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FAST SHORT-TERM CHANNEL STATE PREDICTION 

BASED ON DEEP TRUST BLOCKCHAIN NETWORKS 

Jun ZHU1,*, Guoyin ZHANG2 

As wireless communication technology evolves, precise and swift channel 

fading prediction is crucial for enhancing communication quality. Traditional 

methods, however, struggle with computational complexity and accuracy, failing to 

meet modern systems' real-time and reliability demands. Recently, deep learning has 

emerged as a promising solution to address the challenge of channel fading 

prediction. This paper introduces a novel approach, the Blockchain-based Deep 

Belief Network (BDBN), which leverages blockchain's decentralization, 

transparency, and security to ensure data integrity and trust during transmission. The 

BDBN aims to achieve rapid short-term channel fading prediction in wireless 

communications, thereby optimizing system performance. Meanwhile, the advantages 

of DBN in dealing with complex nonlinear problems are combined in order to model 

and predicti wireless channel fading. By training a large amount of historical channel 

data, the BDBN is able to learn the potential patterns of channel changes, thus 

realizing highly accurate short-term prediction. Experimental results demonstrate 

that the BDBN method outperforms traditional prediction methods, enhancing both 

accuracy and speed. In particular, BDBN exhibits stronger robustness and 

adaptability when dealing with bursty channel fading. In addition, the introduction of 

blockchain technology also effectively improves the level of data security and privacy 

protection, providing a strong guarantee for the secure transmission of wireless 

communication systems.  
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1. Introduction 

In wireless communications, accurate channel state information (CSI) is vital 

for reliable data transmission. However, CSI is often difficult to obtain accurately 

due to multipath effects, noise, and other interfering factors. Although traditional 

channel estimation methods can provide a certain degree of CSI, the complex 

computation process and feedback delay limit their performance in practical 

applications. Hence, channel prediction techniques have been developed to 

anticipate future channel states, enabling the preemptive adjustment of transmission 

parameters and enhancing overall communication system security [1]. 
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Recently, deep learning has shown exceptional performance across various 

domains, attributed to its powerful nonlinear processing capabilities. The Deep 

Belief Network (DBN), a significant model in deep learning, features multiple 

hidden layers and excels at capturing complex data features [2]. However, DBN has 

seen limited application in wireless communications, particularly in channel 

prediction. Additionally, existing channel prediction methods often lack 

transparency and security, making them susceptible to attacks and tampering. 

Research has been conducted to obtain Channel State Information (CSI), 

leading to the introduction of several valid channel prediction algorithms in recent 

years. Tugay Eyceöz et al. combined autoregression (AR) with fading channels to 

propose a linear fading channel prediction method based on AR. As a classic 

algorithm, it calculates the next channel sample using linear regression with 

previous samples, resulting in a series of channel samples. However, errors 

accumulate in the regression calculations, potentially limiting its application in 

complex scenarios such as high-speed and underwater communications. 

Another effective method is the nonlinear prediction mechanism. For example, 

Zhao et al. [3] combined support vector machines (SVM) with wireless signals to 

propose an effective channel prediction method. Zhao et al. [4] also introduced a 

novel short-term channel prediction method based on Echo State Networks (ESN), 

achieving satisfactory performance due to its numerous neurons in the hidden layer. 

However, this also increases its computational complexity. 

Introduced by Hinton et al. [5] in 2006, the deep belief network (DBN) 

represents a highly effective variant of neural networks. DBN comprises multiple 

hidden layers, each considered as a restricted Boltzmann machine (RBM). In the 

training section, every hidden layer is trained by unsupervised learning model, then 

it is retrained using the output above with unsupervised learning model. In this way, 

weights in hidden layers are adjusted well, which has ability to complete more 

complex nonlinear issues than traditional neural network (NN). Since its inception, 

DBN has garnered significant attention and been utilized in diverse fields, including 

image classification [6,7], and fault diagnosis [8]. In the wireless communication 

field [9], Nie et al. [10] used deep neural networks to obtain network traffic. 

However, network traffic is not adequate for CSI. To our knowledge, no literature 

exists on leveraging blockchain-based DBNs for CSI channel prediction in wireless 

communications, prompting us to explore this research area. 

To address the above issues, this paper proposes a blockchain-based deep trust 

network (BDBN) method for realizing fast short-term prediction of fading channels 

in wireless communications [11]. This method integrates the decentralization, 

transparency, and security features of blockchain technology with DBN's strengths 

in handling intricate nonlinear problems. Its goal is to enhance the precision and 

efficiency of channel predictions while safeguarding the authenticity and integrity 

of the forecasted data. 
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2. Principles of blockchain technology 

Blockchain is a decentralized database technology that facilitates the storage 

and transmission of data in a distributed network. Blockchain technology is 

characterized by decentralization, transparency, security and immutability, thus 

ensuring the authenticity and integrity of the data it contains [12]. Blockchain uses 

decentralized ledger technology to distribute data across numerous nodes, each of 

which keeps a complete record of transactions [13]. 

In a blockchain network, each block contains data, a timestamp, and a hash of 

the previous block, resulting in a tamper-proof chain structure [14]. Each time a 

block is added to the blockchain, a new block is automatically created and a nonce 

is added to the hash of the previous block, thus protecting the integrity of the 

previous block's data. Added to the blockchain, a new block is automatically created 

and a nonce is added to the hash of the previous block, thus protecting the integrity 

of the previous block's data. In addition, blockchain protects the confidentiality and 

integrity of data through encryption algorithms [15]. Each participant has a unique 

set of public and private cryptographic keys, where the public key is used for 

message encryption and the private key is used for decryption. 

3. Channel model 

When blockchain transactions are processed and data is transmitted from one 

node (transmitting terminal) to another node (receiving terminal) within a 

blockchain network, the integrity and sequence of the data packets may undergo 

significant variations due to the distributed nature and potential delays introduced 

by the multi-node consensus mechanism [16]. 

In the context of blockchain, the "envelopes" of data can be likened to the 

structure and sequence of transactions or blocks within the chain [17]. These 

"envelopes" may experience notable changes as they traverse the network, 

primarily due to the following factors related to the multipath effect in a 

decentralized environment: 

Propagation Delays: Given the decentralized nature of blockchain networks, 

which comprise numerous nodes spread across the globe, the duration for validating 

and disseminating a transaction or block to all nodes can differ considerably. This 

delay, akin to refraction in wireless signal transmission, can affect the timing and 

order of transactions [18].. 

Forks and Reorganizations: In some blockchain systems, temporary forks can 

occur when multiple blocks are proposed simultaneously [19]. These forks are 

eventually resolved through the consensus mechanism, but during this period, the 

"envelope" of the blockchain (i.e., the sequence of blocks) may appear to change 

dramatically as nodes sync up and reorganize around the longest valid chain. 

Typically, the modeling of the wireless channel is conducted as outlined below. 
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𝑅(𝑡) = 𝐻(𝑡)𝑋(𝑡) + 𝜀(𝑡)                                 (1) 

Consider the scenario where R(t), H(t), and X(t) represent the received signal, 

channel parameters, and transmitted signal respectively, all as functions of time t. 

Additionally, 𝜀(𝑡) denotes the added Gaussian white noise (AWGN). Taking into 

account the multipath effect, the channel parameter h(t) is characterized by 

modeling the superposition of multiple paths during transmission. This can be 

mathematically expressed as follows: 

ℎ(𝑡) = ∑ 𝐴𝜉𝑒
𝑗(2𝜋𝑓𝜉

𝑡+𝜕𝜉)𝛹
𝜉=1                                 (2) 

In this scenario, let 𝜉 denote the serial number of the transmission paths, with 

𝛹being the total count of these paths. Then 𝐴𝜉 , 𝑓𝜉
𝑡and 𝜗𝜉  are the amplitude, the 

Doppler frequency shift and the phase angle of the 𝜉 -th transmitting path. As for 

the Doppler frequency shift 𝑓𝜉  , it can be calculated by  

𝑓𝜉 =
𝑉

𝐶
𝑓𝑑 𝑐𝑜𝑠 𝜙                                        (3) 

Here, V and C represent the velocity of the receiving terminal and the speed of 

electromagnetic waves in air, respectively. 𝑓𝑑  signifies the maximum Doppler 

frequency shift, while 𝜙 indicates the angle as illustrated in Fig. 1. 

 

Fig. 1. Figure for calculation of cos ϕ. 

For the Rayleigh channel, the probability density function (PDF) is 

𝑓(𝑧) =
𝑧

𝜛
𝑒
−

𝑧2

2𝜛2 , 𝑧 ≥ 0                                    (4) 

and the cumulative distribution function (CDF) can be obtained by 

𝐹(𝑧) = 1 − 𝑒
−

𝑧2

2𝜛2                                      (5) 

In a Rayleigh fading channel, 𝜛2 represents the power of the scattered components. 

4. The fast channel prediction method based on BDBN 

4.1 BDBN 

In Ref., DBN is mainly designed to image recognition and classification in 

artificial intelligence (AI). Due to its excellent prediction performance, DBN can 

also be applied to predict fading channels, together with the characteristics of 
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blockchain [20], therefore, a channel prediction model based on BDBN is proposed 

in this letter. 

 

(a)The architecture of a Restricted Boltzmann Machine (RBM) 

(b) The conventional layout of a Deep Belief Network (DBN). 

Fig. 2. Typical structure diagram 

The typical instruct of BDBN with inputs and outputs is showed in Fig. 2(b), 

which is filled with several RBM showed in Fig. 2(a). A Restricted Boltzmann 

Machine (RBM) comprises an input layer known as the visible layer (𝑣 ∈ (0,1)𝐷) 

and a single hidden layer denoted as ℎ ∈ (0,1)𝐾, the 𝑊 is the connected weight. It 

is noted that neurons in same layer are not connected, while neurons in different 

layers are connected. So assuming an energy function 𝐸(𝑣, ℎ) for all units in input 

layer and hidden layer, the joint probability can be calculated by  

𝑝(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ)

𝑍
                                          (6) 

The normalizing factor, also referred to as the partition function, is denoted by 

Z. Based on the explanations provided, the energy function for the input units 𝑣𝑖 
and hidden units ℎ𝑖 can be derived as follows 

1 1 1 1

( , ) T T T

D K D K

ij i j i i j j

i j i j

E c b

W v h c v b h
= = = =

= − − −

− − −  

v h h Wv v h

=
                      (7) 

Here, W represents the weight matrix, while c and b signify the biases for the 

hidden layer and the visible layer, respectively. In order to reduce computations, 

the Gibbs sample is employed. Hence, the conditional distributions in visible layer 

and hidden layer can be obtained by  

𝑝(ℎ𝑖 = 1|𝑣) = ℱ(𝑊𝑖𝑣 + 𝑐𝑖) 
𝑝(𝑣𝑗 = 1|ℎ) = ℱ(𝑊𝑇

𝑗ℎ + 𝑏𝑗)                   (8) 

where 

ℱ(𝑥) =
1

1+𝑒−𝑥
                                    (9) 
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where ℱ(•)is an active function. Then when to update weights𝑊, Employing 

the contrastive divergence (CD) method, we consider the biases b for the visible 

layer and c for the hidden layer, which are  

𝛥𝑊𝑖𝑗 = 𝜏(𝑣𝑖ℎ𝑗 − 𝑣𝑖_𝑟𝑒ℎ𝑗_𝑟𝑒) 

𝛥𝑏𝑖 = 𝜏(𝑣𝑖 − 𝑣𝑖_𝑟𝑒)                     (10) 

𝛥𝑐𝑗 = 𝜏(ℎ𝑗 − ℎ𝑖_𝑟𝑒) 

where the 𝜏  donates the learning rate in (0,1), the 𝑣𝑖_𝑟𝑒and the ℎ𝑗_𝑟𝑒are the 

recovered input of visible layer and hidden layer. By this approach, we can 

determine the appropriate weight matrix W, as well as the biases for the visible 

layer b and the hidden layer c. 

As explanations above, the BDBN is a stack of many RBMs and a BPNN with 

two layers. The former can extract data characters with several RBMs, while whole 

weights of all layers are adjusted by the latter in prediction network. In this way, an 

effective data predictor based on BDBN is obtained. 

4.2 Fast channel prediction based on BDBN 

Considering Eq.(2), N channel samples serve as the input data (x) for the 

Bidirectional Deep Belief Network (BDBN), and the subsequent N+1 sample is the 

output (y) of the BDBN, which are  

{
𝑥(𝑡) = [ℎ(𝑡𝑇𝑠), ℎ((𝑡 + 1)𝑇𝑠), . . . , ℎ((𝑡 + 𝑁)𝑇𝑠]

𝑇

𝑦(𝑡) = ℎ((𝑡 + 𝑁 + 1)𝑇𝑠)
           (11) 

With Ts representing the sample interval and 𝑡 ∈ (1,2,3, . . . , 𝑁𝑇) indicating the 

sequence, NT denotes the total count of channel samples in the aforementioned 

equation. The gathered channel sample data is then split into two segments: training 

data 𝑁𝑠 and testing data 𝑁𝑐. Notably, to minimize computational complexity, the 

training phase can be executed offline. Additionally, the Bidirectional Deep Belief 

Network (BDBN) can be retrained for diverse scenarios as needed. 

Hence, the processes of proposed channel prediction method based on BDBN 

are followed: 

Training processes of RBMs: 

Step1. Acquire the training dataset 𝑁𝑠  and the testing dataset 𝑁𝑐  from the 

channel samples. 

Step2. Set up the initial parameters for the Bidirectional Deep Belief Network 

(BDBN): specify the number of Restricted Boltzmann Machines (RBMs) as N, 

determine the neuron count in each hidden layer labeled 𝐿 = (𝐿1, 𝐿2, . . . , 𝐿𝒩) , 

assign a learning rate 𝜏  for all RBMs, establish a reference convergence 

accuracy𝜖𝐷𝐵𝑁, and define the maximum number of training iterations for BDBN as 

NBDBN. 
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Step3. Configure the initial parameters for the Restricted Boltzmann Machine 

(RBM): assign weights 𝑊𝐿𝜇−1×𝐿𝜇, set biases for the visible layer 𝑏1×𝐿𝜇 and hidden 

layer 𝑐1×𝐿𝜇−1, and define the maximum number of training iterations as NRBM. 

Step4. Adjust the weights 𝑊𝜇, visible layer bias 𝑏𝜇, and hidden layer bias 𝑐𝜇 

according to Algorithm 1. 

Step5. Evaluate if the current number of training iterations for the RBM 𝜇has 

reached the maximum allowed (N). If not, increment U by 1 and revert to Step 3. 

Step6. Determine if the current iteration count 𝜅  for the RBM has met the 

specified maximum (NRBM). If it hasn't, increment 𝜅 by 1 and return to Step 2. 

Step7. Obtain weight 𝑊𝜇, the bias 𝑐𝜇, 𝜇 = 1,2,3, . . . ,𝒩. 

Training processes of BDBN: 

Step8. Build a Backpropagation Neural Network (BPNN) comprising an input 

layer, a hidden layer 𝒩, and an output layer.  

Step9. Set the initial weights for the output layer in the BPNN, denoted as 

𝑊𝑜𝑢𝑡
1×𝒩 

Step10. Based on gradient descent, update 𝑊𝑜𝑢𝑡,𝑊𝜇 and bias𝑐𝜇. Due to space 

limit, the updated processes are not explained in detail. 

Step11. Calculate the cost function: 

Ϝ =
1

2
∑ (𝑁𝑠𝑖 − 𝑁̂𝑠𝑖)

2𝑚
𝑖=1                                  (12)  

where the 𝑚 is the length of training channel. 

Step12. Evaluate if the current value of the cost function Ϝ  matches the 

predefined convergence precision 𝜖𝐷𝐵𝑁 . If it does not, increment the current 

training iteration counter l by 1 and revert to Step 9. 

Prediction process: 

Step13. Obtain optimal output weights𝑊𝑜𝑢𝑡_𝑜𝑝𝑡, the hidden weight 𝑊𝜇_𝑜𝑝𝑡 and 

hidden bias 𝑐𝜇_𝑜𝑝𝑡.  

Step14. Test prediction performances using testing channel samples𝑁𝑐. 

4.3 The complexity analysis 

The computational complexity is a crucial aspect for assessing the efficiency 

of algorithms. In order to reduce complexity, the training processes are completed 

offline. Hence, the input channel samples are processed by weights in hidden layers 

and finally, the prediction channel value is obtained from the output layer [21]. 

Based on explanations above, so when to obtain the ℎ1
𝜊×𝐿1 ,the complexity is 

𝒪(𝜊𝑁𝐿1). Here, the N is the input data and 𝜊 donates the dimension of input data. 

In this way, when to obtain ℎ1
𝜊×𝐿𝒩 , the complexity is 𝒪(𝜊𝐿𝒩−1𝐿𝒩). Hence, the 

complexity of our proposed way is 𝒪(𝑚𝑎𝑥( 𝜊𝑁𝐿1, 𝜊𝐿1𝐿2, . . . , 𝜊𝐿𝒩−1𝐿𝒩). Then 

according to Ref., the complexity of SVM is 𝒪(𝑜3). For AR, if the order is NAR, its 

complexity is 𝒪(𝑁𝐴𝑅). Due to 𝜊 ≫ 𝑁, so we can obtain the conclusion that the 
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proposed channel prediction method based on BDBN has comparable complexity 

than AR, and has less computation complexity than SVM. 

Some strategies to further reduce the complexity of such algorithms are detailed 

below, focusing on hardware acceleration, pruning techniques, and optimized 

training strategies. 

(1) Hardware Acceleration 

GPUs and TPUs: Utilizing Graphics Processing Units (GPUs) or Tensor 

Processing Units (TPUs) can significantly speed up the computation process. These 

specialized processors are designed to handle parallel computations efficiently, 

which is crucial for deep learning algorithms. 

FPGAs: Field-Programmable Gate Arrays (FPGAs) offer another hardware 

acceleration option. Unlike GPUs, FPGAs can be programmed to perform specific 

tasks more efficiently, potentially leading to lower power consumption and higher 

performance for certain workloads. 

ASICs: Application-Specific Integrated Circuits (ASICs) are custom-designed 

chips tailored for specific algorithms. While they are more expensive and less 

flexible than GPUs or FPGAs, they can offer the highest performance and 

efficiency for specific tasks. 

(2) Pruning Techniques 

Weight Pruning: In deep learning models, many weights may be close to zero 

and contribute little to the model's performance. Pruning involves removing these 

weights, which can reduce the model's size and computational requirements without 

significantly affecting accuracy. 

Layer Pruning: Besides individual weights, entire layers or sub-networks can 

sometimes be pruned if they do not contribute significantly to the model's output. 

This can lead to more substantial reductions in complexity. 

Structured Pruning: Unlike unstructured pruning, which removes weights 

individually, structured pruning removes entire groups of weights (e.g., filters in 

convolutional layers). This can make the pruned model more compatible with 

existing hardware and libraries. 

(3) Optimized Training Strategies 

During training, monitoring the model's performance on the validation set helps 

identify when the model begins to overfit. Early stopping involves terminating 

training when performance on the validation set is no longer improving, thus saving 

computational time and resources. Batch Normalization This technique normalizes 

the inputs of each layer, resulting in a more stable training process and higher 

learning rates. It also reduces the need for careful parameter tuning. Finding the 

best combination of hyperparameters using techniques such as grid search, 

stochastic search, or Bayesian optimization can improve training efficiency and 

model performance. 
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By combining hardware acceleration, pruning techniques, and optimized 

training strategies, the computational complexity of your proposed channel 

prediction method based on BDBN can be further mitigated. This will not only 

improve the algorithm's efficiency but also make it more suitable for real-time 

applications and resource-constrained environments. Each of these strategies has its 

own set of advantages and trade-offs, so it's important to carefully evaluate them 

based on your specific needs and constraints. 

When considering its performance in real-time, low-latency scenarios, 

especially in mobile or IoT environments, several key aspects need to be discussed. 

(1) Real-Time and Low-Latency Performance 

Blockchain technology effectively reduces transaction latency through 

optimized consensus algorithms (e.g., proof of equity instead of proof of work) and 

off-chain expansion schemes (state channel, side chain), while combining model 

quantization and pruning technology to alleviate the computational burden brought 

by deep learning integration. For the demand of high concurrency scenarios, 

blockchain design needs to support horizontal scaling architecture, in which 

sharding technology significantly improves throughput by splitting the network 

load, and advanced frameworks such as BDBN further realize the balance between 

low latency and scalability through resource elasticity deployment to meet the 

demand of real-time transaction processing. 

(2) Practical Deployment in Mobile or IoT Environments 

For the blockchain deployment challenges of mobile and IoT devices, BDBN 

needs to adopt lightweight blockchain architectures (e.g., low-complexity private 

chains) and optimize the power consumption of deep learning models to adapt to 

the limited computation, storage, and battery resources of the devices. At the 

communication level, the high latency and low bandwidth limitations of wireless 

networks are effectively overcome through data compression, adaptive protocols 

and edge computing synergy. In terms of security, relying on blockchain tamper-

proof features, combined with encrypted access control and anomaly detection 

mechanism, while integrating differential privacy and joint learning technology, 

value mining is realized under the premise of safeguarding the sovereignty of data, 

forming a three-dimensional solution of resource efficiency, communication 

performance, and security and privacy. 

(3) Conclusion 
BDBN, as a blockchain-based deep trust network, has the potential to perform 

well in real-time, low-latency scenarios, especially in mobile or IoT environments. 

However, its success depends on careful consideration of resource constraints, 

connectivity and communication challenges, and security and privacy concerns. By 

optimizing the blockchain implementation, leveraging efficient deep learning 

models, and integrating additional security measures, BDBN can be deployed 
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effectively in these environments to provide a secure, trustworthy, and real-time 

data processing solution. 

5. Simulations and discussions 

To evaluate the performance of our proposed method, we conduct several tests 

and select relevant parameters for analysis: 𝑓𝑑 = 500𝐻𝑧 , 𝑇𝑠 = 5 ∗ 10−5 , 𝑓𝑠 =
20𝑘𝐻𝑧 , Ds=500m, Dmin=50m, 𝑁 = 6 , 𝑁𝑠 = 600 , 𝑁𝑐 = 400 , 𝒩 = 2 , 𝐿1 =
30,𝐿2 = 20, 𝜏 = 1, 𝜖𝐷𝐵𝑁 = 10−3, NBDBN = 500, NRBM = 10. 

We employ the normalized mean square error (NMSE) as a metric to assess 

prediction accuracy, formulated as follows: 

𝑁𝑀𝑆𝐸 =
∑ |ℎ((𝑛+𝑁)𝑇𝑠)−ℎ̂((𝑛+𝑁)𝑇𝑠)|

2𝑁𝑐
𝑛=𝑁𝑠+1

∑ |ℎ((𝑛+𝑁)𝑇𝑠)|2
𝑁𝑐
𝑛=𝑁𝑠+1

              (13) 

where the ℎ̂((𝑛 + 𝑁)𝑇𝑠)  is the predicted CSI and the ℎ((𝑛 + 𝑁)𝑇𝑠)  is the 

actual CSI. Hence, the NMSE for training samples in various RBMs are showed in 

Fig. 3. In Fig. 3(a), we observe that the NMSE (Normalized Mean Square Error) 

gradually decreases and stabilizes as the amount of training data increases. (1) The 

effect of data volume: more training data means that the model is able to learn richer 

features and patterns. This helps the model to be more accurate in its predictions 

because it has “seen” more situations, and thus is better able to generalize to unseen 

data. (2) Stability: As the volume of training data reaches a certain threshold, the 

reduction in NMSE diminishes, signaling that the model's performance has reached 

a state of stability. Because the model has already learned the main features in the 

data, the performance improvement becomes limited by increasing the amount of 

data. This finding has important implications for practical applications. It suggests 

that we need to reasonably determine the upper limit of the training data volume 

when constructing deep learning models to avoid unnecessary consumption of 

computational resources. In this example, when the training data volume reaches 

about 600, the NMSE has stabilized, so 600 can be considered a reasonable upper 

limit of the training data volume. 

 
(a)one RBM 

 
(b) two RBMs 
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(c)RBMs 

 
(d) four RBMs 

Fig. 3. Curves of NMSEs with training samples with various RBM. 

 

In Fig. 3(b), (c) and (d), we observe that as the number of RBMs (Restricted 

Boltzmann Machines) in the BDBN increases, the NMSE value does not change 

significantly. (1) Limitation of fitting capacity: Upon reaching a specific number of 

RBMs, the model's fitting capability approaches its maximum limit. It means that 

further increase in the number of RBMs has very limited performance enhancement 

because the model has been able to capture the features in the data very well. (2) 

Increase in computational complexity: although increasing the number of RBMs 

may improve the model's fitting ability to a certain extent, it will also significantly 

increase the computational complexity and training time. This is detrimental to real-

world applications because the consumption of computational resources will 

increase as a result. In this example, when the number of RBMs is increased to 2, 

the NMSE value has already stabilized, and the performance enhancement by 

increasing the number of RBMs further is very limited. Therefore, 2 can be 

considered as a reasonable upper limit for the number of RBMs, which ensures the 

performance of the model and controls the consumption of computational resources. 

Impact of changing the number of RBMs on accuracy and computational load: 

Impact on Accuracy: Increasing the number of RBMs improves the 

representation of the model, allowing it to capture more complex data features. It 

helps to improve the performance of the model on the training data and may 

improve the prediction accuracy to some extent. However, when the number of 

RBMs is too high, the model may fall into an overfitting state, i.e., it performs well 

on the training data but has reduced generalization ability on the test data. Therefore, 

a balance between accuracy and overfitting needs to be found by choosing an 

appropriate number of RBMs. 

Impact on computational load: increasing the number of RBMs significantly 

increases the computational load of the model. Each RBM requires parameter 

updates and gradient calculations, so more RBMs means more computational 

resources and time consumption. In practical applications, the appropriate number 

of RBMs needs to be selected based on hardware resources and time constraints. 



286                                                              Jun Zhu, Guoyin Zhang 

Too many RBMs may lead to too long training time, even beyond the limit of 

hardware resources, thus affecting the practicality and efficiency of the model. 

Furthermore, the comparisons with AR, SVM and our proposed channel 

prediction method are showed in Fig.4(a). The order NR of AR is set as 6, and the 

input channel data𝑜 = 400, the kernel function is polynomial and the prediction 

model is set as regression fitting. The simulation was conducted using MATLAB 

2016a on a Windows 7 system, powered by an Intel(R) CPU E5-1620 operating at 

3.6 GHz and equipped with 8.0 GB of RAM. 

In Fig. 4, we show the effect of noise power on NMSE (Normalized Mean 

Square Error). By comparing the NMSE values of our proposed method (BDBN-

based channel prediction method) with those of AR (Autoregressive Model) and 

SVM (Support Vector Machine), we can draw the following conclusions:(1) Noise 

Robustness Comparison: as the noise power in the wireless signals increase, the 

NMSE values of our proposed method are lower as compared to AR and SVM. This 

indicates that our method is more robust in noisy environments and is able to cope 

with noise interference better, thus maintaining a low prediction error. (2) 

Performance advantage: In wireless communication systems, noise is an 

unavoidable interference factor. Hence, robust channel prediction techniques are 

crucial for enhancing the stability and dependability of communication systems. 

Our method performs well in this regard, showing its potential advantages in 

practical applications. This discovery holds significant implications for the design 

and optimization of wireless communication systems. It underscores the necessity 

to prioritize noise robustness in developing channel prediction methods, ensuring 

accurate predictions even in noisy conditions. 

 
Fig. 4. Comparisons with AR, SVM and  

proposed method 

 
Fig. 5. BER/SER with perfect CSIs  

and prediction CSI 

 

Fig. 5 presents the Bit Error Rate (BER) and Symbol Error Rate (SER) 

comparisons between perfect Channel State Information (CSI) and BDBN-

predicted CSI across various Signal-to-Noise Ratios (SNRs) when using 

Quadrature Phase Shift Keying (QPSK) modulation. By comparing and analyzing 

the effects of SNR on communication quality, we can conclude the following: As 
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the SNR rises, both the BER and SER decrease progressively for both perfect CSI 

and BDBN-predicted CSI. This aligns with the fundamental principle of 

communication systems, where an elevated SNR corresponds to improved 

communication quality. An increase in SNR signifies a greater ratio of signal to 

noise, thereby minimizing the disruptive impact of noise on signal transmission. 

Effectiveness of the prediction method: the BER and SER curves of CSI 

predicted based on BDBN are very close to those of perfect CSI. This indicates that 

our channel prediction method has high accuracy and can accurately predict the 

characteristics of wireless channels, thus providing strong support for the 

optimization and performance improvement of wireless communication systems. 

This finding further validates the effectiveness and feasibility of our BDBN method. 

In practical applications, we can use the method to predict the characteristics of the 

wireless channel so as to optimize the parameter settings of the communication 

system and improve the communication quality and efficiency. 

This study introduces a wireless channel prediction approach leveraging 

blockchain and deep belief network (BDBN) technologies, with its effectiveness 

and viability experimentally confirmed. The experimental results show that BDBN 

excels in prediction accuracy, robustness and computational efficiency, especially 

in dealing with noise interference and complex nonlinear problems. 

Shortcomings: although BDBN achieves good performance in experiments, its 

computational complexity is still high, especially when dealing with large-scale 

datasets. This study mainly focuses on short-term channel prediction, and the 

performance and applicability for long-term channel prediction need to be further 

verified. 

In addition, blockchain integration has an impact on prediction accuracy: 

Increased security and credibility: blockchain technology ensures data security 

and integrity through distributed ledgers and encryption algorithms. In BDBN, 

blockchain integration prevents data from being tampered with or leaked, which 

improves the credibility of the prediction results. It helps maintain the stability and 

reliability of the model, and although it does not directly improve prediction 

accuracy, it provides a more solid foundation for prediction. 

Data Transparency and Traceability: the transparency of blockchain makes the 

process of data use and change traceable, which helps to identify problems in the 

data and make timely corrections. In BDBN, this transparency helps to improve the 

accuracy and reliability of the data, which in turn has a positive impact on forecast 

accuracy. 

Indirect impact on prediction accuracy: While blockchain itself does not 

directly improve prediction accuracy, it provides higher quality data inputs to the 

model by ensuring the security and integrity of the data. High-quality data inputs 

help models learn and generalize better, which indirectly improves prediction 

accuracy. 
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Impact of removing the blockchain: if the blockchain is removed, BDBN will 

lose the guarantee of data security, transparency and trustworthiness. It may lead to 

data tampering or leakage, which in turn affects the stability and reliability of the 

model. In extreme cases, the insecurity of the data may result in the model not being 

able to learn and generalize correctly, thus severely reducing the prediction 

accuracy. 

In addition, the performance of BDBN is compared with traditional deep 

learning methods (e.g., LSTM and CNN) on specific tasks to evaluate the 

effectiveness of BDBN, as shown in Table 1. By selecting representative and 

challenging datasets, such as the MNIST handwritten digit dataset, the CIFAR-10 

image dataset, and publicly available datasets containing multiple types of data (e.g., 

images, text, etc.). After preprocessing, the quality and consistency of the input data 

are ensured. Fairness and comparability of the experiments are ensured by setting 

the same training parameters such as learning rate, batch size and number of 

iterations. Methods such as cross-validation are used to reduce the risk of overfitting 

and underfitting and improve the generalization ability of the model. 

Therefore, BDBN, LSTM and CNN show different advantages and limitations 

on different types of data and tasks. BDBN models record the model training 

process through blockchain technology. The key information and parameters in the 

model are recorded through blockchain technology, which enhances the 

transparency and traceability of the model and helps to build deep trust. 
Table 1 

Comparison of experimental results 

Model Data type Accuracy Precision Recall F1 Score 
Loss Function 

(Training Set) 

Loss Function 

(Test Set) 

BDBN Images 92% 90% 91% 90.5% 0.15 0.16 

LSTMs Text 88% 85% 87% 86% 0.30 0.32 

CNNs Images 90% 88% 89% 88.5% 0.18 0.20 

BDBN text 86% 84% 85% 84.5% 0.28 0.30 

Image data: BDBN outperforms CNN on image data with higher accuracy, 

precision, recall and F1 score. This is due to the fact that BDBN incorporates 

blockchain technology, which increases the trustworthiness and security of the data, 

thus improving model performance. 

Text data: LSTM outperforms BDBN and CNN on text data, especially when 

dealing with long text and complex linguistic structures. This is because LSTMs 

are good at capturing long-term dependencies in sequential data. 

Loss Function: BDBN and CNNs have relatively low loss function values on 

the training and test sets, which indicates that they have better generalization ability. 

Future Development Prospects and Recommendations: 

(1) Explore and develop advanced deep learning algorithms to decrease the 

computational burden of BDBN and enhance its real-time capabilities. 
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(2) Explore the possibility of applying BDBN to long-term channel prediction 

and verify its performance in real communication systems. 

(3) Verify the performance of BDBN in different communication scenarios and 

environments to assess its generalization ability and adaptability. 

(4) Investigate further the implementation of blockchain technology for data 

security and privacy safeguards, ensuring the robustness of wireless communication 

systems. 

6. Discussion 

The performance of BDBN in different wireless environments is affected by a 

variety of factors, including the stability of the network environment, data 

transmission rate, latency, and signal strength. 

Urban environment: cities usually have a more stable and high-speed wireless 

network environment, which is conducive to the data transmission and 

synchronization of BDBN. In urban environments, due to the high density of base 

stations and wide signal coverage, the data transmission rate is usually faster, and 

BDBN is able to process and verify the data faster and improve the efficiency of 

the whole network. Meanwhile, with distributed ledgers and encryption algorithms, 

BDBN can prevent data from being tampered with or leaked. 

Rural environment: the wireless network environment in rural areas may be 

relatively unstable and signal coverage may not be as extensive as in cities. This 

may cause BDBN to experience delays or interruptions during data transmission. 

High-speed mobile scenarios (e.g., high-speed rail): In high-speed mobile 

scenarios, devices may switch base stations frequently, leading to network 

instability and increased latency. This poses a higher challenge to the performance 

of the BDBN, as data synchronization and validation require fast and reliable 

network connectivity. Bandwidth constraints may also affect the data processing 

capability of the BDBN. Optimizing the design of BDBN for more efficient data 

synchronization algorithms and verification mechanisms can improve its 

performance in high-speed mobile scenarios. 

In summary, the performance of BDBN in different wireless environments is 

affected by a variety of factors, such as the stability of the network environment, 

data transmission rate, delay, and signal strength. In urban environments, BDBNs 

are usually able to exhibit high performance and reliability; in rural areas, it may be 

necessary to improve its performance by improving the network environment and 

optimizing the BDBN design; in high-speed mobile scenarios, adopting 

technologies such as mobile edge computing and optimizing the BDBN design is 

an effective strategy to cope with the challenges. 

Meanwhile, the distributed trust mechanism of BDBN can improve the 

reliability of 6G network in terms of 6G network application, ensuring the security 
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and integrity of data in the transmission process. By optimizing blockchain 

technology, BDBN can support efficient data processing in 6G networks to meet 

the demand for high throughput. The distributed architecture of BDBN can well 

support large-scale device connections in 6G networks and improve the scalability 

and flexibility of the network. In order to cope with the high throughput and low 

latency demands that 6G networks also face, BDBN needs to continuously optimize 

its network performance, including improving the efficiency of consensus 

algorithms, optimizing data transmission and storage, and so on. Interoperability 

with other blockchain networks is needed to enable data sharing and interaction. 

This can be achieved by introducing cross-chain communication protocols and 

technologies. 

As a result, BDBNs have significant advantages in supporting the scalability of 

6G networks. However, it also faces challenges such as data security and privacy 

protection, network performance optimization, and cross-chain interoperability. 

Through continuous technological innovation and optimization, BDBN is expected 

to become an important part of 6G networks in the future, providing strong support 

for building a more secure, reliable and efficient communication network. 

Additionally, blockchain consensus mechanisms, including Proof of Work 

(PoW) and Proof of Stake (PoS), can have a significant impact on prediction latency 

and can indeed be a bottleneck in some cases.PoW relies on solving complex 

mathematical problems, which requires a significant amount of computational 

power. This computational intensity can lead to longer transaction processing times, 

which can increase predictive latency. While PoS transactions are typically faster 

than PoW, network congestion can still occur during periods of high activity, which 

can lead to increased transaction confirmation latency and prediction latency. both 

PoW and PoS systems must balance security and transaction speed. Adding security 

measures, such as adding an authentication layer or increasing the number of 

authenticators, can lead to an increase in prediction delay. Therefore, the consensus 

mechanism of the blockchain does affect the prediction latency and can be a 

bottleneck depending on the specific mechanism and network conditions.PoW 

tends to require longer transaction processing time and higher prediction latency 

due to its high computational requirements and energy consumption. PoS, on the 

other hand, offers faster transactions and lower predictive latency due to its lower 

computational and energy costs and potential scalability. However, both 

mechanisms can suffer from network congestion and validator performance issues, 

which can lead to increased prediction latency. Therefore, when designing 

blockchain applications, the trade-offs between different consensus mechanisms 

must be carefully evaluated to ensure optimal performance and user experience. 
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7. Conclusions 

In this paper, we introduce a swift channel prediction technique utilizing a 

block diagonal deep confidence network (BDBN). When compared to existing 

methods such as the autoregressive model (AR) and support vector machine (SVM), 

our proposed method demonstrates acceptable computational complexity and 

exhibits superior noise robustness compared to AR and SVM. By utilizing the 

DBN's feature extraction Using the advantages of DBN in feature extraction, this 

paper innovatively applies it to the channel prediction problem in wireless 

communication, especially further optimizing the block diagonal structure to adapt 

to the characteristics of wireless communication channels. By comparing with other 

prediction methods (e.g., AR and SVM), the advantages of the BDBN method in 

improving the channel prediction accuracy and anti-noise interference are 

demonstrated. In addition, by using blockchain technology for data encryption, the 

method ensures the security and availability of data during transmission and storage, 

protects user privacy, and prevents data leakage. Meanwhile, BDBNs with LSTMs 

and CNNs show different advantages and limitations on different types of data and 

tasks. In practical applications, appropriate models need to be selected according to 

the characteristics of specific tasks and datasets. 

By conducting comparative experiments with perfect Channel State 

Information (CSI), this paper validates the efficacy and practicality of the proposed 

channel prediction method. It establishes a robust theoretical framework and 

experimental evidence for future research endeavors and applications. The fast 

channel prediction method based on BDBN has a broad application prospect in the 

field of wireless communication, which not only improves the prediction accuracy 

and robustness, but also ensures the security and availability of data. This holds 

immense significance in advancing the evolution and progression of wireless 

communication technology. 
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