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MODEL ANALYSIS FOR THE TREND OF SOME TIME 
SERIES WHICH ARE DESCRIBING THE ENERGY 
EFFICIENCY IN THE RAILWAY SUBSTATIONS 

Alexandru STEFANESCU1, Claudia POPESCU2, Mihai O. POPESCU3 

The original aspects of this paper consists in the presentation of the trend 
model analysis of some time series which are describing the forecast calculation and 
implicit the energy efficiency in the railway substations. It will be described which 
method is the most exact one and gives the best results. Those calculations are 
representing a very important issue in the electrical distribution networks, because 
only so energy efficiency measures can be taken. The main focus will be to find the 
exact calculation method in order to forecast the energy consumption in the 
substations and to optimize the energy efficiency. 
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1. Introduction 

The importance of the forecast in the energy efficiency issues grew in the 
last period exponential because without an exact consumption forecast it not 
possible to even talk about energy efficiency and optimization. The initiator of the 
privatisation process of the electricity distribution, the generalization of the 
dealing on the market, new mechanisms and instruments for the market risk 
management and the bigger decentralization of the dealing with electric energy 
are some of the most important aspects in which the forecast studies on short term 
are very important. The powerful industrial developments have brought important 
changes in all areas, and this were reflected in the environment and also at the 
society level. The only possibility for maintain the control on the fast and 
important changes is the adaptive behaviour against all those changes. This means 
in the first place to establish a future development and exact appreciation of the 
influencing factors and in the second place to take the right decisions based on the 
forecast behalf, in order to meet the purposes goal. 

It is self-understood that the forecast process and taking decisions based 
on it, are processes developed in time, in conditions of aleatoric perturbation [1-
3]. Furthermore the adaptation process must be continuous, showed in forecasts 
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and rehearses by corrections which will maintain the evolution on the target. Once 
that we are closer to the specific targets, some other future targets will arise which 
presumes new forecast horizons and new decisions [4-5]. 

Following this idea, the next definition for both energy consumption 
forecast and power: The energy consumption and power forecast is the scientific 
activity who has the purpose to predict the energy consumption and power, based 
on different data calculations and analyses, so that will be realised a obvious 
concordance between estimated consumption and real consumption. 

2. Establishing the mathematical model of the consumption 

The methodology of forecast study elaboration for the energy consumption 
has few main steps: 

• measurement, selection and analyse of the initial data; 
• establishing the mathematical model for the consumption;  
• variance analyse which has been obtained for the forecast and establishing 

the final decision. 
For realising a more specific forecast we must use a large data base which 

should content [6-7]: 
• the values for the global energy consumption with their components also 

(if it is possible), for a long enough period of time (minimum 5 years).  
• the developments of the economical, demographical, climatically factors 

in that certain period of time. 
In this forecast stage, it is realised a first data selection and processing, 

which consists in graphical outputs and than their statistical conversion [9-11]. 

3. The components for the mathematical model of the energy 
consumption curve 

The consumption curve represents the energy variation in time (or taking 
into consideration another parameter) and it can be split in several components. 
Forecast experience of the energy consumption shows the existence of four main 
components, which establishes the consumption curve (W) (fig.1): 
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Fig.1. the mathematical model components for the energy consumption curve [1,11] 
 

1. The trend (T) represents the consumptions main compound, establishing 
the energy consumption behaviour. 

2. The cyclic component (C) shows the fluctuant causes with slowly effect 
like the demand-supply correlation on a period over a year. 

3. The seasonal component (S) it is caused by certain parameters which 
presents seasonal fluctuations (especially climatic changes). This 
component has a few months variation period and a similar shape for all 
years. 

4. The aleatoric component (ε) represents the stochastic elements and it is 
normally previously specified. 
 
As a conclusion, the energy consumption is the sum of all elements 

specified above:  
W(t)= T(t)+C(t)+S(t)+ε(t)       (1) 
 
As a rule, the forecast methods are elaborated for the consumption’s 

components sum. For this reason it becomes a current application and it is 
necessary in the first stage of the forecast calculation to bring the model at the 
standard configuration (1) using functions transformations and proper chosen 
variables. There are two main criteria for choosing the proper transformation: 

• viewing the consumption graphics  
• the statistics indicators, which can be calculated from the consumptions 

curve offers relevant information for finding the correct transformations 
which distinguish the consumptions components and the way they 
associate. 

 
When the consumptions forecast is made, it is used to estimate separately 

each consumptions component variation, getting the final result by summing the 
components forecast results. 
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4. The description of some mathematical models, often used in 
forecast studies 

The models described below usually reports to the consumptions curve 
trend component. An exception is made by the events when the aleatoric 
component is also inserted by the uncertainty factor. In fact, it might be 
considered if necessary, in same way as other models and adding the uncertainty 
factor. The econometric models are characterized through the mathematical 
wording that results after a technical-economical analyze and followed by a 
statistic check [6-11]. The models which belong to this category are: 

• the autonomous extrapolation time is the only variable, chasing the energy 
consumption variation trend  

• conditional adapting  

4.1 The extrapolative methods principle 

The direct forecast methods are supposing the assumption that the 
causes[1,5,6,11], the factors and the trends which establish the energy 
consumption in the past are remaining the same also in the future, without 
appearing any dramatic and sudden changes during the forecast which will affect 
the evolution consumption.   

This assumption will justify the energy consumptions evolution trend 
extrapolation from the past for the future period and bring the forecast problem to 
the analysis of the energy consumption variation law from the past to the future.  

The mooted forecast methods are supposing the establishment of a 
mathematical model likeness a one or more variables function (generally a single 
variable, time) who fairly estimates the trend on the last period [11]. The 
estimation of the functions coefficients is making by solving an equations system 
where the coefficients are calculating means the energy consumptions from the 
last period. 

4.2 The estimation for the model components 

It is considered an observed value set yt, of a chronological series [1,5,6,11].  
 
Mathematical shaping can be made using an additive model: 

yt = Tt +Ct +St +Rt        (2) 
 
where: Tt represents the trend (continuous component), Ct represents 

cyclical component, St represents seasonal components, Rt represents the 
component due to aleatory variations. 
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5. Conclusions 

Data estimation and forecast can be done by applying more shaping 
methods. For certain phenomenon categories bounded by season’s cyclicity, the 
classic model is useful and might serve as development base. 

The usage of a recursive approximation procedure gave satisfactory results 
so in great variations conditions it can be developed a model which takes into 
account the previous data. This techniques application is possible only trough the 
programming medium MatLab. 

It was analysed the possibility of a optimal model for the energy 
consumption trend in the railway substations. The analysed data was daily 
measured, during one calendaristic year (Table 2). For this purpose there were use 
different analyse methods of the stochastic deterministic component. 

In order to obtain an analytical expression of the function which describes 
the temporal series trend from the Table 1, they were used calculation methods 
like Fourier Sum with 1 till 8 terms, polynomial regressions, classical exponential 
functions, polynomial functions, sinus sum with 1 to 8 terms, Smoothing Spline, 
Interpolant-Nearest neighbour, Interpolant cubic-spline and Interpolant Shape-
preserving. 

In each case were calculated the validation statistic indicators: SSE,  , 
, RMSE and the measured data graphically depicted. The graph of the residual 

series was also drawn in the Figures. In this paper there are represented only the 6 
most important solutions. The calculations are made for trusted intervals of 95% 
and the deliverables are presented in table 1. 

Table 1 
Modelling type Ecuatio

n  
SSE R2  RMSE 

Fourier k=1 (Fig.1) 3.357e+007 0.4227 0.4176 313.8 
Fourier k=2 (Fig.2) 3.043e+007 0.4766 0.4689 299.6 
Fourier k=8 (Fig.3) 9.825e+006 0.831 0.8222 173.3 

Gaussian k=2 (Fig.4) 3.585e+007 0.3835 0.3744 325.2 
Gaussian k=5 (Fig.5) 1.043e+007 0.8207 0.8131 177.8 

Sum of Sinus k=8 (Fig.6) 8.643e+006 0.8514 0.8407 164.1 
 
From all the trend adjustment methods, it was chosen the analytical 

method which takes in consideration all the terms of the chronological series 
(measured daily values) that we have. This method fundaments its calculation on 
mathematical functions of trend adjustment and general tendency estimation. 
They will be set usually in consideration with the real tendency of the electricity 
consumption tendency in time. This is highlighted at the beginning by the 
graphical depiction. After the adjustment function is chosen, it is necessary to 
estimate the regression function parameters. The analysis of the general tendency 
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estimation is a problem of statistical decision which becomes necessary when 
several regressions are tested. In general, the most important statistical parameters 
are: standard correlation coefficient  and/or adjusted , the root mean square 
error RMSE and the summed square of residuals SSE. It is easily seen just from 
the beginning that the adjustments ”Interpolant-Nearest neighbour”, ”Interpolant 
Cubic-spline” and ”Interpolant Shape-preserving” can be used only for 
interpolation purpose or to estimate an absolute trend (in this particular case, the 
residual series is zero, which determines the impossibility of the analysis of the 
other 3 factors which are characterising a dynamic series).  

It was calculated that for Gaussian functions with one term and with more 
than 5, the estimation parameter process is not convergent. The same issue was 
demonstrated by the polynomial regressions higher than power 3. 

 
Notation: 
SSE= summed square of residuals 

= correlation coefficient 
 = adjusted correlation coefficient 

RMSE= root mean square error 
The calculations are made for trusted intervals of 95% 

 
Table 2 

 
y(t) =[ 2.0323 2.0191 2.0368 2.0480 1.9342 1.9629 1.9540 1.9627 1.9408 2.0737 2.186 2.1850 
2.1102 2.1017 2.0813 2.0692 2.0984 2.0959 1.9836 2.0876 2.1330 2.1353 2.2134 2.2685 2.2614 
2.1511 2.25872.2952 2.2700 2.2783 2.5423 2.3098 2.2222 2.2037 2.2540 2.3251 2.2216 2.2400 
2.2455 2.1831  2.1788 2.1709 2.1761 2.1603 2.1512 2.0573 1.9661 1.8736 2.0612 2.1940 2.1453 
2.1632 2.1290 1.9791  1.9992 2.0941 2.0824 2.1180 2.1681 2.0936 1.9415 1.9529 2.1637  2.2268 
2.1786 2.1431 2.0836 1.8186 1.73601.8637 1.8920 1.8607 1.9058 1.8496 1.7131 1.7420 1.8984 
1.9922 1.9594 1.9618 2.0025  1.8225 1.7106 1.8451 1.8689 1.9669 1.8437 1.8156 1.3311 1.4298 
1.6524 1.7167 1.8932 1.8800 1.8933 1.6068 1.7287 1.7883 1.7831 1.8588 1.9280  1.7612 1.6672 
1.6751 1.6635 1.8662 1.8604 1.9022  1.8435 1.6748 1.6412 1.7744 1.7683 1.9094 1.8273 1.7208 
1.6324 1.6013 1.7812 1.7979 1.8327 1.8105 1.7262 1.6541 1.6207 1.7610 1.7899 1.7762 
1.77711.7809  1.7249] 1.5767 1.5959 1.6482 1.7632  1.7322 1.6470 1.4662 1.3551 1.5316 1.5327 
1.7137 1.7026 1.6985 1.5638 1.5676 1.5665 1.7384 1.7559 1.8328 1.7078 1.5978 1.6303 1.7045 
1.8470 1.8354 1.7975 1.7750 1.6080 1.7279 1.7663 1.7918 1.7523  1.8296 1.7433 1.6463  1.6838 
1.8151 1.8485 1.81281.8027 1.7447 1.5434 1.7683 1.9094 1.8273 1.7208 1.6324 1.6013 1.7812 
1.7979 1.8327 1.8105 1.7262 1.6541 1.6207 1.7610 1.7899 1.7762 1.7771 1.7809 1.7249 2.4989  
2.4859  2.4353 2.4395 2.6162 2.5473 2.5382 2.6107 2.3495 2.3958 2.6619 2.5521 2.4689 2.3310 
2.4386 2.3617 2.4247 2.4639 2.5034 2.3616 2.6452 2.5381 2.5230 2.3396 2.3072 2.5823 2.6519 
2.4862 2.5619 2.6078 2.5238 2.5994 2.5946 2.7008 2.6689 2.6883 2.5124 2.2062 2.4092 2.7727 
2.6650 2.7493 2.6249 2.6079 2.5816 2.6422 2.7944 2.8334 2.5605 2.7407 2.7809  2.7014 2.6086 
2.4275 2.5919 2.5778 2.8683 2.8489 2.6734 2.7653 2.5621 1.6756  1.5619  1.6581 1.7468 1.7164 
1.7425 1.7523 1.7757 1.7204 1.6959 1.8002 1.7822 1.7963 1.8505 1.9791 1.9992 2.0941  2.0824 
2.1180 2.1681 2.0936 1.9415 1.9529 2.1637 2.2268 2.1786 2.1431 2.0836 1.8186 1.7360 1.8637 
2.5124 2.2062 2.4092 2.7727 2.6650 2.7493 2.6249 2.6079 2.5816 2.6422 2.3499 2.3822 2.2785  
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2.1290 1.9791 1.9992 2.0941 2.0824 2.1180 2.1681 2.0936 1.9415 1.9529 2.1637 2.2268 2.1786 
2.1431 2.0836 1.8186 1.7360 2.2315  2.6559 2.7705 2.8324 2.7943 2.7035 2.6711 2.8006 2.8712 
3.0270 3.1334 3.1018 2.8602 2.8311  2.8207 2.8806 2.9979 2.9912 2.9206 2.9038 2.8573 2.8768 
2.9364 2.9996 3.0254 3.0194 2.8511 2.9811 2.9740 3.0655 3.1441] 

 
Findings: 
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Fig. 2: Fourier Sum for k=1, 
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Fig. 3: Fourier Sum for k=2, 
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Fig. 4: Fourier Sum for k=8, 
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Fig. 5: Gauss Sum for  k=2,  

 
 



100                                 Alexandru Stefanescu, Claudia Popescu, Mihai Popescu 

0 50 100 150 200 250 300

1400

1600

1800

2000

2200

2400

2600

2800

3000

Data and Fits

 

 

0 50 100 150 200 250 300
-800

-600

-400

-200

0

200

400

600
Residuals

 

 

y vs. t

fit 1

fit 1

Fig. 6: Gauss Sum for k=5,  
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Fig. 7: Sum of Sinus for  k=8, 
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