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¢-DONOHO-STARK’S UNCERTAINTY PRINCIPLE AND ¢-TIKHONOV
REGULARIZATION PROBLEM

Akram Nemri *

This paper deals with the extension of the Donoho-Stark’s uncertainty prin-
ciple for the class of Fourier multiplier operators Ty, := ?gl(m?q) to time scale. Fur-
thermore, the Bochner-Riesz mean operator, the Weierstrass transform and the Poisson
integral are given using Fourier multiplier operators. Finally, the exact erpression and
some properties of the extremal functions of the so-called Tikhonov regularization prob-
lem are also determined; using reproducing kernel methods.
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1. Introduction

A time scale, denoted by T, is a nonempty closed subset of the real numbers. We
assume throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The calculus on time scales is a relatively new area that unifies
the difference and differential calculus, which are obtained by choosing the time scale T for
example the real numbers R, the integers Z, the natural numbers N, the nonnegative integers
No, the h-numbers hZ := {h k, k € Z} with fixed h > 0, and the g-numbers ¢* := {¢*, k € Z}
with fixed ¢ € (0,1). A strong current research has been developed in many different fields
in which dynamic processes can be described with discrete, continuous, or hybrid models.
The time scale theory was found promising because it demonstrates the interplay between
the theories of continuous time and discrete-time systems. It leads to a new understanding
and analyzing of dynamical systems on any nonuniform time domains that are closed subsets
of R. In particular, calculus on the time scale T := R, y = {¢*,k € Z}, q € (0,1) is called
“Quantum calculus” or “g-calculus” and much recent research activity and applications
has focused on this theory. This branch of mathematics continues to find new and useful
applications. Quantum calculus is the modern name for the investigation of calculus without
limits. It’s appeared as a connection between mathematics and physics. Quantum calculus
has its own definition of derivative, integral, exponential, sine, cosine etc. All these notions
depend on an a priori given number q. Many g-notions approach their classical analogs as
g T 1. The real line R is replaced, essentially, by the set R, of points accumulating at 0.

In this paper, we present a unification proof of many inequalities and approximations
for the classical and discrete case; by means of the theory of time scales. The idea is to
extend the cosine Fourier transformation &, to time scale, which sends a function f on R, 4
to a function F,(f) on the same set; and has many properties analogous to those of the
classical Fourier transform. In particular, it acts as an isometry of the space L2 (Rg,+) of
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functions f on R, ; with finite norm |[|.||z2(g, ,), defined by

Il =0 —a) (D a [ @) )

neZ

1/2

Moreover, it satisfies F4(F,(f)) = f.

In this paper we study the Fourier multiplier operators T}, defined for f € L*(R, )
by

T f = Fg(mTy(f)),
where m : T — R is a bounded function. Thus the Fourier transform of T}, reduces to the
multiplication by m. Such multiplier operators play a decisive role in the classical Fourier
analysis.
Central to this work is the best approximation problem in quantum calculus,
it {nll I3, — T f|? } 1.1
remm) llfll5es @y + Nl e, 4 (1.1)

for an unknown function f, where g € L*(R, ) is a given function and n > 0, s > 1/2 are

parameters with s fixed throughout and 7 approaching eventually 0. Here Hi,q(Rq) is the
g-analog of the Sobolev space of fractional order s,

I (Ry) 1= { € LA(Ry1) : (1+ 22)/2T,(£)(2) € L2(Ry ) }.

We provide some analysis of the minimizer f) & of the problem (1.1). Especially we use the
theory of Fourier transform in quantum calculus, to give integral representations of fy
and to examine the convergence rates of these type of representations.

In the limit case n 1 0, the problem (1.1) reduces to the Tikhonov regularization
problem

. 2
seatt e U = Tl o }-

The paper is divided into five sections and is organized as follows. This paper is orga-
nized as follows. In Section 2, we present preliminaries, definitions and concepts concerning
time scale calculus and basic notions that will be needed in the proofs of the main result.
In Section 3, we define and study the Fourier multiplier operators 73, on R, ; and we give
three examples: the ¢-Bochner-Riesz mean operator, the ¢-Weierstrass transform and the
g-Poisson integral. In Section 4, we present extensions of an Donoho-Stark’s uncertainty
principle for the class of Fourier multiplier operators T,,, on time scale. In the last section,
we give an application of the theory of Fourier transform on time scale, to examine the
minimizer f, = of the problem (1.1).

2. Preliminaries

Throughout the paper assume that 0 < ¢ < 1. For a € C, the g-shifted factorial
(a; q)x is defined as a product of k factors

(a:q)o =1, (a:¢)r = (1 —a)(1 —aq)...(1 —ag®™Y), k=12, ..

This definition remains meaningful for £ = co as a convergent infinite product
o0
(a:0)oe = [ (1 — ad®).
k=0

The g-derivative of a function f given on a subset of R or C is defined by

f(x) = fgx)

, x,q#0,
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/

where = and gz should be in the domain of f. By continuity we set (D, f)(0) = f (0)
provided f'(0) exists.
For a > 0 and a function f given on (0, a] we define the g-integral by

| @ = - ga X e
n=0

The improper integral is defined in the following way

oo +oo
/O fla)dgz == (1—q) > f(d")d"

k=—o0
We begin by putting
R, ={xq¢" k€ Z}, Ryt ={d"keZ}, R,y=1{c"kez}u{o}.
Let E :=[0,a], := {¢*,k € Z,k > n}, a = ¢" be subset of R, ;.

We denote by p the measure on R, 4 given by dgu(y) := c,dqy; and by LP(R, 4+), 1 < p < oo,
the space of functions f on R, 1, such that

o » 1/p
e, = ([ 1FPanw) " <o 1<p< .

[fllze®, ) = ess sup [f(y)| < oo,
yERG +

where
1+g¢

cq = (1_(])_1/2r;;(1/2), (2.1)

and the ¢g-gamma function (see [7, 8], Section 1.3) is defined by

Iy(z) = %(1 —¢)'7F, 0<gq<1, z#0,-1,-2,..
(0% @)oo
We take the definition of g-trigonometric function [9] and we write g-cosine as a series

of functions
oo oo

cos(z; ¢%) = Z(—l)”bn(x;qQ) = Z(*l)

n=0 n=0

. qn(n+1) 277,.

(@ 9)2n

On #¢” this function is bounded and there it satisfy
1
(¢:4*)%"

Let f be a function in L'(R, 4 ), the g-even translation operators T, , are defined by

f&ﬁ@%:A F(2) Dyl y, 2)dy2

where ¢, is given by (2.1) and D,(z,y, 2) is defined for = and y in R, 4 by

| cos(z;¢%)] <

oo
Dy(z,y,z2) = 03/ cos(wt; ¢%) cos(yt; ¢*) cos(zt; ¢*)d  t.
0
In particular the following product formula holds
T4,y cos(tz; q?) = cos(tz; ¢°) cos(ty; ¢°).

Specially, we need the positivity of the g-even translation operator [6] for proving the fol-
lowing inequality for f € L*(R,.4),

H Tq,xf HLl(]Rq,Jr)S” f HLl(]Rqu) :
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This positivity property holds if ¢ € (0, q], where qq is first zero of the ¢-hypergeometric
function [7] ¢ — 1¢1(0;¢; 4, q).

For f € L'(R, +) the g-cosine Fourier transform is defined by

F,(f) (@) = /0 " cos(ay; ) f(y)dguly), @€ Ryl

The g-analogue of the elementary exponential functions are crucial. They are defined

by
o on 1 o
E(x;q) = (—(1-9)7;¢) Z ntp q(i) z", zeR, (2.2)
O 7
and

(i) = e = 3 D < (23)

(1=@)z:6%)0s 5 (GDn 1—q
The g-cosine Fourier transform J, satisfies the following properties.
(i) L' — L*°-boundedness. For all f € L' (R, +), F,(f) € L>®(R, +) and

1
1Fa ()l ooy 4) < W\\fHLl(Rq,# (2.4)

(ii) Inversion theorem ([4], Theorem 3.2). Let f € L'(R, ), such that F,(f) €
L'(R, +). Then
f(@) = Fg(Fg(F)(x),  zeRgy. (2.5)
(ili) Plancherel theorem ([4], Theorem 7.7). The g-cosine Fourier transform F, extends
uniquely to an isometric isomorphism of L2 (Rq,+) onto itself. In particular,

1Fo(Pl 2@y ) = I1f Iz, 1)- (2.6)

3. g-Fourier multiplier operators on R, |
Let m be a function in L*(R, +). The g-cosine Fourier multiplier operators T, [13],
are defined for f € L*(R, ) by

T f :=Fq(mTq(f))- (3.1)
Then, for f € L*(R, 1), we have

1T fllzr, ) < Imllze®, HIIfllL2e, ) (3.2)

As applications, we give the following examples.
Example 3.1. Let m be the function defined for ¢ > 0 and 5 > 0 by

() = Wiy (/665 X0, (), 7 € Rt

(°*; ¢*) oo
(222 %15 ¢%) o0
to (1 —22)2"1/2 as ¢+ 17 . Then T, f = 0p.4.4(f), where 0 +.4(f) is the g-analogue of the
Bochner-Riesz mean operator of f (see [2, 3]) given by

(1—q 1/2 Fp(B+1
a0 = (175) G etatg s , 1) Tawdssasattsi)iants)

Here, j,(z;q) is The normalized third Jackson’s g-Bessel function of order a j,(z;q) :=
RS
(4°+%59) oo

called the Hahn-Exton g-Bessel function J,(.; q) (see [9], (3.3)).
Example 3.2. Let m be the function defined for ¢ > 0 by m(z) := ez (—t2?), z € Ry 4,

where W, is the g-binomial function [5] given by W, (x;¢%) = which tend

27*J®)(2;q), where J& )(.,q) is the third Jackson’s ¢-Bessel function (this is
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where eg2 (2) is given by (2.3). Then T}, f = W, 4(f), where Wy ,(f) is the g-analogue of the
Weierstrass transform of f (see [10, 14]) given by

Wia(f)(@) = A7 (t: %) / F() Tyt (—(22)2>dq,u(z),

qt(1+¢q
(—17etr — 120’6 0%
(—}%3#—%3 30700
Example 3.3. Let m be the function defined for ¢ > 0 by m( )= 8((11/2)(7752), z € Ry,

< _ak?/2
where the function 8511/2) is defined [1] by 8(0‘ Z g FaecC.

where A(t;¢%) = 2(1—q)?

Then T,,,f = P, 4(f), where P,(f) is the g-Poisson mtegral of f (see [11]) given by

P = (10) an e [ rm ] e

4. ¢-Donoho-Stark’s uncertainty principle for T,

In this section we establish a g-Donoho-Stark’s uncertainty principle for the operators
Ty Let E :=[0,a], := {¢",k € Z,k > n}, a = ¢" be a subset of R, . We say that a
function f € L?(R, ), is e-concentrated on E, if

If = xeflleew, ) < ellflleze,.) (4.1)

where xg is the indicator function of the set F.
Let S be a subset of R, and let f € L*(R,4). We say that that T,,f is v-
concentrated on S, if
1Tonf — XsTmfllzzw, o) < VITmfllrzr, - (4.2)
Theorem 4.1. Let f € L?>(R, ;) and let m € L* N L>®(R, ). If f is e-concentrated on E

and Ty, f is v-concentrated on S, then

ImTFq(Fllz2w, ) — (V +e)llmll L, ;) ||f||L2(Rq+)
Il g, )1 fll2 R, )

()2 (SN2 = (¢:4%)%

Proof. Let f € L*(R

o+) and let m € L' N L>=(R, ;). Assume that u(E) < oo and
u(5) < oo. From (3.2), (4

+)
.1) and (4.2) it follows that

1T f —xsTmXEH 2y ) < NTnf = xsTmfllzzw, o) + IXsTm(f — xE)|L2®, 1)
< vTnfllezw, ) + 1Tn(f = x2H)lL2 R, 5)
< il (V@ + I = X6, )
<

(v +e)lmlpew, )l fllL2r, .-
Then the triangle inequality shows that
1T fllee, ) < IIxsTm(XE2@, 1) + 1T f — XsTm(XE) L2(R, +)
< AxsTimixefllzw, ) + @ +e)llmllre®, ol fllzze, -
But

1/2
IXsTm e F) o e o) = ( / |Tm<fo><a:>|2qu(x>) ,
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and
1
T (xef)(2)] < T ImFy(xef)llLr®, )
1
< m”m”Ll(Rq,Jr)||?q(XEf)||Lw(Rq,+)
1
< W||m||Ll(Rq,+>||XEfHL1<Rq,+)
1
— Imlloie, Il @, (W(E))'2.
(¢: )4, (Rq,+) (Rq,+)
Thus,
1
IXsTm(XEN L2, 2) < 750 ||m||L1(Rq,+)Hf”L"’(Rq,Jr)(U(E))1/2(M(S))1/2
(¢:9%)
and
1
1T fllre@, ) < o Imllo@, ol fllze@, o WE) > (u(9)?
(a:42)
? o0

+ wHe)lmllrem, HIfllLz®, -
By applying (2.6), we obtain

ImF (2w, ) — W +e)llmllpew, Il fllz2,
(L(E)2(u(S)Y? > (6675 : Rq, ) Rq.+) (Rq.+)
Imllzr @, ) fllL2 gy )

)

which gives the desired result. O

Example 4.2. Let m be the function defined for ¢ > 0 and 5 > 0 by
m(z) =Wy 1(2/t; @) Xpo,,(2), 2 €Rqy,

(1-9)'/?T 2 (B+1) ¢

= Fa7 T s (51373 2nd

Then ||m||Loo(]qu+) =1, ||m||L1(Rq,+) = Dq(t)

(WEN ()Y > D (1) (g ), L2 = @ Ol e
- o 1fllz2 R, +)

Example 4.3. Let m be the function defined for t > 0 by m(z) := e, (—tzZ),
z € Rq,+'

Then [[m|| L~ L [lmllzrz, ) = A7 (t;¢*) and

at)

)25 2 Al ) (gt oDy =D ate)
o o I1f1lz> )

Example 4.4. Let m be the function defined for ¢ > 0 by m(z) := 821/2)(7tz),
AS Rq’+.

AN
Then [|mllz, ) = 1, Imlli, o = Ko = (152) A gk ) and

(BN 2(u(5) > K gs ) eI ~ O O e
SR T
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5. Extremal functions and ¢-Tikhonov regularization for the operators T,,

We define the g-Sobolev space [12] of order s > 0, that will be denoted 3 ,(R,),

as the set of all f € L?(Ry ) such that (14 22)%/2F,(f) € L*(Rq4). The space 3  (R,)
endowed with the inner product

(Faghscs o= [ (4 2PT T u(E)

and the norm [ fllsc: _(=,) = /{f, 93, (&,)-

The Hilbert space 3]  (R,) satisfies (see [12]) the following properties.

(a) :Hg,q(Rq) = L*(Rg+).

(b) For all s > 0, the space H:  (R,) is continuously contained in L*(R, ) and
[fllz2®, ) < N fllaes , ®y)-

(c) The space H3  (Ry), s > 0, endowed with the inner product (.,.)sc:  (r,) is a
Hilbert space.
Remark 5.1. ([12], Example 3.1) For s > 1/2, the function y — (1 + 22)7%/2 belongs

to L?(Rg,+). Hence for all f € H: (Ry), we have [|[Fo(f)llr2(r, ) < [flls¢: ,(r,)» and by
Holder’s inequality,

(s 1/2
e < | [ 2] 1l -

Then the function F,(f) belongs to L' N L*(R, ), and therefore

f@w—émmamm%%uxa%ma, 7€ Ry .

Let n > 0. We denote by (., .),773{?(1(&) the inner product defined on the space
H; o(Rg) by
(f,9nac &) =10, 9aes vy + (TS, Tmg) L2, 1) (5.1)

and the norm || f|l; 5¢s  (,) = +/{fs Flnocs (&, -

On 3 ;(Ry) the two norms ||.[s¢: (=,) and ||.[[;,3¢: , ®,) are equivalent.
This (3 ,(Ry), (., .>n’}(i’q(Rq)) is a Hilbert space with reproducing kernel given by the fol-
lowing theorem.
Theorem 5.2. Letn >0, s > 1/2 and letm € L>(Rq,4). The space (3 ;(Rq), (-, -)n,5¢s  (r,))
has the reproducing kernel

_ [ Tyucos(yziq®) B

that s
(i) For ally € Ry 4, the function x — ks(z,y) belongs to 3;  (Ry).

(ii) The g-reproducing property: for all f € H; (Ry) and y € Ry 4,
(fr ks y))n e, @y = W)

COS zZ 2
Proof. (i) Let y € Ry + and s > 1/2. The function @, : z — W belongs to

L' N L?(Ry 4 ). Then, the function k is well defined and by (2.5), we have

[ cos(zz;¢7) cos(yz; ¢7) . 2.z
ks(l'vy) - A |m(z)|2 +77(1 + 22)3 dqﬂ( ) - ?q(q)y)( )7 € Rq#-
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From (2.6), it follows that ks(.,y) belongs to L?(R, ), and

Tk )) = e s Ry (5.3

Then by (2.4), we obtain |F4(ks(.,y))(2)| < WM’ and

1 * dgp(2) )“2
ko(., . < 4 < 0.
[[Fes( y)”ﬂf*,q(Rq) = nlg @)2 </o (1+ 22)* o0

This proves that for all y € R, 4 the function k(.,y) belongs to 3  (R,).
(ii) Let f € 3 ,(Ry) and y € Ry 1. From (5.1) and (5.3), we have

*° F, s(yz; ¢
okl g = 0 [ (14 22 SULEIRIE T )

+ / Ty (T o (F)(2)Fo (T () (2)dgpa(2)

- dre) 2) cos(yz; ¢ z
- "/o Py ) (E) costyzia)dgn(z)

+

/ooo |m<z>|2|71(;)<1 oy Ta(£)(2) oz ) dgp(2)

| 5@ costyzia)dut),
0
and from Remark 4.1, we obtain the reproducing property

(fs ks (., )>n5{> (]R)—f(y)~

This completes the proof of the theorem. O

The main result of this section can be stated as follows.
Theorem 5.3. Let s > 1/2 and let m € L>®°(R, ). For any g € L*(R,+) and for any
n > 0, there exists a unique function fy ,, where the infimum

el {1+ 9 = T e, 00 (5:4)

is attained. Moreover, the extremal function fy , is given by

£o) = / " @)K (s ) dan(a), (5.5)

where

oy [T miz) Ty cos(yz; ¢°)
K(z,y;q )_/0 |m(2)|2+77(1+z2)5dq’u(z)'

Proof. The existence and unicity of the extremal function f) / satisfying (5.4) is obtained
n [10, 15]. Especially, f,  is given by the reproducing kernel of H; g (Rg) with [|[l,9¢:  ,)
norm (Theorem 5.2) as

F1.0W) = (9 Tin (ks (5 9))) 2Ry, 1) (5:5)
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where k is the kernel given by (5.2).
But by (2.5) and (5.3), we have

T (ks (-, 9))(2) /OOO m(2)Fq (ks (-, ))(2) cos(xz; ¢*)dgpu(2)

- /oool ()|2+(77Z()1+22) cos(yz; ¢°) cos(vz;¢")dgpu(2)

_ [T m(z)
= /0 @ 1 0T ) Ty cos(yz; ¢*)dgp(2).

This clearly yields the result. O

As application, we give the following examples.
Example 5.5. Let s > 1/2, 7> 0 and g € L*(R, +).

(i) Tf m(z) == Wy, 1 (2/t:6%) Xpo., (2), t > 0 and 8> 0, then
mo(Y) :/0 9(2)X (2, y; ¢°)dgp(z), where

tWﬁJr L (2/t;¢*) T2 cos(yz; ¢2)
o Wi (/6% +n(l+2%)

K(x,y;4°) = dgp(2).

(i) If m(2) 1= eg2 (—tz?), t > 0, then Inoy) = /Oog(ac)fK(%y; q*)dgpu(x), where
0

> eg (—t2%) Ty 4 cos(yz; ¢2)
K(x,y;4° :/ . - ~—d :
(.1? Y q ) o 632 (*t22) +77(1 +22)5 qﬂq(z)

(iii) If m(z) := 8((11/2)(—tz), t >0, then f; (y) = / ()X (z,y; ¢*)dypu(z), where
0

o0 2
K(z,y;4%) :/ o )(_tz)Tqéw cos(yi')
O (e8P (—t2)) (1 +22)0

dqpq(2)-

Corollary 5.6. Let s >1/2, >0 and g € L*(R, ). The extremal function fr g satisfies

. " D,(s
) 112, W) < V(ﬁ)

L < Df;) ([ 1tre, (q(liq)) dqu<x>)l/2,

o )\ /2
2= s (] woe)

Proof. (i) From (2.6) and (5.5), we have
[f,9 ()]

||g||L2(Rq,+)a

(i) [1£7,6

where

l9llz2®, )T (ks (o ¥ 2R, 1)
9]l 2 ®y, ) [MF (ks (Y L2 Ry 4)-

VANRVAN

Then, by (5.3) we deduce

1 © m()Pdau(z) "2
@ 1ol ></ [Im(2)2+n(1+z2)512> '

el <
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Using the fact that
2
[Im(2)[2 4+ n(1+ 22)° ] = 4n(1+ 22)7[m(2) 2, (5.6)

we obtain the result.
(ii) We write

fra) = [ \/ ) B (o )X i),

where E2(z) is given by (2.2). Applying Hélder’s inequality, we obtain
o'} 2
* 2 </ 2p ( x ) Kz, y: ¢2)|2d '
lfne @I < ; lg(x)["Eg2 d0+q)? 1K(z,y:¢7) " dgp()

Thus and from Fubini-Tonnelli’s theorem, we get
2

* |2 = 2 o L2412
||fn,g|\L2(Rq,+) S/O |9()|" Eqg2 <61(1+Q)2> [K(z, 5 q )||L2(Rq,+)dqﬂ($)~

Let U, (z2) = % Since ¥, € L' N L2(R, ), then

K(x,y;4%) = Fo (V) (y),

m(z) cos(rz; %)
Im(2)]? +n(1+2%)*

and by (2.6) we deduce that F,(X(z,.;¢*))(z) =
Thus,

s P = [ S 52 Pl

1% m()Pdaue)
= <q;q2>zo/o Tm@P + 71 + 22

D

Then using the inequality (5.6), we obtain | X (x, .; q2)||L2(Rq’+) < \q/(;)'
From this inequality we deduce the result. (|
Corollary 5.7. Let s > 1/2 and n > 0. For every g € L*(R, 1), we have

NP b oy m(2)F4(9)(2)

(1) fn,g(y) - /0 COS(yZ,q )\m(z)|2 +77(1 + ZQ

(9,0

Im(2)? +n(L + 22)

)quu(z).

(i) Fq(f.)(2) =

(i) (17 g llaes Ry < 2\/—||9||L oy

Proof. (i) follows from (5.5) by using (2.6) and (5.3).
(ii) The function z — —me)Tal9)=) _ pelongs to L N L*(Ry+). Then by (2.5), we

[m(2)[2+n(1+22)
have f;"g(y) =F,(

(4(0)(2)
()P + 01+ 2 Y o
m(7,(0)(2)
P+ + )

From (2.6), it follows that f; = belongs to L*(R,, 1), and Fo(fy ,)(2) =

(iii) By relation (ii) we have

* L (5 o) — [ A2V IEPIT,0) ()P
Fralles o = [ O+ 10,5 )P = [ ST P

dgi().
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Using the inequality (5.6), we obtain

1

* o 1
I£50lce @) < 35 / Fya)@)Pdgu(z) = - lolEae,

which ends the proof. O
Theorem 5.8. Let s > 1/2 and n > 0. For every g € L*(R, 1), we have

, N b _ m(2)[*F4(9)(2)
(1) Tm n,g(y) */0 COS(yz’q2)|m(2’)|2+n(1+Z2

. " _ _Im(x)PF4(9)(2)
(ll) ?Q(Tm n,g)(z) - |m(2)‘2+n(1+22)5'

(iii) TTYl.f';]k,g(y) = f;,ng(y)-

()l Ty = gliecm, o) =0

eda(2).

Proof. From (3.1) and Corollary 4.7 (ii), we have T, f, /(y) = T ( |m|(TZ)(|ZQ)jCZq((19_)|_(z)2)S ) (y).

The function z — Mf% belongs to L' N L?(R, 4+ ). Then by (2.5), we obtain (i),
and by (2.6) we obtain (ii).

(iii) follows from (i) and Corollary 4.7 (i). ,

—n(1+27)°

(iv) From (ii) we have Fy (T f, , — 9)(2) = |m(z)|z(—|——;(1 3_ ZQ)SS"q(g)(z).

(L 2%)* T (9)(2)
)P+ a1+ 2 1)

(1 + 2%)*|F(9)(2)?
[lm(2)[? +n(1 + 22)°]?

Thus, [Tl = ol = [

< |Fe(9)(2)]?, we

Using the dominated convergence theorem and
. * 2
deduce that lirng 1T frg = 9l12R, ) =0,

which ends the proof. O
Theorem 5.9. Let s > 1/2 and n > 0. For every f € 3; [(Ry) and g = T, f, we have

i m(z)|? z
O Fis0) = [ costys ) IEIIUDE) g )

B . m(z)|*F, z
(i) Fo(fi g, )(2) = |m|(z)(|2)|+n((1fl(z)2)8'

(iii) Jim, 1yt s = flle®, ) =0

() T, 155, = Sloce 5 = 0

Proof. (i) and (ii) follow directly from Corollary 4.6 (i) and (ii).
(iii) From Remark 4.1, the function F(f) € L' N L?(R, +). Then by (i) and (2.5),

> o0l +2%)°Fo(£)(2)

f:;,Tmf(y) - f(y) = /0 |m(z)|2 ¥ 77(1 + ZQ)S COS(yZ; q2)dq/”’“(z)

So
. (1 +2%)° 1T, (f)(2)]
Vs = Flle @) < (4:6%)% /0 Im(z)|? + n(i + 22)s ab(2).

(1 +2%)°|1F(£)(2)]

Again, by dominated convergence theorem and

we deduce that nlir(r)l+ Iy, — fllze@®, ) =0.
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oo
Conseauently, 117, ~ /1B i = [
’ 0

Using the fact that

— —n(1 + 2?%)*
214 2N
(1 + 2%)°%|F, . ;
772 +Z2 S : i 22)s 2)|?
[lm(2)|2 + n(1 + 22)%]? < (1+22%F,(F)(2)]%,

(iv) From (ii) we have F,(f, . — f)(2)

sFa()(2).

: * _ 2 —
we deduce that ngrél+ I £, fH}ciyq(Rq) 0,

which ends the proof. O

6. Conclusions

In this paper, an unification proof of many inequalities and approximations for the

classical and discrete case by means of the g-theory. An extensions of the g-Donoho-Stark’s
uncertainty principle for the class of Fourier multiplier operators T,,. Finally, an exact
expression and some properties of the extremal functions of the so-called Tikhonov regular-
ization problem are obtained, using reproducing kernel methods.
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