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STRUCTURAL DESIGN AND EXPERIMENTAL ANALYSIS
OF A NEW LOCAL CUTTING AND GRINDING DEVICE

Yong CHEN"?*, Wenxin PU!, Zhen ZHANG?, Ping XIONG', Zhaoran ZHANG!

To address the current challenges of tedious operations, low efficiency, and
poor quality in cutting and grinding pipes, this paper presents the structural design
of a local cutting and grinding device for DN500 pipes. This device can
simultaneously cut pipes and groove grinding with a diameter of 406-508 mm and
wall thickness under 25 mm. After optimizing the lifting mechanism, the maximum
deformation was reduced to 0.144 mm and the maximum stress to 128.66 MPa, which
is only 54.6% of the pre-optimization value, achieving a safety factor of 2.76. Modal
analysis confirmed structural stability, and kinematic simulation verified operational
requirements. Experimental results show a 40% reduction in operation time
compared to manual methods, demonstrating the device’s precise positioning and
high work efficiency.

Keywords: Cutting and grinding; Structural design; Structural optimization; Modal
analysis; Kinematic simulation

1. Introduction

With the rapid development of large-diameter, high-grade steel oil and gas
pipes in various countries [ 1], numerous aging and failure issues have also become
increasingly prominent [2], leading to a rise in the frequency of safety incidents [3].
In addition to planned maintenance and renovations, oil and gas pipes must also
conduct emergency repair operations in response to unforeseen accidents during
media transportation [4]. Pipe maintenance ensures safe operations and merits
further exploration [5].

Due to restrictions on on-site construction, including obstructed views,
operational inconveniences, and safety risks [6], ensuring welding quality becomes
challenging. Various degrees of circumferential weld defects persist, such as dents
and scratches [7-8]. Additionally, the locations of these welding defects must be cut
and ground to create a weld groove for re-welding [9]. The quality of the pipe
welding is a critical factor influencing the overall quality of the project [10-11].
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The grooving machine and pipe end grooving lathe produced by Gubbiotti
are designed for small to medium-sized pipes [12]. Baihuamei proposed using an
electric variable frequency grooving machine with a gas-cutting torch [13].
Additionally, A. G. Demeissie developed a spiral welded pipe grinding machine
capable of simultaneously grinding the pipe's inner and outer surfaces [14].
However, these processing methods are limited cum, cumbersome to operate, and
lack efficiency. Currently, most of the equipment used on construction sites is
designed and manufactured based on a fixed pipe type [15], which can lead to
positioning errors. Therefore, it is essential to conduct an integrated design of a
local cutting and grinding device and accurately locate the defect position of the
pipe before operation [16-17].

Given the challenges associated with tedious operations, restricted working
space, and poor grinding quality, this paper presents a new integrated local cutting
and grinding device for steel pipes to meet welding standards.

2. Structural design and operating principle

The local cutting and grinding device consists of a circumferential motion
mechanism, an axial motion mechanism, a lifting motion mechanism, and a
deflection motion mechanism. The detailed structural composition is shown in
Figure 1. The cutter is a crucial component of the cutting and grinding process.
Given the advantages of V-groove processing, which is convenient and conducive
to welding, this paper selects a 60° V-shaped alloy cutter with 10 teeth, capable of
grinding high-grade steel. The frame is primarily based on the existing external
matching device structure, enhanced with the addition of a movable disc, gears, a
screw, and other components.
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1—Pipe clamp; 2—Circumferential drive motor; 3—Stationary disc; 4—Movable disc; 5—
Driving gear; 6—Axial drive motor; 7—Screw; 8—Grinding motor; 9—Lifting drive motor; 10—
Deflection drive motor; 11—Lifting plate; 12—Deflecting spindle; 13—Lifting rack; 14—Lifting
gear; 15—Moving plate; 16—Cutting and grinding tool; 17—Support rod; 18—Centering rod
Fig. 1. Diagram of each movement structure
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The screw is made of 304 stainless steel. The support rod, gear, and
centering rod are made of 42CrMo, while the remaining components are made of

45 steel. The material properties are shown in Table 1.

Table 1
Material properties
Materials ]()girclrsrllg})] Youn%cs}gg ;) dulus Poisson's Ratio Ylel(dN?II;rae)ngth
304 stainless steel 7.93 190 0.3 205
42CrMo 7.75 210 0.3 950
45 steel 7.85 207 0.3 355

The master controller and driver are EmbedFire's STM32F407 and EBF-
MSD4805, respectively. The circumferential and lifting motors are 57HS22, paired
with the corresponding reducers, PLF60J-L1-7 and PLF60J-L1-4, with rated
torques of 15.4 N-m and 8.8 N-m, respectively. The axial and deflection motors are
of type 42HS08, with a rated torque of 0.72 N-m. The grinding motor is DZM-
53/00-SCF32, with a 4.77 N-m rated torque.

The circumferential movement is driven by a motor-operated pinion gear
that meshes with the movable disc, enabling the movable disc to traverse along the
circumferential groove of the stationary disc. The axial movement is facilitated by
a motor-driven screw, with the support rod connected to the axially moving plate
to maintain stability. The lifting movement is powered by a motor-driven lifting
gear, which drives the rack vertically, causing the grinding motor to ascend and
descend. The motor driving the deflection spindle through two gears achieves
deflection within a specified angle. The control process is as follows: the master
controller transmits pulse signals to the driver, delivering current to each stepper
motor and ensuring smooth cutting and grinding processes, as shown in Figure 2.

Fig. 2. Control principle when the device is in operation

Table 2 presents the dimensional gauge data of the device using an X80 pipe
with a diameter of 508 mm and a wall thickness of 14 mm, along with a cutter with
a diameter of 150 mm.
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Table 2
Dimensional gauges of the device
Parameters Data
inner diameter of the frame (mm) 532
overall device weight (kg) 62
circumferential sliding distance (mm) 210
axial sliding distance (mm) 102
lifting height (mm) 34
maximum feed (mm) 25
maximum deflection angle (°) +6.18

3. Kinematic and dynamic analysis

3.1 Strength check of key components

The lifting movement is accomplished by meshing the gear with the rack.
The primary loads include the force exerted by the grinding motor, the weight of
the lifting device, and the reaction force, all concentrated at the gear and rack
meshing point. It is essential to conduct strength assessments on its key
components.

The gear has 24 teeth with a tooth width of 25 mm. The width of the rack is
22 mm. Both components have a module of 1.5 mm, a pressure angle of 20°, and
an accuracy level of 7. The material properties of the gear and rack are shown in
Table 1. The total number of meshes is 373,935, and it has been verified that the
mesh independence falls within a reasonable range, and the mesh quality is rated at
0.83. It has been densified at the tooth contact positions. The finite element pre-
processing setup involves defining the gear-rack contact interface with no-
separation contact, while the gear shaft is constrained as a fixed support. For the
groove contact surface, displacement constraints are applied: the Z-axis (tangential
direction) is free, whereas the X-axis (axial direction) and Y-axis (radial direction)
are fixed at zero.

The mass analysis results in Creo simulations indicate that the total mass of
the components in the lifting mechanism is approximately 14 kg. The radial reaction
force is estimated at around 200 N, while the tangential reaction force is
approximately 50 N. The reaction force exerted by the tool is concentrated at the
contact point between the tool and the pipe; therefore, it should be modeled as a
remote force load in ANSY'S simulations to represent the actual working conditions
more accurately.

When the machine head is positioned at the top of the frame, the rotation of
the grinding tool generates a reaction force that acts radially, accompanied by a
tangential component. The deformation and stress distribution maps are shown in
Figure 3-a and 3-b. When the machine head is situated at the side of the frame, the
gravitational force on the lifting mechanism aligns in the same or opposite direction
as the tangential component of the reaction force during grinding, while the radial
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reaction force is directed outward from the pipe. The deformation and stress
distribution diagrams are presented in Figure 3-c and 3-d. When the machine head
is located at the bottom of the frame, the radial component of the gravitational force
acting on the lifting mechanism is equivalent to the radial component of the reaction
force during grinding, while the tangential component of the reaction force
continues to act in the tangential direction. The deformation and stress distribution
diagrams are depicted in Figure 3-¢ and 3-f.
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Fig. 3. Deformation and stress maps of the machine head at the top, side, and bottom of the frame,
respectively

It can be observed from Figure 3 that when the machine head is positioned
at the bottom of the frame, both deformation and stress reach their maximum levels.
The maximum deformation recorded is about 0.6 mm, while stress is concentrated
at the bottom edge of the rack corner, with a peak stress of approximately 235.61
MPa. This value is below the yield strength of 355 MPa. However, given that the
corner is a welded joint, there is a potential risk of strength failure under actual
working conditions. Additionally, as the upper top plate experiences deformation
under pressure, 30° inclined ribs with a thickness of 3 mm have been added to the
front and rear sides of the lower edge of the upper top plate. The structural integrity
has been verified based on actual working conditions, as shown in Figure 4.
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Fig. 5. Deformation and stress maps after optimization

After optimization, the maximum deformation has been reduced to
approximately 0.144 mm, while the maximum stress is concentrated at the junction
between the stiffener and the upper plate of the rack, measuring around 128.66 MPa,
as shown in Figure 5. This value represents only 54.6% of the stress before
optimization, resulting in a safety factor of 2.76.

3.2 Modal analysis of frame

The frame supports the weight of the grinding device during the cutting and
grinding process. However, vibrations during work can lead to resonance and even
collapse of the grinding device system. The frame is secured with 12 bolts,
necessitating a modal analysis to ensure that its natural frequency range does not
overlap with the motor's input frequency.

The motor that significantly impacts the frame is primarily the grinding
motor, which operates at a speed of 3000 r/min. The exciting frequency of the motor
on the frame at this speed is as follows:

un
f= (1)
Take 1 = 1 and calculate it according to Equation (1). The frequencies are
50 Hz, 100 Hz, 150 Hz, 200 Hz, 250 Hz, and 300 Hz, listed in order.
Prior to modal analysis, the frame structure was systematically simplified,
excluding bolts and some transmission components. The frame's component-

specific material properties are shown in Table 1. The total number of meshes is
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1,665,738, and it has been verified that the mesh independence falls within a
reasonable range. The mesh quality is rated at 0.83. During the pre-processing stage
in ANSYS simulations, the frame and twelve bolt surfaces at both ends of the frame
are designated as fixed supports.

Fig. 6. A comparison of the natural frequency of the frame with the excitation frequency
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As shown in Figure 6, the excitation frequency correlates with the natural
frequency, suggesting that the frame may experience resonance, which could
impact its regular operation. Consequently, optimizing the structure of specific
frame components is essential to ensure their stability.
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Fig. 7. The frequency response of the frame, where panels (a) through (f) correspond to the first
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through sixth orders, respectively

Figure 7 shows that the bending of the screw and support rod along the z-
axis primarily characterizes the first and second-mode shapes. In contrast, the third
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and fourth mode shapes are defined by bending the rear and front centering rods
along the y-axis, respectively. The fifth mode shape is characterized by the bending
of the rear centering rod along the z-axis, while the sixth mode shape again features
the bending of the screw and support rod along the z-axis. The deformation is
concentrated in these four components.

To mitigate resonance frequencies and enhance the stability of the frame,
the lengths of the four members were reduced by 68 mm. The adjusted lengths are
as follows: 600 mm for the centering rod, 350 mm for the screw (including the
length of the motor body), and 350 mm for the support rod. The diameter was
increased to 12 mm, and the corresponding aperture of the axial movement plate,
through which the support rod passes, was also enlarged to 12 mm.
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Fig. 8. Frequency comparison after optimization
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Fig. 9. The frequency mode shapes of the optimized frame for each order, where (a)—(f)
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The simulation results in Figures 8 and 9 demonstrate that the optimized
structure exhibits no resonance behavior, satisfying the stability requirements.

3.3 Verification of torque and force

When the machine head is located at the top of the frame, the movable disc
will be subjected to the head's self-weight and the radial and tangential reaction
forces caused by the tool's rotation. Based on the assembly's mass analysis in Creo
simulations, the effective load is 30 kg (G=294 N), with a radial reaction force of
about 200 N and a tangential reaction force of about 50 N.

During the simulation analysis in Adams, the grinding motor remains
stationary. A radial reaction force of F1 =200 N and a tangential reaction force of
F2 =50 N are applied at the point of contact between the tool and the pipe. Since
circumferential motion is simulated through restraint and no coupling pair is
introduced, the resistance to circumferential motion cannot be directly simulated.
The inner radius of the frame is 266 mm, with a friction coefficient of 0.12. Using
the formula T = u - N - r, the resulting resistance torque is calculated to be about
9.38 N'm. Consequently, a resistance torque ranging from 8 N-m to 10 N'm is
applied to the circumferential motion motor to account for the effects of the
machine head's weight and frictional resistance.
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Fig. 10. Torque and stress diagram with the head at the top
As shown in Figure 10, The maximum torque of the circumferential and

lifting motors is 11.38 N-m and 5.38 N-m, respectively. Additionally, the maximum
torque that the deflection motor must overcome to remain stationary is about 0.15
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N-m, less than the rated torque of each drive motor. The maximum radial force
acting on the roller bearing during circumferential movement is approximately 84
N, and the maximum force exerted on the driving wheel during lifting movement is
about 120.5 N. These forces are below the theoretical limits of 106.4 N and 133.6
N, respectively.

When the head is positioned at the side of the frame, the applied force and
torque situations are identical to those when the head is located at the top of the
rack.
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Fig. 11. Torque and stress diagram with the head at the side

As shown in Figure 11, the maximum torque of the circumferential and
lifting motors is 12.38 N-m and 4.48 N-m, respectively. Additionally, the maximum
torque that the deflection motor must overcome to remain stationary is about 0.306
N-m, less than the rated torque of each drive motor. The maximum radial force
acting on the roller bearing during circumferential movement is approximately 205
N, and the maximum force exerted on the driving wheel during lifting movement is
around 237 N. Both forces are below the theoretical limits of 264.6 N and 242.3 N,
respectively.

When the head is positioned at the bottom of the frame, the applied force
and torque situations are identical to those when the head is located at the top of the
rack.
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Fig. 12. Torque and stress diagram with the head at the bottom

As shown in Figure 12, the maximum torque of the circumferential and
lifting motors is 11.3 N-m and 2.24 N-m, respectively. Additionally, the maximum
torque that the deflection motor must overcome to remain stationary is about 0.13
N-m, below the rated torque. The maximum force exerted on the roller bearing
during circumferential movement is approximately 415 N, and the maximum force
acting on the driving wheel during lifting movement is around 292.4 N. Both forces
are less than the theoretical values of 496.5 N and 302.2 N, respectively.

4. Experimental verification

The experiment utilizes a 508-mm-diameter pipe as the experimental object,
as shown in Figure 13. First, the smoothness of movements in all four directions is
assessed to determine whether each motor meets the actual load requirements and
whether the electronic control program is accurate and functional.
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Fig. 13. Experimental site

In verifying circumferential movement, the head remains stable at low
speeds, with no noticeable vibration or resonance when the motor stops. The
measured sliding distance for circumferential movement is 208 mm. During the
verification of axial movement, the screw smoothly pushes the head at a slow speed
without dragging or vibrating. The sliding distance for axial movement is 98 mm.
In the verification of lifting movement, the meshing of the gear and rack is smooth,
with no significant jamming or shaking, and the lifting stroke measures 34.8 mm.
The maximum feed is 23.2 mm. The verification of deflection movement
demonstrated that the pinion gear successfully drove the large gear to achieve a 5°
deflection of the grinding motor, which can be fixed in position afterward, meeting
the specified requirements.

Finally, the test cutting demonstrated that the grinding motor operated
stably, reducing the previous operating time by 40%. Additionally, the cutting
results were satisfactory, as shown in Figure 14.

s,

Fig. 14. Result of cutting and grinding the pipe
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The axial sliding distance has been reduced to 98 mm compared to the
design calculations. This reduction is primarily attributed to structural optimization,
which shortened the member by 68 mm. The experimental results indicate that all
operational parameters remain within a reasonable range. No noticeable motor
overload or inability to rotate was observed throughout the experiment, and no
significant vibrations were detected. Additionally, no deformation of the
components occurred during the cutting process, confirming the accuracy of the
preliminary finite element analysis and kinematic simulation.

5. Conclusions

This study addresses the critical challenges of inefficiency and precision
deficiency in conventional cutting and grinding processes for large-diameter pipes.
Based on the research findings, the following conclusions can be drawn:

1. The rack reinforcement through rib augmentation and dimensional
adjustment of critical components (centering rod: 600 mm, screw: 350 mm, support
rod: 350 mm, support rod diameter: 12 mm) not only overall reduce material
consumption but also enhance structural reliability.

2. Kinematic simulation analysis indicates that each motor's torque and the
stress on key components meet the operational requirements. In the future,
parameter optimization (e.g., tooth ratio or motor selection) can be explored to
reduce energy consumption while ensuring accuracy.

3. The experiments demonstrate operational smoothness, precise
positioning, and high efficiency of the motors, with cutting and grinding quality
meeting welding specifications. A 40% reduction in operating time was achieved
compared to the conventional methods. Further verification of the device's
applicability with various pipe diameters and material types can be performed.

4. The successful development of this device has established a basis for the
application of automated control in pipe engineering. Subsequently, it is essential
to develop machine learning-based adaptive control algorithms and introduce
vision-based sensing systems to adjust cutting and grinding parameters dynamically
in real-time. These coordinated technological enhancements will ensure cutting and
grinding precision while significantly boosting construction efficiency.
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