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NOTE ON THE SPHERE MOTION IN CONFINED GEOMETRY

Istvan MAGOS', Corneliu BALAN?

The paper communicates an experimental study of sphere motion in
confined domains. The sphere is falling free under gravity in square-cross glass
vessels filled with a viscous Newtonian liquid. The dynamics are analyzed using the
image processing of direct visualizations of the sphere s displacement recorded with
a high-speed camera. The corresponding velocity of the sphere and the drag
coefficient C, are calculated for the experiments performed. The following
perturbations on the sphere motion are investigated: (i) the wall influence, (ii) the
end-effect induced by the bottom wall of the domain, (iii) the presence of free
surface/air cavities, and (iv) the sphere s acceleration. The results are original since
these phenomena are scarcely analyzed in literature, even though the sphere motion
is a classical topic in fluid mechanics.
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1. Introduction

The sphere motion in viscous fluids is the most studied and investigated
subject in fluid mechanics and rheometry. It is probably the main benchmark
problem for any scientist working in the fundamental or applied domains where the
interaction between a body and a fluid is important. The flow of the viscous fluid
generated by the motion of a sphere was first modeled by Stokes at the middle of
the XIX century, [1]. Remarkable contributions on the subject were made by
Boussinesq [2], and at the beginning of the last century by Allen [3], Einstein in
his PhD thesis [4], Oseen (1910) and Goldstein (1929), [5]. The analytical solution
of Stokes at low Reynolds number (Re << 1), and its extension by Oseen and
Goldstein (Re < 2), are present in almost all advanced fluid mechanics lecture notes,
started with Lamb’s book [6] (1% edition published in 1916), see also [7] for a
reference in Romanian.

The experimental data related to flows around spheres were obtained by
numerous scientists, we mention here the Prandtl’s group from Goéttingen [8] and
the references from
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Churchill [9]. The forces acting of rigid spheres falling in viscous liquids at low
Reynolds numbers, especially the drag in relation to settling velocity, were
intensively investigated in the last decades of the XX century, e.g. [10], [11], [12],
the topic being recently reviewed, [13], [14]. Numerous numerical solutions of
flows around spheres have been published in relation to vary applications: testing
novel numerical techniques [15], heat transfer [16], [17], turbulence [18].

It is important to mention that investigations and solutions of the flows
around sphere consider often the fluid domain infinite, the influence of walls on the
sphere motion and drag being scarce under investigations. The corrections
introduced to the drag Stokes formula by the confined geometry are presented by
Happel & Brenner [19], one on the most cited classical book dedicated to
hydrodynamics at low Reynolds numbers.

The communication is focused on the visualizations, measurements and
computation of the sphere’s velocity, falling free in a confined geometry filled with
a viscous Newtonian liquid. The main aim of the work is to establish an
experimental procedure to determine the influences of the walls and free surface on
the drag coefficient of spheres.

2. Experimental

In a quasi-stationary isothermal flow, the one-directional equilibrium of
forces acts on a falling sphere under gravity in a Newtonian fluid (viscosity no =
constant) is given by the relation:

Fx = FG - FAa (1)
where the drag force has the expression,
Fy = ZpomR2vg. )

Here F; = psgV is the weight of the sphere, F;, = pygV is the bouyancy force, p,
is the fluid density, ps is the sphere density, V' is the sphere volume and d = 2R is
its diameter, Fig. 1.a. In (2) v, is the constant velocity of the sphere and C, is the
drag coefficient.

It is important to remark that relation (1) becomes more complicated in the
case of non-stationary sphere motion (i.e. the sphere’s velocity is not constant — v #
0),

psVv = Fg— Fp— Fy— Fpqy — Fp, (3)
where three supplementary forces are present, [10-13] : (i) sphere inertia (left term),

(ii) Fpq = (po/2)V ¥, added mass force (generated by unsteady pressure
distribution around sphere), (iii) Fz = (3/2)d?\/mpon, fo LO) df the Basset force
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induced by the transitory friction in boundary layer (generated by unsteady shear

stress over sphere), [14, 20, 21].
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Fig. 1. a) Forces acting on a sphere in motion with constant velocity v, in a vertical tube with
diameter d; b) laboratory test configuration; the sphere is located on one axis of symmetry of the
square cross-section vessel (the sphere is falling free along the vertical coordinate z = -x3).

The measure of the drag force is the drag coefficient C,.. In a steady motion,
C, depends on the Reynolds number Re = p,dv,/n, and on the configuration of
the flow domain [19],

Cx(Re, d/d.,6/dc,e/d), 4)
Fig. 1, respectively. In (4) ¢ is the distance of the sphere from the bottom-wall of
the domain.

In the case of an infinite domain, d. — oo, far away for any walls, € — oo,
the drag coefficient for steady motion depends exclusively on the Reynolds number.
The solution was obtained by Stokes [1, 6, 7] at Re K 1, Cyo = 24/Re,
respectively; only in this hypothesis the drag force has an exact analytical solution,
F, = 3mnydv,, which was used also by Eistein to calculate the diffusion coefficient
of the solute in a solvent, [4]. We mention that Stokes solution was obtained by
integration of the stresses distribution (pressure and viscous shear) on the sphere
surface, where the fluid adheres.

Approximative solutions of the dependence C, (Re) at small (Re < 3) and
medium (Re < 1000) Reynolds numbers are shown in literature [5, 7, 19], e.g.

Cy = Cxo(1+ Re?/3/6), (5)
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[22]. However, in the laminar flow regime the decreasing of drag coefficient with
Reynolds number follows with a fair approximation the power law function,

Cy~Re™. (6)

Experimental diagrams for the whole range of Reynolds numbers, from
laminar (including Stokes flows) to developed turbulence, can be found in any
applied fluid mechanics lectures, [9]. Excepting few publications, [19], and
published numerical solutions, [23, 24], there are no available data for the
dependence of drag coefficient on Reynolds number in confined geometries.

It is assumed that forces F,,, and Fp have a minor influence in our case,
therefore the expression form (3) of the drag coefficient is given by,

=22 (Apg — psa), (7)

Cxi 3 Dov?
where the sign of acceleration a = v is negative in the case of deceleration.

The experiments performed in the REOROM laboratory used a steel sphere
with diameter
d = 10 mm and mass m = 4.08 g (corresponding density p; = 7800 kg/m®). The
sphere is dropped in glass vessels with square cross sections b X b (b =30 mm and
b =50 mm, respectively; 275 mm height, the thickness of the assembled glass walls
being 3 mm), filled with a Newtonian silicone oil: density p, = 960 kg/m> and
viscosity 7o = 0.98 Pas. The visualizations of the sphere motion in the fluid sample
were obtained with a high-speed camera: Phantom VEO-E 340L at 2800 fps
(resolution 1024x1024 pixels, pixel size 10 microns). All experiments were
performed at a temperature of 23° C (room temperature in the laboratory).

Photos at prescribed times are extracted from the movies, Fig. 2, the
sphere’s advance H(¢) inside the liquid is measured, and the corresponding falling
velocity is calculated, v(t) = H(t), Fig. 3. Finally, the dependences C, (Re) are
represented for the analyzed cases.

2.1 Wall influence

In the flow configuration from Fig. 1.b the immersed sphere is dropped from
z =250 mm, with initial velocity v(0) = 0, at different distances & from the wall,
Tab. 1. The position of the sphere on z-axis is recorded in the interval z € [80, 130]
mm, H € [0, 50] mm respectively.

During tests the distance of the sphere to the vessel’s lateral walls is
maintained constant, the displacement of sphere within the fluid being measured by
processing the images extracted from the recorded movies at certain moments of
time. In Fig. 2 are represented four images for a sphere falling in the very vicinity
of the wall (6 = 0).

In Fig. 3 the measured heights H(¢) and the corresponding falling velocities
of the spheres are represented, where the origin of time, ¢ = 0, corresponds to the
height H = 0 (z = 80 mm), where steady velocity v, is reached, Fig. 1b. The
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dependences H(¢) are almost linear, the velocities being slightly increasing with z-
coordinate decreasing. With fair approximation one can consider the flow regime
in the recorded interval as quasi-stationary.

The values for the Reynolds number and the drag coefficient are shown in
Tab. 1. It is observed from Fig. 3 that for § > 10 mm the velocity of the sphere is
nearly constant (the middle of the vessel corresponds to § = 25 mm).
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Fig. 2. Series of photos of the falling sphere in the very vicinity of the walls; corresponding
between height H and time 7 (the sphere sliding at the corner of the vessel, § = 0, case ag in Fig.
3). The dark lines are shadows of the transparent glass walls, the ruler being attached to the wall

outside the vessel.
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Fig. 3. Dependences H(t) and the steady values v, of velocity as function of the sphere’s distance
from the wall (case ago corresponds to the corner of the vessel). Velocity of the sphere is slightly
increasing to v, from H = 50 mm to H = 0 mm (the linear dependence H(?) is represented with
dash line), so the influence of acceleration is not relevant in this case.
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Table 1.
The values of the quasi-steady velocity, Reynolds number and the drag coefficients.
The values of C, are calculated assuming constant velocity, i.e. a = 0 in (7).6 wallt

0.2 0.22

vy [m/s] 0.13
Rel[-] 1.27 1.95 2.16
Coo= 24/pe ] 19 12.3 11.0
C; = Cr(1+ Re?3/6) 22.7 15.48 14.05
C. [ 55 23.2 19.2
C./C. 2.4 1.5 1.36
C./Cxo 2.9 1.9 1.75

The drag coefficient C, is decreasing with increasing Re-number and the
distance from the wall of the vessel. The ratio C,/C,, is 2.9 at the wall and 1.75 in
the center of the vessel. The correction due to Reynolds number, (5), increases C,
with factor 1.27 in the center, therefore the confined square geometry increases the
drag coefficient calculated for an infinite domain with factor 1.36 relative to C; and
1.76 relative to C,,, respectively. There are no available data in literature for a
square flow section, but for a circular section, Fig. l.a, C, = 1.68-C,, for
d/d, = 0.2 (in our experiments d /b = 0.2) assuming a perfect concentricity of the
sphere with the cylindrical wall and Re < 1, [19]. Appling the two corrections to
C, in the center of the domain, one can remark that measurements give a fair
estimation of the confinement influence on the sphere motion, i.e. C, = 19.2
(measured value) against C, = 18.48 (approximative value calculated from
literature, [19]).

2.2 End effect influence

The end-effect is observed in the vicinity of the bottom wall of the vessel,
where the sphere’s velocity is decreasing from the steady velocity v, to the settle
(impact with the bottom) velocity vs. The sphere is launched in a vessel with a
square-cross section, b = 30 mm, filled with fluid up to z = 175 mm. The impact
velocity of the sphere on the free surface is v; = 1.4 m/s and its motion are recorded
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starting at = 0 from H = 60 mm (where steady velocity is reached), H = 0 defining
in this experiment the bottom of the vessel, Fig. 4. In Fig. 5 the measured heights
H(¢) and the corresponding calculated velocities are represented.

Fig. 4. Selection o-firhages in the interval of 0.42 s.

Two flow regimes are observed in Fig. 5: (i) a steady state flow with
constant velocity v, = 0.147 m/s, (ii) a decelerating flow in the vicinity of the
bottom, from vy to v, = 15 mm/sin  0.065 s. The transition between the regimes
is marked in Fig. 5, region A-B, respectively. We notice that deceleration in the
vicinity of the bottom is a = —4.5 m/s?, which has an important influence on the
value of C. in the vicinity of the bottom wall where the motion is unsteady, (7).
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Fig. 5. Time variation of the distance from the bottom wall and
the calculated falling velocity of the sphere. A slight increase of velocity is observed before the

sharp decreasing in the very vicinity of the bottom wall.
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2.2 End effect and free surface influences

The sphere is launched in a vessel with a square-cross section, » = 50 mm,
with impact velocity v; = 2.5 m/s on the free surface corresponding to H = 60 mm
from the bottom, Fig. 6. In this experiment the origin of time, ¢ =0, corresponds to
the impact of sphere on the free surface, which corresponds to the distance H = 60
mm from the bottom (H = 0). The dynamics of the air cavity formed down-stream
the sphere and the rupture/pinch-off of the air filament are studied by the authors in
[25].

| ! ' | l

£ | Free surface
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Fig. 6. The falling of the sphere and the formation of the air-cavity in 47 ms.

The experimental dependences H(¢) and v(t) from Fig. 7 are very good
fitted by an exponential decreasing function, with slightly deviations in vicinity of
the free surface and in the region where the end-effect is present. One can consider
that velocity is decreasing continuously from v; = 2.2 m/s to v; = 0.55 m/s (settle
velocity), therefore deceleration influences C, for the whole analyzed time interval.
In Fig. 8 are represented the Stokes formula C,, = 24/Re, C;(Re) from (5), both
valid for infinite flow domain, C,(Re) calculated without contribution of inertia
and C,;(Re) with inertia, (7). The values of n-exponent from (5) are also shown.

The analysis of the results from Fig. 8 evidence cumulated effects on the
dynamics of sphere: (i) confinement of the flow domain, (i1) unsteady motion, (iii)
end effect, (iv) presence of free surface and air cavity. These mentioned influences
are present in almost all applications where motions of immersed spherical bodies
are under study, so the formulas for drag coefficients published in literature have
to be used with caution (especially if the spherical surface is not smooth, it is not
hydrophilic or there are deviations from perfect sphericity).

The end effects in the absence and in the presence of free surface are compared in
Fig. 9, where the dependences C,(Re) and H(Re), calculated from experimental
data (Fig. 5 and Fig. 7, respectively), are shown.
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Fig. 7. Time variation of the sphere distance and velocity from the impact
on the free surface to the bottom wall.
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Fig. 8. Dependence of drag coefficients on the Re-number (experimental data from Fig. 7).
There are qualitative and quantitative differences between the cases from
Fig. 9 (in cross section of the vessel and impact velocities, absence or presence of
air cavities, steady or unsteady sphere motion), but we also observe two important
similarities, even though data in the interval 1.5 < Re < 5 are missing: (i) the
decreasing of the calculated drag coefficient C, with Re-number has the same »n-
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index (i.e. same slope), (ii) the end-effect is relevant in a boundary zone situated in
both cases at-for H <5 mm. We must mention that inertia contribution to the drag
coefficient is more relevant if the air cavity remains attached to the sphere, Fig. 8§,
e.g. Cy; = 4.18C, at Re = 10.
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Fig. 9. Experimental C,(Re), C,;(Re) and H(Re) from Fig. 5 and Fig. 7 (free surface influence).

107

One concludes that motion of the sphere in the vessel is influenced by the
lateral confinement (wall effect), by the bottom wall (end effect) and inertia. These
effects at small and medium Re-numbers increase the drag coefficient and the n-
index in comparison to the formulas for an infinite domain.

3. Final remarks and conclusions

The paper is an experimental study focused on measuring different
influences on the sphere motion in a confined domain filled with a Newtonian
viscous liquid. The procedure is based on the
image processing of direct visualizations of the sphere’s displacement recorded with
a high-speed camera. The corresponding velocity of the sphere and the drag
coefficient C, are calculated directly from experiments, without solving the Navier-
Stokes equations in the fluid domain.

The following influences on sphere motion are investigated: (i) vicinity of the wall,
(i1) end-effect induced by the bottom wall of the domain, (ii1) the presence of free
surface and air cavity, and (iv) sphere’s acceleration.

In the range of small and medium Reynolds numbers, 0.01 < Re < 20, the
results evidence that any influence of the confinement (wall effect and end effect)
on the sphere motion determines the increasing of the drag coefficient. This finding



Note of the sphere motion in confined geometry 43

is expected and known, [13, 14, 19, 23, 24], but results based on experiments
performed in confined geometries with square cross section and in the presence of
free surface were not reported in literature. This is the original contribution of the
author and brings complementary valuable results to this extensively studied
phenomenon in applied fluid mechanics: the motion of spherical bodies in viscous
liquids. One main conclusion of the work is to use in applications with caution the
formulas for drag coefficients, especially for analyzed motions where influences of
the flow confinement and air cavities are evident. This is always the case when the
study is focused on determining the influence of fluid’s properties on the
displacement of immersed bodies.

The confined geometry defines the domain and imposes the boundary
conditions for the flow generated by the falling sphere in the fluid. For a given flow
domain (i.e. boundary conditions) filled with a non-Newtonian fluid, in particular
viscoelastic, the drag coefficient of the sphere depends not only on the Reynolds
number (and Strouhal number for unsteady/oscillatory flows, [9]), but also on
parameters associated with the complex rheology of the fluid (as relaxation time,
[26]). In principle, the drag coefficient can be calculated by integrating on the sphere
the pressure and wall shear stress distributions obtained from the numerical solution
of the equations of motion for a particular fluid model (constitutive relation), [24,
26]. Motion of spheres in viscoelastic fluids is an important domain of study, with
numerous applications in modelling complex flows, interfacial dynamics and
transport of particles in microgeometries, [23, 27, 28, 29, 30]. Experimental
investigations of the steel spheres’ impact on viscoelastic fluids in the presence of
magnetic field are in progress at the REOROM laboratory from Politehnica
University, [31].
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