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ON THE IMPLICATIONS OF THE BIOLOGICAL SYSTEMS
FRACTAL MORPHO-FUNCTIONAL STRUCTURE

Roxana Maria NEMESI, Letitia Doina DUCEACZ*, Elena Geanina VASINCU®,
Maricel AGOP*, Paraschiva POSTOLACHE’

Considering that the biological systems structural units dynamics are
achieved on fractal curves, in the scale relativity hydrodynamic variant (with
constant arbitrary fractal dimension), fractal logical elements (fractal bit, fractal
cellular neural network etc.) are defined. Assuming that the external scalar potential
is proportional with the fractal states density, the one-dimensional solution with
finite fractal “energy” is obtained in the form of a fractal kink, whose “topology”
implies, through its induced topological charge, the fractal bit. By mapping the one-
dimensional solution with infinite fractal “energy”, the fractal cellular neural
network is obtained. In a particular case, for motions on Peano curves at Compton
scale, the quantum logical elements are obtained once more. Some implications on
the fractal morpho-functional structure of the lung, using this model, are shown.

Keywords: biological systems, fractals, Scale Relativity Theory, fractal bit, quantum bit,
fractal cellular neural network.

1. Introduction

The biological systems dynamics imply self-organization and various
chaos transition scenarios (intermittency, quasi-periodicity, sub-harmonic
bifurcation etc.) [1][2] of its structural units. Thus, the collective behavior (pattern
generation through “biological structural units” coherence [3][4][5]) can be
mimed by self-organization, while the plasticity (functional substitution) can be
mimed by various chaos transition scenarios [5].

Considering the facts above, we admit that for large temporal scales with
respect to the inverse of the highest Lyapunov exponent, the deterministic
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trajectories of biological structural units (for example the lung alveoli [3][4]) are
substituted by a set of potential trajectories and the definite positions concept is
substituted by that of probability densities. As a result, the differentiability from
standard biophysics can be replaced by fractality from the Scale Relativity Theory
[6][7] or by fractality from the Scale Relativity Theory with an arbitrary constant
dimension [8][9]. In both of these theories we assume that the movements of
biological structural units (for example the lung alveoli [3][4]) take place on
fractal curves, so that all physical phenomena involved in the biological systems
dynamics depend not only on the space and time coordinates but also on scales
resolution [10]. As a consequence, the variables that describe the biological
systems dynamics must be considered as fractal functions. Moreover, the
biological structural units may be reduced to and identified with their own
trajectories, so that the biological systems will behave as a special interactionless
“fluid” (biological fractal fluid).

In the present paper, assuming that the biological systems structural unit’s
dynamics take place on fractal curves, in the hydrodynamic formulation of the
Scale Relativity Theory with an arbitrary constant fractal dimension, the fractal
bit, in particular the quantum bit, and the fractal cellular network are defined. In
our opinion, according to the Complex Systems General Theory [1][2], every
organ, for example the lung, structures its own fundamental logical elements,
which may explain specific functions mimicking by stem cells injected into
organs.

2. Fractal Hydrodynamics Model

Let us reconsider the fractal hydrodynamics equations in the form [8][9]:
azf\/D + (VD ’ V)\/D = _V(Q + U) > (1)
0,p+V-(pV,) =0, @)
where V, is the differentiable and scale resolution independent velocity field,
pis the states density field, Q is the specific fractal potential

4/ \_ 2 2/ o
0=—20°an\» _Aj@ _ _VTF _pan vy, @)
p
V., is the non-differentiable and scale resolution dependent velocity field

(#%.)

V, = D(dt)""" V(Inp). 4)
U is the external scalar potential, D is the fractal — non-fractal transition

coefficient, D, is the fractal dimension, dt, by means of substitution principle is

the scale resolution [5][6][7], Vis the gradient operator and A is the Laplace

operator. For D, any definition can be used [10]. Once such a definition is
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accepted, it has to be constant over the entire analysis of the biological system
dynamics. In a particular case, for motions on Peano curves, D, =2, at Compton

scale D =17/2m,, where h is the reduced Planck constant and m, the rest mass of

the biological system structural unit, the fractal hydrodynamic equations (1)-(3)
become the quantum hydrodynamic equations.

The following conclusions are obvious:

1) Any structural unit of the biological system is in a permanent
interaction with the fractal medium through the specific fractal
potential (3). For motions on Peano curves at Compton scale the
fractal medium corresponds to the sub-quantum level [11];

i) The fractal medium is identified with a non-relativistic fractal fluid
(the fluid structural unit may be reduced to and identified with its
own trajectory, i.e. its geodesics, so that the fluid will behave as a
special interactionless “fluid” by means of geodesics in a fractal
space) described by the specific momentum and states density
conservation laws (see equation (1) and (2));

iii) The fractal velocity V. does not represent actual motion, but

contributes to the transfer of specific momentum and energy
concentration. This may be seen clearly from the absence of V;

from the states density conservation law (2) and from its role in the
variational principle [6][7]. As an immediate consequence of the
facts mentioned above, regarding biological systems dynamics, we
can note that, although at a macroscopic scale, in some cases,
cancer cannot be observed, although cancer cells are replicating
continuously at a fractal scale — the dormant stage of cancer [3][4];

iv) Any interpretation of the specific fractal potential should take
cognizance of the “self” nature of the specific momentum transfer.
While the energy is stored in the form of mass motion and potential
energy, some is available elsewhere and only the total is conserved.
It is the conservation of energy and the specific momentum that
ensures reversibility and the existence of eigenstates, but also
denies a Brownian motion form of interaction with an external
living medium. This implies for biological systems dynamics, the
possibility of reversibility, for example cancer relapse after a
“successful” treatment;

V) Two types of fractal stationary states are to be distinguished:
a) Dynamic states. For 0, =0 and V, #0 equations (1) and (2)

give
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%VD2+U+Q=E, (5)

pV, =Vxf. (6)
Consequently, the sum of the specific kinetic energy V,’ /2,

external potential, U , and fractal potential, Q, is invariant, i.e.
equal to the integration constant E # E(r)(see equation

5).E= <E > represents the total energy of the fractal dynamic

system. The states density current, pV,, has no sources (see

equation (6)), i.e. its streamlines are closed.
b) Static states. For 0, =0 and V,, =0, equations (1) and (2) give
U+Q=E . (7)
The sum of the external potential, U , and fractal potential, Q,
is invariant, i.e. equal to the integration constant £ # E(r) (see

equation (7)). E = <E > represents the total energy of the fractal

static system. The states density conservation law (2) is
identically satisfied.

3. Spontaneous symmetry breaking at fractal scale and its implications

Let us consider the static states

2/ -1
0,=0, V, = D(dt)M)F) VS=0, 8)
i.e. the phase coherence, S = const. of the fractal fluid structural units.
Then, equation (7) with the substitutions

2, _
U=Ep,E=const.>0,p"" =g, D= D(dt)(ﬁ’F) ! )
becomes
2m,D*
5 fe=g-g. (10)

In the one-dimensional case and using the notationézx(E/ 2m0£/)2)1/ 2,
Equation (10) takes the form:

0.8=¢—-¢. (11)

The equation (11) can also be obtained through the fractal variational

principle SJ. Ldt=0with dt the fractal elementary volume applied to the fractal

Lagrangean density (we extend the method from [12]):



On the implications of the fractal morpho-functional structure in biological systems 267

1
L= E(Qg)2 -0(g), (12)
with the “potential”:

0(g) = (%j - (g?) . (13)

Equation (11) has the solutionsg, =0,g,. =%1. By calculating the
second derivative with respect togof the “potential” entering (13) and
substituting the above critical values into the result of this differentiation we find
0, (0) =-1,0,(£1) =2 > 0. Therefore the solution g, = *1is associated with the
minimum “energy”’. Hence, the model under consideration has a double

degenerated fractal vacuum state.
From (12) result both the “energy”,

0 l )
e(2)= | da[g(agg) +®<g>} (14)
and the “energy” relative to the fractal vacuum:
K 1 21
&(g)—&(g,) = Ida[g(agg) + (& —1)2] (15)

Since all terms in (15) are positive and in view of the infinite limits of
integration, the finiteness of the “energy” implies that at & — oo

1
0. =0 7(g" =17 =0. (16)

From this, it follows that at & — toothe function g(&) tends to its fractal
vacuum value g, — *1. In order to find the explicit form of the solution of (11),
we multiply it by 0,g and subsequently over &, This yields:

1 g g1
—(0,8)° =->+2-+—g,, 17
5 (0:8) PTIPY L (17)
where g, is a fractal integrate constant. From this, we have:
g dg

§-¢ = | ——, (18)
-([\lgz_gz"'go

where &’ is the other fractal integrate constant. To this general solution
corresponds for an arbitrary g, an infinite value of the “energy” e(g). To obtain

the solution with finite “energy”, we make use of the boundary
conditions g, — +1. From (17) it results that g, =1/2. Replacing this value of g,

into (18), the solution £, (&) of the field equation (17) with a finite “energy” is:
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0 1 0
g (©&)=g(g-¢ )=tanh{3(a—a )] (19)

We denote it the fractal kink solution (details on the standard kink can be
found in [13]).

Combining (15) with g, =1 and g, , we obtain the “energy” of the kink
relative to the fractal vacuum:

&g~ (g,) =¥. (20)

Thus, the fractal kink solution is obtained by a fractal spontanecous
symmetry breaking (the fractal vacuum states are not invariant with respect to the
fractal transformations group which makes invariant equation (11), while the
fractal Lagrangean density remains invariant). Moreover, the fractal kink
corresponds to a fractal pattern in the form of a Cooper type pair. We note that for
motions on Peano curves at Compton scale, the above fractal pattern can be
reduced to a standard Cooper type pair [14][15][16][17].

4. Topology at fractal scale and its implications

A fractal topological method can be applied because the admissible
number of fractal kinks is determined by the fractal topological properties of the
fractal symmetry group induced by equation (11) (details on the standard
topological method can be found in [12]). In this context, the following problems
must be solved: i) the number of admissible fractal kink solutions determined by
the fractal topological properties of equation (11); ii) the fractal topological
charge.

The fractal kink solution can be obtained as fractal mapping of a fractal

spatial zero-sphere S°, taken at infinity onto the fractal vacuum manifold of the
model given by means of equation (11). The fractal homotopy group for this
model is I1,(Z,) = Z,i.e. the model gives rise to two solutions: a constant solution

g, and the fractal kink solution. Details on a usual homotopy mapping are given

in Ref. [12].
The fractal topological charge is:
15 . 15
q= ijf(a)da =2 j dg (22)

The fractal vacuum solution (absence of spatial gradients) and the fractal
kink solution can be characterized by attributing the ¢ =0and ¢g =1, respectively.

This result is obtained by an adequate normalization of g. Since equation (11) is
a fractal Ginzburg — Landau type equation [13], it follows that ¢ = 0 describes the
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fractal vacuum states, while g =1, by means of fractal kink solution, describes the
fractal Cooper type pair [18][19][20].

Now, one can associate to these fractal topological charge values the
fractal bit, that is a fractal system which can exist in two distinct fractal states (an
unstructured state or of fractal vacuum and a structured one or of fractal Cooper
type pair). These states are used in order to represent 0(df)and 1(dt), that is a
single binary fractal digit. In a particular case, for motions on Peano curves at
Compton scale, the fractal bit is reduced to the quantum bit. Thus, the structural
relations between the fractal Cooper type pairs generate a special topology, which
implies defining the fractal bit.

5. Fractal cellular neural network

Since the general solution (with infinite “energy”) of the GL type equation
(11) has the explicit form,

S Rt
g= 1+stn[ e ,sj (23)

where sn is the elliptical Jacobi function of modulus s [21], the specific
fractal potential becomes:
1d’g o 1=s 280 L E-&
, = —— = 1— = + 0 5 24
Q(?]S) gd772 ( g) 1+s? 1+Szcn \/1+s2 g (24
- see Figs. la-e. Therefore, the biological systems’ structural units’

dynamics can be described by cnoidal oscilation modes [22]. These
modes, for s=0 or s >0 imply linear waves or wave packets,

Q(?],SZO,S—)O)ZI_SZ + 25" cosz(ﬂ-sJ (25)

1+5> 1+ J+s2

while for s =10or s —1 they imply solitons or soliton packets,

1-s* 25 &E-¢
s=lso>1)=—=—+ W ==2L:s|. 26
O(m s =ls 1) =1 -G+ a5 (m (26)

The normalized fractal potential (24) takes a very simple expression which
is directly proportional to the Cooper type pairs states density. When the Cooper
type pairs states density, g’, becomes zero, the fractal potential takes a finite
value, QO=1. The fractal fluid is normal and there are no coherent structures
(Cooper type pairs) in it. When g* becomes 1, the fractal potential is zero, i.e., the
entire quantity of energy of the fractal fluid is transferred to its coherent
structures, i.e., to the superconducting type pairs. Then the fractal fluid becomes
“superconducting”. Therefore, one can assume that the energy from the fractal
fluid can be stoked by transforming all the environment’s entities into coherent
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structures (Cooper type pairs) and then “freezing” them. The “superconducting”
fluid acts as an energy accumulator through the fractal potential (24).

The cnoidal oscillation modes can be assimilated with a non-linear Toda
lattice [23][24][25][26]. Now, by mapping these modes, a fractal cellular neural
network can be defined. For details on this process. [13][27].

5. Conclusions

The main conclusions of the present papers are the following:

i)The hydrodynamic version of the scale relativity theory in arbitrary
constant fractal dimension is presented (fractal hydrodynamics);

i) Assuming that the external scalar potential is proportional with the
fractal states density, the one-dimensional solution with finite fractal
“energy” in the form of fractal kink is obtained. This solution breaks the
fractal vacuum symmetry and generates fractal Cooper type pairs by
means of fractal spontaneous symmetry breaking mechanisms. Then, the
phase coherence of the fractal pairs will produce a self-structuring of the
fractal vacuum which is interpreted as a tendency of the system to make
structures (patterns) in the form of fractal Cooper type pairs. In such a
manner, biological systems self-structuring can manifest;

iii) Since the admissible number of fractal kinks is determined by the
fractal topological properties of the fractal symmetry group of
equation (11), a topological fractal method can be applied. Then, the
fractal bit and, in particularly, the quantum bit, are obtained;

iv) It can be shown that, by infinite energy solution mapping, a fractal
cellular neural network can be defined;

v) The simultaneous presence in biological systems both of the
“hardware” (cell, tissue, organ etc.) and of the “software” (fractal bit,
fractal cellular neural networks etc.), denotes a higher class of evolution
through external medium adjustment specific mechanisms. For
example, compensatory growth is such a mechanism, of regenerative
type, that can take place in a number of human organs after the organs
are either damaged, removed, or cease to function [28]. Additionally,
increased functional demand can also stimulate this growth in tissues
and organs. In the case of the lung we observe the postpneumonectomy
mechanism [3][4]. This concept is different from remodeling (capillary
congestion, increasing in air content). The absolute increase in tissue
after pneumonectomy and blood flow surfaces coupled with an
enlargement of the conducting airways may provide a decrease in
hypoxia. Postpneumonectomy compensation, which is slow for an adult
lung, is more present in children. The cells expand by hyperplasia
and/or hypertrophy.
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Figs. la-e. 3D dependence of the specific fractal potential, O on the non-linear degree, s and

normalized coordinate, £ (a); contour curves of the specific fractal potential for various non-linear

degree (b-¢)
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