocity is reached), H = 0 defining 
in this experiment the bottom of the vessel, Fig. 4. In Fig. 5 the measured heights 
H(t) and the corresponding calculated velocities are represented. 

 
Fig. 4. Selection of images in the interval of 0.42 s. 

 
Two flow regimes are observed in Fig. 5: (i) a steady state flow with 

constant velocity   𝑣𝑣0 ≅ 0.147 m/s, (ii) a decelerating flow in the vicinity of the 
bottom, from 𝑣𝑣0 to 𝑣𝑣𝑠𝑠 ≅ 15 mm/s in       0.065 s. The transition between the regimes 
is marked in Fig. 5, region A-B, respectively. We notice that deceleration in the 
vicinity of the bottom is 𝑎𝑎 ≅ −4.5 m/s2, which has an important influence on the 
value of Cx in the vicinity of the bottom wall where the motion is unsteady, (7).  

 

 
Fig. 5. Time variation of the distance from the bottom wall and  

the calculated falling velocity of the sphere. A slight increase of velocity is observed before the 
sharp decreasing in the very vicinity of the bottom wall.  
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2.2 End effect and free surface influences 
 
The sphere is launched in a vessel with a square-cross section, b = 50 mm, 

with impact velocity 𝑣𝑣𝑖𝑖 ≅ 2.5 m/s on the free surface corresponding to H = 60 mm 
from the bottom, Fig. 6. In this experiment the origin of time, t =0, corresponds to 
the impact of sphere on the free surface, which corresponds to the distance H = 60 
mm from the bottom (H = 0). The dynamics of the air cavity formed down-stream 
the sphere and the rupture/pinch-off of the air filament are studied by the authors in 
[25].  

 
Fig. 6. The falling of the sphere and the formation of the air-cavity in 47 ms. 

 
 The experimental dependences H(t) and 𝑣𝑣(𝑡𝑡) from Fig. 7 are very good 
fitted by an exponential decreasing function, with slightly deviations in vicinity of 
the free surface and in the region where the end-effect is present. One can consider 
that velocity is decreasing continuously from 𝑣𝑣𝑖𝑖 ≅ 2.2 m/s to 𝑣𝑣𝑠𝑠 ≅ 0.55 m/s (settle 
velocity), therefore deceleration  influences 𝐶𝐶𝑥𝑥 for the whole analyzed time interval. 
In Fig. 8 are  represented the Stokes formula 𝐶𝐶𝑥𝑥0 = 24/𝑅𝑅𝑅𝑅, 𝐶𝐶𝑥𝑥∗(𝑅𝑅𝑅𝑅) from (5), both 
valid for infinite flow domain, 𝐶𝐶𝑥𝑥(𝑅𝑅𝑅𝑅) calculated without contribution of inertia 
and 𝐶𝐶𝑥𝑥𝑥𝑥(𝑅𝑅𝑅𝑅) with inertia, (7). The values of n-exponent from (5) are also shown.  
 The analysis of the results from Fig. 8 evidence cumulated effects on the 
dynamics of sphere: (i) confinement of the flow domain, (ii) unsteady motion, (iii) 
end effect, (iv) presence of free surface and air cavity. These mentioned influences 
are present in almost all applications where  motions of immersed spherical bodies 
are under study, so the  formulas for drag coefficients published in literature have 
to be used with caution (especially if the spherical surface is not smooth, it is not 
hydrophilic or there are deviations from perfect sphericity).   
The end effects in the absence and in the presence of free surface are compared in 
Fig. 9, where the dependences 𝐶𝐶𝑥𝑥(𝑅𝑅𝑅𝑅) and H(𝑅𝑅𝑅𝑅), calculated from experimental 
data (Fig. 5 and Fig. 7, respectively), are shown. 
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Fig. 7. Time variation of the sphere distance and velocity from the impact  

on the free surface to the bottom wall.   
 

 
Fig. 8. Dependence of drag coefficients on the Re-number (experimental data from Fig. 7).  

There are qualitative and quantitative differences between the cases from 
Fig. 9 (in cross section of the vessel and impact velocities, absence or presence of 
air cavities, steady or unsteady sphere motion), but we also observe two important 
similarities, even though data in the interval 1.5 < 𝑅𝑅𝑅𝑅 < 5 are missing: (i)  the 
decreasing of the calculated drag coefficient 𝐶𝐶𝑥𝑥 with Re-number has the same n-

0 10 20 30 40 50

0

10

20

30

40

50

60

H
 [m

m
]

t - time [ms]

 H ∼ e-t/32.5

v [m/s]  a [m/s2]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
a - acceleration

v - velocity vs

H

v

-70

-60

-50

-40

-30

-20

-10

6 8 10 12 14 16 18 20 22 24
10-1

100

101

C
x -

 d
ra

g 
co

ef
fic

ie
nt

 [-
]

Re [-]

Cx0 = 24/Re

Cx

C*x

Cxi

Re = 10
Cxi = 3.72

Cx = 0.89
n = 2

n = 1

n = 1.3

n = 0.75



42                                         Istvan Magos, Corneliu Balan 
 

index (i.e. same slope), (ii) the end-effect is relevant in a boundary zone situated in 
both cases at for H < 5 mm. We must mention that inertia contribution to the drag 
coefficient is more relevant if the air cavity remains attached to the sphere, Fig. 8, 
e.g. 𝐶𝐶𝑥𝑥𝑥𝑥 ≅ 4.18𝐶𝐶𝑥𝑥 at Re = 10. 
 

 
Fig. 9. Experimental 𝐶𝐶𝑥𝑥(𝑅𝑅𝑅𝑅),𝐶𝐶𝑥𝑥𝑥𝑥(𝑅𝑅𝑅𝑅) and H(𝑅𝑅𝑅𝑅) from Fig. 5 and Fig. 7 (free surface influence).  

 
One concludes that motion of the sphere in the vessel is influenced by the 

lateral confinement (wall effect), by the bottom wall (end effect) and inertia. These 
effects at small and medium Re-numbers increase the drag coefficient and the n-
index in comparison to the formulas for an infinite domain.  
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influences on the sphere motion in a confined domain filled with a Newtonian 
viscous liquid. The procedure is based on the  
image processing of direct visualizations of the sphere’s displacement recorded with 
a high-speed camera. The corresponding velocity of the sphere and the drag 
coefficient 𝐶𝐶𝑥𝑥 are calculated directly from experiments, without solving the Navier-
Stokes equations in the fluid domain.  
The following influences on sphere motion are investigated: (i) vicinity of the wall, 
(ii) end-effect induced by the bottom wall of the domain, (iii) the presence of free 
surface and air cavity, and (iv) sphere’s acceleration. 
 In the range of small and medium Reynolds numbers, 0.01 < 𝑅𝑅𝑅𝑅 < 20, the 
results evidence that any influence of the confinement (wall effect and end effect) 
on the sphere motion determines the increasing of the drag coefficient. This finding 
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is expected and known, [13, 14, 19, 23, 24], but results based on experiments 
performed in confined geometries with square cross section and in the presence of 
free surface were not reported in literature. This is the original contribution of the 
author and brings complementary valuable results to this extensively studied 
phenomenon in applied fluid mechanics: the motion of spherical bodies in viscous 
liquids. One main conclusion of the work is to use in applications with caution the 
formulas for drag coefficients, especially for analyzed motions where influences of 
the flow confinement and air cavities are evident. This is always the case when the 
study is focused on determining the influence of fluid’s properties on the 
displacement of immersed bodies.  
 The confined geometry defines the domain and imposes the boundary 
conditions for the flow generated by the falling sphere in the fluid. For a given flow 
domain (i.e. boundary conditions) filled with a non-Newtonian fluid, in particular 
viscoelastic, the drag coefficient of the sphere depends not only on the Reynolds 
number (and Strouhal number for unsteady/oscillatory flows, [9]), but also on 
parameters associated with the complex rheology of the fluid (as relaxation time, 
[26]). In principle, the drag coefficient can be calculated by integrating on the sphere 
the pressure and wall shear stress distributions obtained from the numerical solution 
of the equations of motion for a particular fluid model (constitutive relation), [24, 
26]. Motion of spheres in viscoelastic fluids is an important domain of study, with 
numerous applications in modelling complex flows, interfacial dynamics and 
transport of particles in microgeometries, [23, 27, 28, 29, 30].  Experimental 
investigations of the steel spheres’ impact on viscoelastic fluids in the presence of 
magnetic field  are in progress at the REOROM laboratory from Politehnica 
University, [31]. 
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