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RECCURENT NEURAL NETWORK FOR PREDICTING TIME
STEP BISECTIONS IN STRUCTURAL DYNAMICS

Tudor George ALEXANDRU?, Cristina PUPAZA?

The automatic time stepping method is widespread throughout commercial
transient dynamics solvers, being a convenient way of adjusting the load increment
based on the system state. As part of this algorithm, bisections can be considered an
indicator of poor model convergence, demanding most of the times improvement
loops. This paper proposes a new methodology for predicting bisection occurrence
with the support of Recurrent Neural Networks. A Long-Short Term memory
implementation is proposed, training and validation being carried out based on
sequential solver output data. The accuracy of the model is proved by means of a
highly non-linear structural dynamics simulation.
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1. Introduction

During the past decades, Computer Aided Engineering (CAE) software
has emerged as an integrated virtual prototyping approach that allows engineers to
verify and optimize design scenarios by recreating their real world behaviour with
the support of digital environments [1]. In structural mechanics, the Finite
Element Method (FEM) represents one of the most widespread numerical analysis
procedures that addresses interdisciplinary problems by dividing a continuous
geometric domain into a discrete one [2]. To be more attractive to the market,
companies focus more on product innovation by supporting the traditional design
processes with emerging disciplines (i.e. nonconventional manufacturing or
ergonomics) [3]. Thus, engineering projects rely on the ability of CAE tools to
capture the behaviour of non-linear materials or assembly constraints that are
subjected to time-varying loads (i.e. 3D printed kinematic structures) [4]. From
this perspective, FEM based structural dynamics simulations are the most popular
choice for addressing such aspects.

The ongoing improvement of CAE software resulted in lower error
troubleshooting demands, less engineering knowledge being required for reaching
accurate simulation results [5]. The automatic time stepping method is
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implemented in most recent transient dynamics solvers for lowering the model
complexity in non-linear problems. This is achieved by estimating the next time
step size based on the analysis conditions. An advantage of this approach is its
bisection component that has the purpose of adjusting the solver settings based on
the convergence residuals state [6]. Even so, the occurrence of bisections also
indicates modelling or simulation issues, requiring a careful inspection of the
possible error sources. Furthermore, the high computational demands involved in
structural dynamics significantly limit the flexibility of engineers to experiment
different scenarios.

From this point of view, the present paper proposes a Machine Learning
procedure for forecasting convergence errors in transient simulations that deploy
the automatic time stepping method. The approach relies on sequential data that is
extracted from force, moment and line search convergence criteria that are written
at each sub step during the computational process. A Recurrent Neural Network
(RNN) is developed wusing the Long-Short Term Memory (LSTM)
implementation. While the problem fits the description of a deep learning
classifier, a regression model is deployed instead. The predicted continuous value
corresponds to the probability of a bisection to take place at a future time step
based on the convergence of the previous ones.

A wide range of structural dynamics simulations that involve the use of
automatic time stepping method are discussed throughout the literature. The work
disclosed in [7] proposes a simulation methodology that deploys the automatic
time stepping method for capturing the transient behaviour of small scale grinding
machines. In this case, the step size is calculated based on the natural frequencies
extracted from a modal analysis. An approach involving the definition of non-
linear contacts is presented in [8] for capturing the tooth interaction behaviour of
bevel gears. In this case, due to the complexity of the model, the solution is
carried out by using the bisection component in automatic time stepping. Recent
guidelines and checklists are published for dealing with such convergence issues
[9], each solver being characterized by its own peculiarities. RNNs represent a
generalization of feedforward neural networks that have internal memory. The
LSTM RNN implementation is widespread in systems that learn and improve
from sequential data for solving problems such as image captioning or weather
forecasting [10]. On the other hand, different types of Machine Learning
algorithms are deployed for supporting optimization processes based on results of
CAE simulations [11].

The original contribution of this paper consists in the use of LSTM to
support the solving process in structural dynamics simulations, by predicting the
probability of a time step bisection to occur based on sequences of solver output
data. In this way, a substantial amount of time can be saved in such engineering
projects, especially when dealing with large and/or non-linear models. The paper
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is divided in four sections. The first part of the work describes the theoretical
aspects of transient dynamics simulation with emphasize on the engineering tasks
carried out for preparing the model and debugging its convergence errors. The
second part of the work illustrates the proposed approach by focusing on the
inputs and outputs, along with the LSTM architecture. A case study is presented
in the third section, comprising a structural dynamics analysis of a ball bearing
assembly using ANSYS software. Due to inappropriate analysis settings and the
deliberate suppression of essential geometric elements, several time step
bisections occur in the model causing the convergence failure. Finally,
conclusions are derived in the fourth section.

2. Theoretical considerations of transient dynamics in CAE

CAE software brings together all necessary tools for preparing, solving
and processing the results of transient dynamics simulations based on implicit or
explicit integration methods. Examples of engineering problems that can be
addressed by such procedures are: the analysis of structures under free and forced
vibrations, the simulation of assemblies by considering inertial effects for both
rigid and flexible bodies, as well as the approximation of crash behaviour during
high velocity impact.

In implicit structural dynamics solvers, the equation of motion can be
generalized for multiple degrees of freedom systems:

[MJu}+ [CRup+[K Jup={F ]} (1)

Where: [M]{u}represents the inertial forces, [C]{u} frictional forces that

are proportional to the velocity, [K]{u} the elastic forces,{F(t)}time varying

external forces, [M] the mass matrix or the matrix that describes the inertia of the

entire structure and [C]is the damping matrix. The matrices [C], [M] and [K] are
assembled from the element matrices [12].

For any given time t, the equations derived from (1) can be considered a
set of static equilibrium ones that also take into account inertia and damping
effects. Various time integration methods (i.e. the Newmark or the improved HHT
ones) can be employed for solving them at discrete time points. The time
increment between successive iterations is called the integration time step.

The automatic time stepping method is implemented in most recent
transient dynamics, electromagnetics or thermal solvers for deciding the optimal
increment of time and/or loads in response to the current state of the analysis. The
algorithm involves two major components: time step prediction and time step
bisection.
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Considering a converged solution at time t, the step size for the next th+1 is
determined based on the minimization statement [13]:
At,., = min (At,,, At,, At,, At , At At AL, ) )

Where: Ateq Is the time increment needed for the previous step to converge
(which is limited by the maximum number of equilibrium iterations), Ats and Atz
represent the time increments that are influenced by 1% order systems (i.e.
transient thermal analysis) as well as 2" order ones (i.e. transient structural
analysis), Atg IS the time increment that takes into account abrupt changes in the
contact status while Atc and Atp refer to time increments that depend on the
allowable creep and plastic strain. On the other hand, Atn represents the time
increment that is limited by the midstep residual interpolation tolerance defined in
the analysis settings.

Time step bisections occur when the number of equilibrium iterations used
for one substep exceeds the allowable limit or when all equilibrium iterations are
used. In such cases, the current substep solution for At, is removed and the step
size is reduced by half.

At, = 3)

Structural dynamics analysis deploys an iterative solving process that is
based on the Newton-Raphson method. Theoretically, the convergence in such
simulations is achieved when the out-of-balance load vector is equal to zero.
However, the existence of nonlinearities in such problems demands an out-of-
balance threshold value to be defined.

A holistic overview of the stages required to troubleshoot a structural
dynamics analysis are depicted in Figure 1 and described in the paragraph below.
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Fig. 1. A holistic overview of the structural dynamics simulation project
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The input file represents a standardized data structure that transposes the
digital model defined using CAE Pre-processors in a list of commands that are
further interpreted by the solver. This allows the equilibrium equations to be
assembled and solved for each substep. Output files are generated during this
iterative procedure, providing valuable insights regarding the state of the
simulation. Based on force, moment, displacement and/or line search criteria, the
convergence at each Atn is evaluated. Figure 2 depicts the force convergence
graph derived from a structural dynamics analysis of a spindle subjected to a
constant rotational velocity that was previously completed using ANSYS
Workbench Transient Structural module.
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Fig. 2. Force convergence in a structural dynamics simulation

In this case, the calculated reaction forces match the applied loads for each
substep and subsequent load steps. Furthermore, the difference between the
internal force and the applied one remains at all-steps below the convergence
criteria proving that no unbalances occur.

As a good practice, intermediate results are checked after each i substeps
to identify any modelling problems, such as stress concentrators or unrealistic
behaviour due to inertial effects. In case of convergence errors, the occurrence of
time step bisections is verified. Figure 3 represents another attempt of solving the
same rotating spindle example by using excessively large time step settings.
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Fig. 3. Time step bisection due to inappropriate solver settings
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The analysis converges for the first load step but bisections occur in the
second one. In such cases, the Newton-Raphson residual forces are assessed to
indicate any problematic areas in the model. Subsequently, the shape of the
convergence curves is analysed in the proximity of the bisection. When the
residuals represent a steep increase from the previous Ats.1 substep, the automatic
time step settings require adjustment. In other scenarios, bisections can occur
without a clear indicator of model or solver setting issues. Therefore, the
convergence of the model is verified for the next Atn+1 substep. The workflow is
completed when the simulation time is reached.

The workflow for solving structural dynamics convergence represents a
limiting aspect of the simulation environments considering the iterative solving
process deployed and the coexistence of several error factors. Furthermore, the
high computational demands of non-linear models limit the amount of time
available for performing and validating adjustment loops. From this perspective,
an approach that can predict convergence errors based on the information that is
available during the solving process can significantly lower the complexity of
such workflows.

3. Implementing RNNs for supporting convergence troubleshooting

RNNs represent a generalization of feed forward Deep Learning that
remembers previous inputs in an internal memory. Most recent Machine Learning
libraries include improved versions of RNNs (i.e. Gated recurrent unit or LSTM)
that solve the well-known exploding or vanishing gradients problems. This allows
regression or classification models to be developed based on sequential data by
using high level programming interfaces [14].

In the proposed approach, a LSTM implementation is deployed to predict
the probability of a time step bisection to occur based on the convergence state of
the previous substeps. For this purpose, the raw data that is generated by structural
dynamics solvers is converted into a dataset that is further used for training and
validating the neural model. The procedure is divided in three main stages:
conversion of raw solver output data; encoding the LSTM inputs and model
training and validation (see Fig. 4).

— Bisection
LSTM Probability
Prediction

Architecture

—

Conversion of Raw Solver Output Data Enconding LSTM Inputs Training and Validating the model

Fig. 4. A schematic representation of the proposed approach
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In the first stage, the output files that provide relevant convergence
information are chosen for extracting continuous features in a dataset. Each
structural dynamics solver has its own standard for writing such logs (i.e. ANSI
encoding text format). From this perspective, a line by line read procedure can be
deployed in accordance with the occurrence of certain strings (i.e. “Solution not
converged”). Figure 5 represents an excerpt of the worksheet output of the solver.
The highlighted values consist of the max degree of freedom increment (Max.
DOF Incr.), line search parameter (Line Search Param) and force and
displacement convergence criteria (F CRIT, F L2, U CRIT, U INF) derived during
the extraction process.

ITH LAG MULT OPTION

Max. DOF Incr. Line Search Param F CRIT F L2 U CRIT U INF
0.232019 1.000000  0.009956 180525000 0.012079 0.232019
11455010 0050000 6152020 205513.100 0.030427 0.572751
Dataset -0.231314 0019802 220.884200 67465.150 0.032444 0.212763
0282137 0.778793 371915700 20099.320 0.033106 0219727

0.202866 0.997860 430.012100 7500.164 0.033782 0.202432

Fig. 5. Conversion of raw solver output data

The resulting labelled data is converted into a multidimensional array, the
number of lines and columns corresponding to the 2D shape of the dataset while
the 3" dimension is defined based on a training constant that describes the size of
each sequence that is passed to the model. This parameter depends on the number
of substeps and provides the previous state of the simulation for which the future
bisection probability is predicted. Feature normalization (denoted x’ in equation
4) is applied for each entry (x) in the resulting array by using the formula:

. X—min(x)
- max(x) — min( x)

(4)

In the next stage, the time steps for which bisections occur are identified
from the convergence summary output files. A vector is defined, having a shape
that is equal to the number of iterations performed in the simulation. Each row in
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this vector is filled with zeros when the corresponding iteration achieves
convergence or with non-zero values in case of time step bisections.

To this end, training and validation of the neural model can be
accomplished by using the features defined in the multidimensional array and the
labels derived in this stage. From this perspective, a LSTM classifier can be
developed to predict the probability of an iteration to belong to the zero
(convergence) or non-zero (bisection) classes based on previous inputs. Even so,
in most structural dynamics simulations the existence of time step bisections
accounts only for a small fraction of labels than the converged substeps.

In this regard, the ability of the model to classify bisection occurrences is
limited, considering the lack of consistent training data. To overcome this issue, a
LSTM regression model is developed instead. For this purpose, the labels are
converted from categorical to numerical ones, having values ranging between zero
and one. This allows the occurrence probability of a time step bisection to be
predicted as a continuous value. Therefore, a linear growth algorithm is depicted
in Table 1 using as input the bisection vector (vector) and its 1D shape (shape).

Table 1
Melting points and elemental analyses

Algorithm for Linear Growth
procedure linear_growth (vector, shape)
read vector

row_start =0
row_end =0
counter =1

while row_start <= shape do
while vector (row_start) =0
increment row_start, counter
end while
int_quantum = 1/ counter
guantum = int_quantum
for i =1 to counter do
vector2 (row_end) = quantum
increment row_end
quantum = quantum * (i+1)
end for
increment row_start
counter =1
end while
end procedure
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The procedure reads each row of the vector and identifies the position of
zero values. Two counters are incremented when this condition is satisfied
(row_start and counter). If the value of the row is different than zero, a variable
(int_quantum) is calculated as the multiplicative inverse of that row number. A
second vector (vector2) is filled (row_end) by linearly growing the int_gquantum
variable (quantum) between subsequent loops of i and counter. The procedure
ends when the shapes of the two vectors are equal.

Having both features and labels defined in accordance with the regression
problem, a LSTM architecture can be developed by using in the first stage a
fraction of the dataset for training the RNN and another one for validating its

predictions (see Fig. 6)
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Fig. 6. Graphical representation of the LSTM architecture

In the proposed model, the input layer consists of a multidimensional array
comprising the normalized solver output data. A stack of four LSTM layers is
added to capture the abstract concepts in the sequences. The Rectified Linear Unit
activation function is used between their outputs. Each hidden layer comprises
hidden cells that are characterized by multiple hidden units. On the other hand,
each hidden unit addresses the problem of long-term dependencies by adjusting
the flow of information with the support of input, output and forget gates. To
improve the generalization ability of the model, the dropout regularization method
is deployed to randomly exclude LSTM units during each training step. The
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accuracy of the model depends on the sequential data that is fed into it. Even so,
the choice of hidden units and drop out rates that achieve best settings can be
summarized as: 50, 60, 80 and 120 hidden units having dropout rates of 20% to
50%. In the output layer, a continuous value is predicted that corresponds to the
bisection occurrence probability. The Adam optimizer is deployed to perform an
iterative update of the network’s weights based on stochastic gradient descent
method. Typical to a regression problem, the Mean Squared Error is used as
convergence metric.

4. Verification of the given concepts

A structural dynamics analysis is completed using the Transient Structural
module from the ANSYS Workbench interface to verify the given concepts. The
aim of this simulation is to emphasize the computational aspects that lead to
convergence issues.

The geometry in discussion consists of a rigid spindle that is supported by
a deep groove ball bearing. Kinematic joints are defined to materialize the motion
of the bodies, non-linear frictional contacts being included to capture the
interaction between the rolling elements and the inner and outer rings. Only the
rotation of the spindle around its axis is considered in the simulation. Topology
operations are conducted to ensure that a Hex-Dominant mesh can be generated
(see Fig.7).

Revolute N Fixed Joint e

Joint 2

/,f ‘\‘.‘ \ \“
v \l . v
Revolute Rigid Deep groove Non-linear 3D Hex Dominant
Joint 1 Spindle ball bearing contacts Mesh

Fig. 7. Overview of the simulation model

Excessively large automatic time step settings are adopted (initial time
step: 0.1 seconds; minimum time step: 0.0001 seconds and maximum time step
0.5 seconds) to enforce convergence issues. Furthermore, the cage of the rolling
elements was removed from the geometry, causing an unconstrained motion of the
balls that rub against each other.

During the solving process, several time step bisections occur due to the
unbalance of energies in the system. A total of 895 iterations are completed prior
to aborting the solution. Fig. 8 depicts the force convergence residuals,
emphasizing the location of time step bisections.
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Fig. 8. Force convergence residuals and the location of time step bisections

The dataset is assembled as a 3D array having 895 rows (corresponding to
the number of substeps), 6 columns (corresponding to the maximum degree of
freedom Increment, line search parameter, force convergence, force criteria as
well as displacement convergence and displacement criteria) and sets of 7
sequences. A selection of 700 entries is employed for training the neural model
while the remaining samples are used for validating its predictions.

TensorFlow 2.0 with Keras Machine Learning library is used for defining
the LSTM architecture A total number of 10 epochs is chosen as training
parameter, meaning that the dataset is backward and forward passed for 10 times.
During each epoch, the mean square error loss function is monitored to evaluate
the prediction accuracy of the model. At epoch 1, the loss function has a value of
0.1913 while at epoch 10 the value is minimized to 0.0514.

The ability of the model to predict time step bisections is determined by
using the features from the validation set. For this purpose, the probability peaks
that exceed 50% threshold between successive sequences are considered bisection
locations. A maximum error of 1.27% is achieved, the accuracy being around
+/- 11 substeps. Fig. 9 depicts the predicted vs. real bisection occurrences.
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Fig. 9. The occurrence of time step bisections in real vs. predicted cases
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6. Conclusions

The present paper addresses the limiting aspects of troubleshooting
convergence issues in structural dynamics analysis. A RNN approach is proposed
for predicting time step bisections by using the LSTM implementation. Training
and testing of the neural model is accomplished with the support of solver output
data. Methods for encoding the LSTM inputs are depicted throughout the work. A
general deep learning architecture is proposed together with best hyperparameters
choices. The results achieved prove the ability of the approach to be implemented
in large scale structural dynamics projects.
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