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In this paper, we shall introduce the notion of modular b-gauge spaces with
the help of pseudomodular b-metrics. We shall also prove some fixed point theorems

for multivalued mappings on modular b-gauge spaces. Moreover, we shall construct an
application of our result in nonlinear integral equations.
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1. Introduction and Preliminaries

Czerwik [1] introduced the concept of b-metric spaces which appears as a novel gener-
alization of metric spaces. This notion helps us to standardize the measurement of distance
between the elements of lp spaces, specially for p ∈ (0, 1). Czerwik [1] defined this space by
modifying the triangular axiom of metric space (X, d) as:

d(x, z) ≤ s[d(x, y) + d(y, z)] for each x, y, z ∈ X, where s ≥ 1.

After Czerwik [1] many articles published in this direction, see for example, [2, 3] with those
cited in these two articles.

Another generalized form of metric spaces is introduced by Chistyakov [4] known as
modular metric spaces. In this space the distance between two elements may depends upon
a parameter λ. Moreover it is not necessary that the distance between two elements must
be finite. Recently Ali [5] extended modular metric spaces by introducing the terminology
of modular b-metric spaces, this concept involves the idea of Czerwik [1].

Frigon [6] studied the Banach fixed point result on gauge spaces. After this study
many authors worked in the direction of gauge spaces, like, [7, 8, 9, 10, 11, 12, 13]. Recently,
Ali et al. [14] introduced the notion of modular gauge spaces induced through the family of
pseudomodular metrics.

In this paper we define the concept of modular b-gauge spaces induced through the
family of pseudomodular b-metrics. We will also prove fixed point results for multivalued
mappings in the setting of modular b-gauge spaces induced through the family of pseu-
domodular b-metrics. An as application of our work we will provide an existence result
for nonlinear integral equations. Further, we will provide a particular nonlinear integral
equation as an example of our existence theorem.

With the help of bibliography we collect few definitions and results which will be
required subsequently.
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Definition 1.1. [4] A modular metric ωms : (0,∞) ×X ×X → [0,∞] on X is a function
with these axioms: for each x, y, z ∈ X, we have

: (i) ωms(β, x, y) = 0 ∀β > 0⇔ x = y;
: (ii) ωms(β, x, y) = ωms(β, y, x) ∀β > 0;
: (iii) ωms(β + γ, x, z) ≤ ωms(β, x, y) + ωms(γ, y, z) ∀β, γ > 0.

For a brief study of modular metric spaces and fixed point results stated on it, we
refer the readers to [5, 15, 16, 17, 18, 19]. Ali [5] extended the concept of modular metric
space by defining the modular b-metric space as:

Definition 1.2. [5] A modular b-metric ωms : (0,∞)×X ×X → [0,∞] on X is a function
with these axioms: for each x, y, z ∈ X, we have

: (i) ωms(β, x, y) = 0 ∀β > 0⇔ x = y;
: (ii) ωms(β, x, y) = ωms(β, y, x) ∀β > 0;

: (iii) ωms(β + γ, x, z) ≤ ωms(βs , x, y) + ωms(
γ
s , y, z) ∀β, γ > 0, here s ≥ 1 is a fixed real

number.

The modular b-metric on X is called modular b-metric space and denoted by (X,ωms, s)

A modular metric space is also a modular b-metric space but converse statement is
not true in general.

Example 1.1. [5] Take X = [0,∞) with wms(β, x, y) = x2+y2−2xy
β is the simplest example

of modular b-metric space with s = 2. Note that it is not a modular metric space.

Definition 1.3. [5] A regular modular b-metric ωms : (0,∞)×X ×X → [0,∞] on X is a
function with these axioms: for each x, y, z ∈ X, we have

: (i) x = y ⇔ ωms(β, x, y) = 0 for some β > 0;
: (ii) ωms(β, x, y) = ωms(β, y, x) ∀β > 0;

: (iii) ωms(β + γ, x, z) ≤ ωms(βs , x, y) + ωms(
γ
s , y, z) ∀β, γ > 0, here s ≥ 1 is a fixed real

number.

A pseudomodular b-metric on X is obtained by replacing axiom (i) of a modular
b-metric with (i′) for each x ∈ X, ωms(β, x, x) = 0 ∀β > 0. Note that the function β →
ωms(β, x, z) is nonincreasing on (0,∞). This fact can be proven by taking 0 < β < γ (with
β = λ

s ) in triangular axiom, that is,

ωms(γ, x, z) ≤ ωms(
γ − λ
s

, x, x) + ωms(
λ

s
, x, z) = ωms(β, x, z).

Further note that when ωms is a pseudomodular b-metric on X and x0 ∈ X is a fixed
element, then the sets

Xωms = Xωms(x0) = {x ∈ X : ωms(γ, x0, x)→ 0 as γ →∞}
and

X∗ωms = X∗ωms(x0) = {x ∈ X : ∃γ = γ(x) > 0 such that ωms(λ, x0, x) <∞}
are modular spaces (around x0).

The concepts like ωms-convergent sequence, ωms-Cauchy sequence, ωms-closed sets
and ωms-complete sets in modular b-metric spaces are defined in the similar way as defined
for modular metric spaces in [19].

Definition 1.4. Let (X,ωms, s) be a modular b-metric space, let {xn} ⊆ Xω and x ∈ Xω.
Then:

: (i) the {xn} is ωms-convergent sequence in X with the limit point x, if ωms(β, xn, x)→
0 for some β > 0 as n→∞;
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: (ii) the {xn} is ωms-Cauchy sequence if limn,m→∞ ωms(β, xn, xm) = 0 for some β > 0
: (iii) a subset M of Xωms is ωms-complete if every ωms-Cauchy sequence in M is ωms-

convergent in M ;
: (iv) a subset M of Xωms is ωms-closed if it contains the limit point of each ωms-

convergent sequence contained in M .
: (v) a subset M of Xωms is ωms-bounded if we have

δωms(M) = sup{ωms(1, x, y) : x, y ∈M} <∞.

In the literature we have seen that the fixed point results on modular metric spaces
involve the ∆-condition and Fatou property. Ali [5] extended these conditions for modular
b-metric spaces as follows:

Definition 1.5. [5] Let (X,ωms, s) be a modular b-metric space. Then ωms is satisfies:

: (a) the ∆b-condition, if the following axioms hold:

: (i) for each {xn} in X satisfying ωms(β, xn, xn+1) ≤ rnC for some β > 0 and for
each n ∈ N, where r ∈ [0, 1/s) and C > 0 is some fixed real numbers, then we
have ωms(γ, xn, xn+1) ≤ rnC for each γ > 0 and for each n ∈ N;

: (ii) for each {xn} in X and x ∈ X with limn→∞ ωms(β, xn, x) = 0 for some β > 0,
then we have limn→∞ ωms(γ, xn, x) = 0 for all γ > 0.

: (b) the Fatou property if for each {xn} ωms-convergent to x and {yn} ωms-convergent
to y, we have ωms(1, x, y) ≤ lim infn→∞ ωms(1, xn, yn).

2. Main Results

This section begins with ωms-ball with respect to pseudomodular b-metric.

Definition 2.1. Take a pseudomodular b-metric ωms on X. Then the ωms-ball having the
radius β > 0 with x ∈ X as a center is the set

B[x, ωms, β] = {z ∈ X : ∀γ > 0 ωms(γ, x, y) < β}.

Example 2.1. Take X = R with the pseudomodular b-metric ωms(β, x, y) = x2+y2−2xy
β for

each x, y ∈ X and β > 0, where s = 2. Then

B[x0, β, 1] = {z ∈ X : ∀β > 0, x20 + z2 − 2zx0 < β} = {x0}.

Example 2.2. Take X = R with the pseudomodular b-metric ωms(β, x, y) = x2+y2−2xy
dβe for

each x, y ∈ X and β > 0, where s = 2. Then

B[x0, β, 1] = {z ∈ X : ∀β > 0, x20 + z2 − 2zx0 < dβe}
= {y ∈ X : x20 + z2 − 2zx0 < 1} = (x0 − 1, x0 + 1).

Definition 2.2. A collection F = {ωmsη with sη ≥ 1 : η ∈ A} of pseudomodular b-metrics
is called separating if for every pair (x, y) with x 6= y, we have atleast one ωmsη ∈ F with
ωmsη (β, x, y) 6= 0 ∀β > 0.

Definition 2.3. Take a collection F = {ωmsη with sη ≥ 1 : η ∈ A} of pseudomodular
b-metrics on X 6= ∅. The topology T(F) with a collection of subbases

B(F) = {B[z, ωmsη , γ] : z ∈ X,ωmsη ∈ F and γ > 0}
of the balls is a modular topology induced by the collection F of pseudomodular b-metrics.
The pair (X,T(F)) is said to be a modular b-gauge space.

Before going towards a next definition we define the following notion:

XF = XF(x0) = {x ∈ X : ∀η ∈ A ωmsη (β, x0, x)→ 0 as β →∞}
where x0 is fixed in X.
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Definition 2.4. Take modular b-gauge space (X,T(F)) with respect to the collection F =
{ωmsη with sη ≥ 1 : η ∈ A} of pseudomodular b-metrics on X and also take {xn} ⊆ XF and
x ∈ XF. Then:

: (i) {xn} is ωmsη -convergent to x if for every η ∈ A we have limn→∞ ωmsη (β, xn, x) =

0 for some β > 0 . We denote it as xn →F x;
: (ii) {xn} is ωmsη -Cauchy if for every η ∈ A we have limn,m→∞ ωmsη (β, xn, xm) = 0 for

some β > 0;
: (iii) XF is ωmsη -complete if every ωmsη -Cauchy sequence in XF is ωmsη -convergent in
XF;

: (iv) a subset W of XF is said to be ωmsη -closed if it contains the limit of each ωmsη -
convergent sequence of its elements.

: (v) a subset W of XF is ωmsη -bounded if we have

δF(W ) = sup{ωmsη (1, x, y) : x, y ∈W, η ∈ A} <∞.

Take a separating modular b-gauge space induced through the collection of pseudo-
modular b-metrics F = {ωmsη with sη ≥ 1 : η ∈ A} on X 6= ∅ and {xn} is ωmsη -convergent
in XF, then {xn} ωmsη -converges to unique limit point.

On contrary we take xn →F a and xn →F b. Then for every η ∈ A, there are γ1, γ2 > 0
such that limn→∞ ωmsη (γ1, xn, a) = 0 and limn→∞ ωmsη (γ2, xn, b) = 0. By the triangular
axiom we obtain

ωmsη (sηγ1 + sηγ2, a, b) ≤ ωmsη (γ1, a, xn) + ωmsη (γ2, xn, b) ∀n ∈ N and η ∈ A.

This yields, limn→∞ ωmsη (sηγ1 +sηγ2, a, b) = 0 ∀η ∈ A. As F = {ωmsη with sη ≥ 1 : η ∈ A}
is separating, hence we get a = b.

Subsequently, in the article, A is an indexed set and X 6= ∅ equipped with a modular
b-gauge space induced through the collection F = {ωmsη with sη ≥ 1 : η ∈ A} of separating
pseudomodular b-metrics which also satisfy the Fatou property and ∆b-condition. Further-
more, M is ωmsη -bounded and ωmsη -complete subset of XF under the above considered
modular b-gauge space (X,T(F)). Moreover, λ is a mapping from M ×M into [0,∞). By
CL(M), we denote the collection of nonempty ωmsη -closed subsets of M under the above
modular b-gauge space.

Theorem 2.1. Consider a map T : M → CL(M) such that for each x, y ∈M with λ(x, y) ≥
1 and u ∈ Tx, there exists v ∈ Ty satisfying the following inequality:

ωmsη (1, u, v) ≤ rη max
{
ωmsη (1, x, y),

ωmsη (1, x, u) + ωmsη (1, y, v)

2
,

ωmsη (2sη, x, v) + ωmsη (1, y, u)

2

}
+ Lηωmsη (1, y, u) (1)

for all η ∈ A, where rη ∈ [0, 1/sη) and Lη ≥ 0 ∀η ∈ A. Further, assume the given below
conditions hold:

: (i) there are two elements x0 ∈M and x1 ∈ Tx0 with λ(x0, x1) ≥ 1;
: (ii) for x ∈M and y ∈ Tx with λ(x, y) ≥ 1, we have λ(y, z) ≥ 1 for each z ∈ Ty;
: (iii) if {xn} is a sequence in M with xn →F x ∈M and λ(xn, xn+1) ≥ 1 ∀n ∈ N, then
λ(xn, x) ≥ 1 ∀n ∈ N.

Then atleast one fixed point of T must exists.
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Proof. By hypothesis (i), there are two elements x0 ∈M and x1 ∈ Tx0 such that λ(x0, x1) ≥
1. From (1), for λ(x0, x1) ≥ 1 and x1 ∈ Tx0, we have x2 ∈ Tx1 such that

ωmsη (1, x1, x2) ≤ rη max
{
ωmsη (1, x0, x1),

ωmsη (1, x0, x1) + ωmsη (1, x1, x2)

2
,

ωmsη (2sη, x0, x2) + ωmsη (1, x1, x1)

2

}
+ Lηωmsη (1, x1, x1)

≤ rη max
{
ωmsη (1, x0, x1),

ωmsη (1, x0, x1) + ωmsη (1, x1, x2)

2
,

ωmsη (1, x0, x1) + ωmsη (1, x1, x2)

2

}
≤ rη max

{
ωmsη (1, x0, x1), ωmsη (1, x1, x2)

}
∀η ∈ A. (2)

If we take max
{
ωmsη (1, x0, x1), ωmsη (1, x1, x2)

}
= ωmsη (1, x1, x2), then from (2) we get

ωmsη (1, x1, x2) ≤ rηωmsη (1, x1, x2) < ωmsη (1, x1, x2), which is impossible. Thus, we have

max
{
ωmsη (1, x0, x1), ωmsη (1, x1, x2)

}
= ωmsη (1, x0, x1). From (2), we have

ωmsη (1, x1, x2) ≤ rηωmsη (1, x0, x1) ∀η ∈ A. (3)

As x0 ∈M and x1 ∈ Tx0 with λ(x0, x1) ≥ 1, then by hypothesis (ii), for x2 ∈ Tx1, we have
λ(x1, x2) ≥ 1. From (1), for λ(x1, x2) ≥ 1 and x2 ∈ Tx1, we have x3 ∈ Tx2 such that

ωmsη (1, x2, x3) ≤ rη max
{
ωmsη (1, x1, x2),

ωmsη (1, x1, x2) + ωmsη (1, x2, x3)

2
,

ωmsη (2sη, x1, x3) + ωmsη (1, x2, x2)

2

}
+ Lηωmsη (1, x2, x2)

≤ rη max
{
ωmsη (1, x1, x2),

ωmsη (1, x1, x2) + ωmsη (1, x2, x3)

2
,

ωmsη (1, x1, x2) + ωmsη (1, x2, x3)

2

}
≤ rη max

{
ωmsη (1, x1, x2), ωmsη (1, x2, x3)

}
= rηωmsη (1, x1, x2) ∀η ∈ A. (4)

From (3) and (4), we have ωmsη (1, x2, x3) ≤ r2ηωmsη (1, x0, x1) ∀η ∈ A. Continuing this pat-
tern we get {xn} in M such that xn ∈ Txn−1, λ(xn−1, xn) ≥ 1 and ωmsη (1, xn, xn+1) ≤
rnηω(1, x0, x1) ≤ rnη δF(M) for each n ∈ N and η ∈ A. By using the ∆b-condition and the
above inequality, for each η ∈ A, we get ωmsη (µ, xn, xn+1) ≤ rnη δF(M) for each µ > 0 and n ∈
N. For each m, p ∈ N, we get

ωmsη (p, xm, xm+p) ≤
m+p−1∑
i=m

ωmsη (
1

siη
, xi, xi+1) ≤

m+p−1∑
i=m

riηδF(M)

≤
∞∑
i=m

riηδF(M)→ 0 as m→∞∀η ∈ A.

Hence {xn} is ωmsη -Cauchy in M . As M is ωmsη -complete then there is x∗ ∈M such that
for each η ∈ A we have limn→∞ ωmsη (β, xn, x

∗) = 0 for some β > 0. Since the ∆b-condition
holds for the collection F then, for each η ∈ A, we get limn→∞ ωmsη (γ, xn, x

∗) = 0 ∀γ > 0.
Hypothesis (iii) yields λ(xn, x

∗) ≥ 1 ∀n ∈ N. From (1), for λ(xn, x
∗) ≥ 1 and xn+1 ∈ Txn
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there is v∗ ∈ Tx∗ such that

ωmsη (1, xn+1, v
∗) ≤ rη max

{
ωmsη (1, xn, x

∗),
ωmsη (1, xn, xn+1) + ωmsη (1, x∗, v∗)

2
,

ωmsη (2sη, xn, v
∗) + ωmsη (1, x∗, xn+1)

2

}
+ Lηωmsη (1, x∗, xn+1)

≤ rη max
{
ωmsη (1, xn, x

∗),
ωmsη (1, xn, xn+1) + ωmsη (1, x∗, v∗)

2
,

ωmsη (1, xn, x
∗) + ωmsη (1, x∗, v∗) + ωmsη (1, x∗, xn+1)

2

}
+Lηωmsη (1, x∗, xn+1) ∀η ∈ A. (5)

In the above inequality by keeping the Fatou property and the case as n→∞, we get

ωmsη (1, x∗, v∗) ≤ rη
ωmsη (1, x∗, v∗)

2
∀η ∈ A,

which is only possible if ωmsη (1, x∗, v∗) = 0 ∀η ∈ A. As we know that the collection
{ωmsη with sη ≥ 1 : η ∈ A} is separating, thus we get x∗ = v∗. Hence, x∗ ∈ Tx∗. �

Theorem 2.2. Consider a map T : M → CL(M) such that for each x, y ∈M with λ(x, y) ≥
1 and u ∈ Tx, there exists v ∈ Ty satisfying the following inequality:

ωmsη (1, u, v) ≤ aηωmsη (1, x, y) + bηωmsη (1, x, u) + cηωmsη (1, y, v)

+eηωmsη (2sη, x, v) + Lηωmsη (1, y, u) ∀η ∈ A (6)

where aη, bη, cη, eη, Lη ≥ 0, and sηaη + sηbη + sηcη + 2s2ηeη < 1 ∀η ∈ A. Further, assume
the given below conditions hold:

: (i) there are two elements x0 ∈M and x1 ∈ Tx0 with λ(x0, x1) ≥ 1;
: (ii) for x ∈M and y ∈ Tx with λ(x, y) ≥ 1, we have λ(y, z) ≥ 1 for each z ∈ Ty;
: (iii) if {xn} is a sequence in M with xn →F x ∈M and λ(xn, xn+1) ≥ 1 ∀n ∈ N, then
λ(xn, x) ≥ 1 ∀n ∈ N.

Then atleast one fixed point of T must exists.

Proof. Hypothesis (i) gives the existence of two elements x0 ∈ M and x1 ∈ Tx0 with
λ(x0, x1) ≥ 1. From (6), for λ(x0, x1) ≥ 1 and x1 ∈ Tx0, we get x2 ∈ Tx1 such that

ωmsη (1, x1, x2) ≤ aηωmsη (1, x0, x1) + bηωmsη (1, x0, x1) + cηωmsη (1, x1, x2)

+eηωmsη (2sη, x0, x2) + Lηωmsη (1, x1, x1)

≤ (aη + bη + eη)ωmsη (1, x0, x1) + (cη + eη)ωmsη (1, x1, x2)

+Lη0 ∀ η ∈ A.

By performing some necessary simplification we obtain ωmsη (1, x1, x2) ≤ ξηωmsη (1, x0, x1)

for all η ∈ A, here ξη =
aη+bη+eη
1−cη−eη < 1. Since x0 ∈M and x1 ∈ Tx0 with λ(x0, x1) ≥ 1, then

by hypothesis (ii), for x2 ∈ Tx1, we have λ(x1, x2) ≥ 1. Thus from (6), for λ(x1, x2) ≥ 1
and x2 ∈ Tx1, we have x3 ∈ Tx2 such that

ωmsη (1, x2, x3) ≤ aηωmsη (1, x1, x2) + bηωmsη (1, x1, x2) + cηωmsη (1, x2, x3)

+eηωmsη (2sη, x1, x3) + Lηωmsη (1, x2, x2)

≤ (aη + bη + eη)ωmsη (1, x1, x2) + (cη + eη)ωmsη (1, x2, x3)

+Lη0 ∀ η ∈ A.

Again by performing necessary simplification, we obtain ωmsη (1, x2, x3) ≤ (ξη)2ωmsη (1, x0, x1)

for all η ∈ A, here ξη =
aη+bη+eη
1−cη−eη < 1. Proceeding with this pattern we obtain {xn}

in M with xn ∈ Txn−1, λ(xn−1, xn) ≥ 1 and ωmsη (1, xn, xn+1) ≤ (ξη)nωmsη (1, x0, x1) ≤
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(ξη)nδF(M) for all η ∈ A and n ∈ N. By considering the ∆b-condition and the last inequal-
ity, for each η ∈ A, we get ωmsη (γ, xn, xn+1) ≤ (ξη)nδF(M) for each γ > 0 and n ∈ N.
Following we will show {xn} is ωmsη -Cauchy. For each p,m ∈ N and η ∈ A, we get

ωmsη (p, xp, xp+m) ≤
p+m−1∑
i=p

ωmsη (
1

siη
, xi, xi+1) ≤

p+m−1∑
i=p

(ξη)iδF(M)

≤
∞∑
i=p

(ξη)iδF(M)→ 0 as p→∞.

Hence {xn} is ωmsη -Cauchy in M . As M is ωmsη -complete then there is x∗ ∈M such that
for each η ∈ A we have limn→∞ ωmsη (β, xn, x

∗) = 0 for some β > 0. Since the ∆b-condition
holds for the collection F then, for each η ∈ A, we get limn→∞ ωmsη (γ, xn, x

∗) = 0 ∀γ > 0.
By considering hypothesis (iii) and the facts about {xn}, we get λ(xn, x

∗) ≥ 1 for each
n ∈ N. From (6), for λ(xn, x

∗) ≥ 1 and xn+1 ∈ Txn, there is v∗ ∈ Tx∗ with

ωmsη (1, xn+1, v
∗) ≤ aηωmsη (1, xn, x

∗) + bηωmsη (1, xn, xn+1) + cηωmsη (1, x∗, v∗)

+eηωmsη (2sη, xn, v
∗) + Lηωmsη (1, x∗, xn+1)

≤ aηωmsη (1, xn, x
∗) + bηωmsη (1, xn, xn+1) + cηωmsη (1, x∗, v∗)

+eη[ωmsη (1, xn, x
∗) + ωmsη (1, x∗, v∗)]

+Lηωmsη (1, x∗, xn+1) ∀ η ∈ A.

In the above inequality by applying the Fatou property and the limit as n→∞, we get

ωmsη (1, x∗, v∗) ≤ (cη + eη)ωmsη (1, x∗, v∗) < ωmsη (1, x∗, v∗) ∀ η ∈ A,

this is impossible if ωmsη (1, x∗, v∗) 6= 0. Thus, ωmsη (1, x∗, v∗) = 0 ∀ η ∈ A. Since the
collection {ωmsη with sη ≥ 1 : η ∈ A} is separating, thus we get x∗ = v∗. Hence, x∗ ∈
Tx∗. �

The above theorem implies to the following result, when we assume that T : M →M
and λ(x, y) = 1 for each x, y ∈M .

Corollary 2.1. Consider a map T : M →M such that for each x, y ∈M we get

ωmsη (1, Tx, Ty) ≤ aηωmsη (1, x, y) + bηωmsη (1, x, Tx) + cηωmsη (1, y, Ty)

+eηωmsη (2sη, x, Ty) + Lηωmsη (1, y, Tx) ∀η ∈ A (7)

where, sηaη + sηbη + sηcη + 2s2ηeη < 1 and aη, bη, cη, eη, Lη ≥ 0, ∀η ∈ A. Then atleast one
fixed point of T must exists.

Remark 2.1. Note that

: (i) if the collection of pseudomodular b-metrics F = {ωmsη with sη ≥ 1 : η ∈ A} on X
is such that ωη(γ, x, y) < ∞ (that is, finite number) ∀η ∈ A and γ > 0, and every
x, y ∈ X, then ωmsη -boundedness of M may be ignored from the results.

: (ii) one may use continuous operator in the results instead of Hypothesis (iii).

3. Consequences

In this section, we consider G = (V,E) as directed graph with vertex set V equal to
M and edge set E contains {(x, x) : x ∈ V }. Moreover, no parallel edges contained in G.
Define a map λ : M ×M → [0,∞) by

λ(x, y) =

{
1, if (x, y) ∈ E
0, otherwise.

Then Theorem 2.1 and 2.2 yields the following results, respectively.
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Corollary 3.1. Consider a map T : M → CL(M) such that for each x, y ∈M with (x, y) ∈
E and u ∈ Tx, there is v ∈ Ty satisfying the following inequality:

ωη(1, u, v) ≤ rη max
{
ωmsη (1, x, y),

ωmsη (1, x, u) + ωmsη (1, y, v)

2
,

ωmsη (2sη, x, v) + ωmsη (1, y, u)

2

}
+ Lηωmsη (1, y, u) ∀η ∈ A,

where rη ∈ [0, 1/sη) and Lη ≥ 0 ∀η ∈ A. Further, assume the given below conditions hold:

: (i) there are two elements x0 ∈M and x1 ∈ Tx0 with (x0, x1) ∈ E;
: (ii) for x ∈M and y ∈ Tx with (x, y) ∈ E, we have (y, z) ∈ E for each z ∈ Ty;
: (iii) if {xn} is a sequence in M with xn →F x ∈M and λ(xn, xn+1) ≥ 1 ∀n ∈ N, then
λ(xn, x) ≥ 1 ∀n ∈ N.

Then atleast one fixed point of T must exists.

Corollary 3.2. Consider a map T : M → CL(M) such that for each x, y ∈M with (x, y) ∈
E and u ∈ Tx, there is v ∈ Ty satisfying the following inequality:

ωmsη (1, u, v) ≤ aηωmsη (1, x, y) + bηωmsη (1, x, u) + cηωmsη (1, y, v)

+eηωmsη (2sη, x, v) + Lηωmsη (1, y, u) ∀η ∈ A

where sηaη + sηbη + sηcη + 2s2ηeη < 1 and aη, bη, cη, eη, Lη ≥ 0 ∀η ∈ A. Further, assume the
given below conditions hold:

: (i) there are two elements x0 ∈M and x1 ∈ Tx0 with (x0, x1) ∈ E;
: (ii) for x ∈M and y ∈ Tx with (x, y) ∈ E, we have (y, z) ∈ E for each z ∈ Ty;
: (iii) if {xn} is a sequence in M with xn →F x ∈M and λ(xn, xn+1) ≥ 1 ∀n ∈ N, then
λ(xn, x) ≥ 1 ∀n ∈ N.

Then atleast one fixed point of T must exists.

4. Application and Example

As an application, we prove the existence theorem for nonlinear integral equation of
the below mentioned form:

x(t) = p(t) +

∫ t

0

S(t, u)g(u, x(u))du, t ∈ Y (8)

where p : Y → R, g : Y × R → R are continuous functions and S : Y × Y → [0,∞) is such
that S(t, ·) ∈ L1(Y ) for all t ∈ Y .

Denote X = (C[0, b],R) with the collection of all bounded and continuous realvalued
functions on Y = [0, b], where b is any fixed natural number. Consider a collection of
pseudomodular b-metrics as

ωn(γ, x, y) =
1

dγe
max
t∈[0,n]

(x(t)− y(t))2.

Clearly, modular b-gauge space obtained by the collection F = {ωn with sn = 2 : n ∈ J =
{1, 2, · · · , b}} on X is separating and ωmsη -complete. Also it satisfies the ∆b-condition and
Fatou property.

Theorem 4.1. Let X = (C[0, b],R) and let the operator

T : X → X, Tx(t) = p(t) +

∫ t

0

S(t, u)g(u, x(u))du, t ∈ Y = [0, b]

where p : Y → R, g : Y × R→ R are continuous functions and S : Y × Y → [0,∞) is such
that S(t, ·) ∈ L1(Y ) for all t ∈ Y , and b > 1. Further, assume the given below conditions
hold, for each natural number n ≤ b:
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: (i) for each s ∈ [0, n] and x, y ∈ X, we obtain

|g(s, x(s))− g(s, y(s))|2 ≤ 1

2b
max
t∈[0,n]

|x(t)− y(t)|2 for each n ∈ J ;

: (ii) there is δ ∈ (0, 1) with

max
t∈[0,n]

(∫ t

0

S(t, u)du

)2

≤ nδ.

Then the integral equation (8) has at least one solution.

Proof. For any x, y ∈ X and t ∈ [0, n] for n ∈ J , we have

|Tx(t)− Ty(t)|2 ≤
(∫ t

0

S(t, u)[|g(u, x(u))− g(u, y(u))|]du
)2

≤

(√
1

2b
max
t∈[0,n]

|x(t)− y(t)|2
∫ t

0

S(t, u)du

)2

=
1

2b

(∫ t

0

S(t, u)du

)2

max
t∈[0,n]

|x(t)− y(t)|2.

This yields the inequality ωn(γ, Tx, Ty) ≤ anωn(γ, x, y) ∀ x, y ∈ X, γ > 0 and n ∈ J with

an = nδ

2b < 1
2 . Hence, we say (7) holds with an = nδ

2b , and bn = cn = en = Ln = 0 for
each n ∈ J . Therefore, by Corollary 2.1, there exists a fixed point of T , that is, the integral
equation (8) has at least one solution. �

Remark 4.1. Consider the integral equation of the form:

x(t) =

∫ t

0

(t− u)γ−1
x(u)

b+ x(u)
du, t ∈ Y = [0, b] (9)

where b > 1 is a fixed natural number and γ ∈ (0, 1). Note that Theorem 4.1 validate the
existence of solution of the integral equation (9).

Example 4.1. Take S as the collection of all real sequences with ωn(γ, x, y) = 1
dγe |xn−yn|

2

∀ n ∈ N and γ > 0, where x = {xn}, y = {yn} ∈ S. Define the mapping T : S→ CL(S) by

T ({xn}n∈N) =

{
{{xn+2

3 }n∈N, {
xn+3

3 }n∈N}, if {xn}n∈N ⊆ [0,∞)

{0, {xn2}n∈N}, otherwise

and λ : S× S→ [0,∞) by

λ({xn}n∈N, {yn}n∈N) =

{
1, if {xn}n∈N, {yn}n∈N ⊆ [0,∞)

0, otherwise.

Here, it can be seen that (1) holds for each x, y ∈ S with λ(x, y) = 1, where rn = 1
9 , sn = 2

and Ln = 0 for each n ∈ N. Also for x0 = { 1n}n∈N ∈ S we obtain x1 = { 1+3n
3n }n∈N ∈ Tx0

with λ({ 1n}n∈N, {
1+3n
3n }n∈N) = 1. Further for each x ∈ S and y ∈ Tx with λ(x, y) = 1 we get

λ(y, z) = 1 for each z ∈ Ty. Moreover, every {xn} in S with λ(xn, xn+1) = 1 ∀ n ∈ N and
ωmsη -converges to x ∈ S, we have λ(xn, x) = 1 ∀ n ∈ N. Hence, Theorem 2.1 conclude that
T has a fixed point.

5. Conclusion

We conclude this article with these sentences: First, we defined the notion of modular
b-gauge spaces and proved few fixed point results on this structure. Secondly, we applied
our result to study about the existence of the solution of nonlinear integral equations. In
last, we gave the examples of our results.
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