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HALYOMORPHA HALYS DETECTION USING NEW YOLO 

ARCHITECTURES AND NEXT.JS WEB APPLICATION 

Marius-Alexandru DINCA1, Dan POPESCU2  

Automated detection of insect pests is a critical task to ensure modern 

agricultural practices, crop health, and productivity. The present study focuses on 

implementing and optimizing modern YOLO architectures, specifically YOLOv8, 

YOLOv9, and YOLOv10, for detecting Halyomorpha Halys, an orchard-specific pest. 

The performance results obtained demonstrate that the YOLOv8 architecture 

outperforms other modern versions of this family, obtaining higher and balanced 

metrics and reducing false positive rates. In the same framework, the new models 

YOLOv9 and YOLOv10 demonstrate competitive performance being viable options 

for pest detection applications. In parallel, a web application was designed and 

implemented using the Next.js framework. This application offers a modern, modular, 

and intuitive interface capable of generating fast predictions based on uploaded 

images. Combining web techniques with deep learning highlights the potential of 

these innovative solutions in integrated pest management.  

Keywords: orchard monitoring, agriculture, convolutional neural networks, 

insect detection, web application 

1. Introduction 

The evolution of agricultural practices has materialized in the field of 

modern and precision agriculture. Modern agriculture is based on advanced systems 

to optimize production and sustainability. This field nowadays uses intelligent 

agricultural machines and advanced IT systems to manage, collect and analyze data 

in real-time, allowing agricultural staff to make quick and efficient decisions [1, 2]. 

This data is collected and carefully analyzed to identify the needs of specific 

agricultural areas, allowing the precise integration of agricultural practices, thereby 

reducing costs and environmental impact, and increasing agricultural production of 

various types. Modern and precision agriculture increases productivity and 

efficiency and contributes to long-term sustainability by ensuring sustainable 

agricultural practices and responsible use of natural resources and reducing the 

negative impact on the environment. These features clearly respond to regional and 

global challenges in terms of food security and climate change. Following this 
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topic, the integration of deep learning in modern agriculture has been an important 

step for real-time monitoring and analysis of crop images, especially for the control 

and management of insect pests that can cause major economic losses through crop 

devastation [3]. Monitoring and controlling insect pests often involve manual, 

traditional methods. These include classical monitoring by specialized agricultural 

staff in various forms and pesticide applications, but they are often ineffective, 

unsustainable, and time-consuming [4]. The technological advance of recent years, 

especially in the field of deep learning, offers innovative solutions to solve these 

problems and to characterize modern agriculture through advanced 

implementations of real-time analysis and monitoring [5]. Looking at this important 

area, the problem of insect pests is quite pronounced and is found in many crops 

[6]. Insect pests are a major threat to agriculture affecting crop quality, and their 

damage results in considerable financial losses for farmers worldwide. Among 

these challenges the identification and management of pest populations is a critical 

issue, particularly in orchards where dense and diverse areas can be affected by a 

multitude of pest species [7]. Within orchards, fruit trees are critical crops and insect 

pests can cause extensive damage. Examples of such pests include stink bugs, 

aphids, or codling moths. They can attack leaves and fruits causing deformation, 

premature fruit loss and, in severe cases, crop destruction [8, 9].  

Halyomorpha Halys (HH), popularly known as the brown marmorated stink 

bug, is a pest of the Pentatomidae family native to East Asia (China, Japan). Due to 

its massive potential for migration and adaptation, this insect has quickly become 

one of the major pests in various regions of the world, including Europe and North 

America [10]. The negative impact on various crops and the economy due to this 

insect has been the motivation for more research and development focused on 

studying its behavior, life cycle and control [11]. General appearance characteristics 

of this insect include an oval-shaped body and a color ranging from dark brown to 

marble gray. In terms of life cycle, this bug goes through several stages from egg, 

nymphal stages, and an adult stage. The behavior of this bug is polyphagous, 

feeding on plant juice by piercing them. HH causes direct damage by feeding on 

various crops (fruits and vegetables) and causing discoloration, deformation and 

other types of damage that make agricultural products unmarketable. Its spread 

affects well-known crops that include fruits (apples, pears), vegetables and some 

field crops (corn or soybeans) [12]. On the other hand, from an economic and 

ecological point of view, the losses can be significant [13]. Given these 

characteristics, deep learning can be used in orchards to monitor the condition of 

crops and quickly identify the presence of harmful insects, such as Halyomorpha 

Halys [14]. These advanced systems can be integrated to monitor crops in real time 

and detect signs that could indicate problems or pest infestations, allowing farmers 

to intervene before damage becomes severe [15, 16]. The present study is aimed at 

providing such solutions by combining detection models from the YOLO family 
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with a Next.js web application that uses the exported models for the automatic 

detection of pest insects from digital images. Apart from the introduction, the 

present work is organized into several sections. Materials and methods section 

presents the methodology and tools that were the basis of the present study with 

emphasis on the dataset used, the presentation of the neural networks used, web 

application and hardware and software characteristics. The next section presents the 

experimental results and discussions based on the metrics and performances 

obtained for each detection model. Finally, a conclusion section is introduced to 

create a summary of the research and outlines the key aspects and future directions 

of this study. 

2. Materials and methods 

2.1 Dataset used 

The dataset used for training and evaluating the detection models is 

represented by a series of RGB digital images taken from orchard contexts. The 

images of the dataset were captured using various devices such as drones, digital 

cameras, and smartphones. The final dataset contains 500 images illustrating the 

reference insect HH. The total number of annotated instances was 635. Since the 

dataset is the basis of a detection model, it was split following a percentage of 70% 

for training, 20% for validation, and 10% for testing, totaling 350 images for 

training, 100 for validation, and 50 for testing respectively. Examples of images are 

presented in Fig. 1. 
 

 
Fig. 1. Example images from the dataset 

Image augmentation techniques for the training set were performed to 

increase the size and diversity of the dataset. Applying various transformations 

generates new instances that help the detection model to become more robust to 

variations in the presented data. Some examples in Fig. 1 illustrate augmentation 

techniques applied to digital images in the dataset. On the other hand, the 

augmentation process helps to prevent overlearning by exposing the model to a 



294                                           Marius-Alexandru Dinca, Dan Popescu 

wider range of examples. For the present case, the augmentation part included: flip 

(vertical and horizontal), rotate (clockwise, counter-clockwise, upside down), shear 

(+- 10° deg horizontal and vertical), hue (between -15° and +15°), saturation 

(between -25% and +25%), brightness (between -15% and +15%), exposure 

(between -10% and +10%), noise (salt and pepper, up to 0.2% of pixels), blur (up 

to 2px). The input image size for the detection module was 640x640px.  

2.2 Neural networks used 

The areas represented by orchards represent a complex and variable setting, 

and the detection of HH pest populations is a critical task considering the power of 

adaptability and migration of this insect. For the present work, optimized versions 

of the new state-of-the-art YOLO architectures have been implemented for the 

automatic detection of HH to demonstrate the performance of this detection model.  

The first model chosen for implementation in the present study is YOLOv8, 

an advanced version of the YOLO family that introduces significant improvements 

based on the foundations of previous versions [17]. The key features of this new 

architecture are outlined by changes and innovations on the training and 

optimization side to successfully manage superior performance in common 

computer vision tasks, such as object detection. A specialized backbone 

architecture is seen in this iteration that includes residual convolutional blocks and 

CSP - Cross-Stage Partial Connections. As with previous versions, the backbone is 

followed by a Neck architecture featuring PANet (Path Aggregation Network) or 

FPN (Feature Pyramid Network) blocks. The changes help to efficiently extract 

features and aggregate them for the detection of objects with various shapes and 

sizes. Key features are complemented by advanced mosaic and cut mix 

augmentation mechanisms as well as detection model training optimization tools. 

The model retains key details for the fast and robust one-stage network 

characteristic specific to the YOLO family and is built on a framework that allows 

flexibility, adaptability, and efficiency in real-time applications. 

Released in early 2024, YOLOv9 is another advanced iteration of the 

YOLO family of detection models [18]. The YOLOv9 architecture focuses on 

solving the problem of loss of information within deep learning architectures during 

the feature extraction and spatial transformation processes that take place layer by 

layer. These losses are noted to be the cause of poor model performance and biased 

gradient flow. Key contributions of YOLOv9 are focused on concepts such as 

Programmable Gradient Information (PGI) and Generalized Efficient Layer 

Aggregation Network (GELAN) (Wang, C et al. 2024). Integrating these concepts 

significantly improves the learning ability of the detection model and ensures that 

important information is retained throughout the detection and training process. An 

innovative design for Auxiliary Reversible Branch and Multi-Level Auxiliary 

Information features components that ensure complete information is preserved and 
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key features are maintained for accurate execution of the detection process. 

GELAN improves the use of parameters by applying convolution operations and 

offers flexibility, the architecture being adapted for a wide range of computational 

blocks, model sizes, and tasks. At the time of study implementation, only YOLOv9c 

and YOLOv9e versions were available for the YOLOv9 architecture. 

YOLOv10 [19] stands out among the latest variants of the YOLO family 

ensuring a real-time end-to-end object detection architecture. Developed based on 

the ultralytics architecture, the new architecture design follows the key parts of the 

YOLO family with significant improvements attached. The backbone architecture 

introduces an improved version of CSPNet, facilitating feature extraction and 

improving gradient flow. The neck architecture uses a PAN model for multi-scale 

feature fusion. The head architecture in this iteration features two key strategies 

One-to-Many Head and One-to-One Head, responsible for improving the training 

and prediction generation process, as part of an advanced consistent dual 

assignment structure. On the other hand, the model capability is extended by using 

NMS-Free training and a holistic model. They aim to improve performance by 

using advanced modules such as large-kernel convolutions, lightweight 

classification heads, and partial self-attention blocks. Finally, this model has the 

role of generating quality predictions, with low computational cost and adequate 

efficiency for various scenarios and resources. 

2.3 Performance metrics 

The evaluation of the detection model was done using common metrics 

following the object detection task. They were represented by precision, recall, F1 

score, mAP@50, and mAP@50:95. Table 1 presents the details of performance 

indicators and representative calculation formulas. In this sense, the confusion 

matrix analysis denotes representative indices TP – True Positive, TN – True 

Negative, FP – False Positive, FN – False Negative.  
Table 1 

Performance indicators for object detection 

Indicator Formula 

Precision (P) 
 

Recall (R) 
 

F1 Score (F1) 
 

Mean Average Precision 

(mAP)  

Precision represents the proportion of correct detections out of the total 

number of detections performed. Recall represents the proportion of correct 

detections out of the total number of objects that should have been detected. mAP 
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represents a performance indicator specific to the object detection task, which 

includes an IoU metric (Intersection over Union). IoU measures the overlap 

between the predicted detection area and the reference area (ground truth). 

mAP@50 implies the calculation where IoU is 50%. The F1 score is a performance 

metric that combines precision and recall and is defined as the harmonic mean of 

precision and recall. Calculating the F1 score is useful when there is an imbalance 

between classes, providing a balanced performance and being sensitive to both FP 

and FN types of errors. 

2.4 Web application 

To complete and validate the present study a web application was created 

using the JavaScript language and the Next.js framework. This web application can 

use a detection model exported in ONNX (Open Neural Network Exchange) format 

and make predictions on the uploaded digital images using the best weights of the 

trained model. The implemented web application aims to provide a tool to allow 

users to upload various images and obtain predictions from the detection model 

exported in the format of their choice. The application architecture is defined in a 

modular structure involving a backend and a frontend part, for attaching logic and 

web interface components. 

The frontend was implemented using Next.js (React.js). These are popular 

and established technologies that provide top performance and scalability in web 

technologies. The web interface is developed by defining and attaching React 

components with various states and properties and implemented in a secure and 

robust web application context as part of React and Next.js. The main defined 

components are represented by a header area that contains the control and 

navigation part of the web application and a main content area that is responsible 

for rendering information related to the uploaded images and generating predictions 

in the web scene. A central web form allows users to select and upload images. The 

loader component generates an image preview model to display visual information 

to the user for confirmation. Functionalities of this type are implemented using 

React Context and State Management tools. The uploaded image starts the 

inference module, and once the prediction is ready, the resulting information is 

displayed in the web page component. The results include labels and probabilities 

associated with the predictions and the resulting image renders this information to 

display the detected objects. The web interface template, with example predictions, 

is attached in Fig. 2. As part of the backend area, the web application integrates 

representative modules for file upload handling and model inference. API Routes 

using Next.js, and server components are also attached in this context. Next's Route 

API receives the uploaded image and sends it for processing. The received image 

is used within the onnx-runtime-web modules to run the exported ONNX model on 

the image. A Node.js script was developed to process the image and perform the 
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inference. The choice of libraries and frameworks was made based of their state-

of-the-art performance, ease of integration, and support for ONNX model 

deployment. The frontend is developed with Next.js to provide a responsive user 

interface. The ONNX runtime was implemented for model inference, ensuring 

compatibility and performance optimization. The design decisions, such as the use 

of Next.js, React.js and ONNX, were based on their ability to efficiently handle 

real-time detection and provide a seamless user experience with modern user 

interface. 
 

 
Fig. 2. Web application interface for HH detection 

2.5 Hardware and software used 

The development of the detection model of the experiments was done on a 

custom hardware and software platform. This included an Ubuntu operating system 

with several important features. The hardware part included an Intel Core i9-

11900K CPU, 128GB of RAM, and an ASUS NVIDIA RTX 2080Ti GPU (11GB 

memory and CUDA support). The implementation details for the hardware and 

software part significantly influence the computational performance of the chosen 

architectures. The training was conducted on an NVIDIA RTX GPU which reduced 

time for training compared to a standard low-end GPU or a CPU. On the other hand, 

the software stack included Python v3.10, PyTorch and CUDA, optimized for high-

performance computing. In this sense the hardware and software resources 

enhanced the efficiency of both training and inference processes. 

3. Experimental Results and Discussions 

By integrating a series of key innovations in the neural network architecture, 

the YOLO architecture proves to be a powerful tool for the applicability of accurate 

HH detection in orchards. The approach in the present study included transfer 

learning and fine-tuning techniques to develop the detection model in relation to 

the previously described insect dataset. Pre-trained weights are used to speed up the 

process and to optimize the model based on the characteristics of the dataset. The 

experiments for the detection model included the following parameters for the 
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training and validation part: learning rate 0.01, momentum 0.9, weight decay 

0.0005, 300 epochs, batch size 16, workers 8, and SGD optimizer. Table 2 shows 

the resulting values, calculated based on the expressions of the performance 

indicators in Table 1. Fig. 3 shows the evolution of the metrics for each detection 

model.  
Table 2 

Validation results for YOLO models 

Model Precision Recall mAP@50 mAP@50:95 F1 Score 

YOLOv8n 0,981 0,745 0,848 0,504 0.850 

YOLOv8s 0,989 0,850 0,905 0,476 0.910 

YOLOv8m 0,991 0,800 0,907 0,511 0.890 

YOLOv8l 0,928 0,800 0,840 0,481 0.860 

YOLOv9c 0,889 0,792 0,793 0,386 0.837 

YOLOv9e 0,905 0,708 0,815 0,436 0.800 

YOLOv10n 0,976 0,788 0,876 0,498 0.870 

YOLOv10s 0,988 0,750 0,805 0,452 0.852 

YOLOv10m 0,990 0,747 0,815 0,509 0.851 

YOLOv10l 0,884 0,762 0,865 0,480 0.820 

 

   

a) b) c) 

   
d) e) f) 

 

Fig. 3. Validation metrics and evolution of the loss function: a, d. YOLOv8; b, e. YOLOv9; c, f. 

YOLOv10. 

 

The obtained results demonstrate a good performance in the detection process. The 

top results have been marked in bold to facilitate comparison with the rest of the 

implemented models. The study is aimed at comparing the results obtained within 
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each detection model proposed for implementation and optimization. In this step, 

the characteristics of each architecture are highlighted in the insect identification 

task. 

The analysis of the obtained results shows notable values for the YOLO 

detection models. The YOLOv8 architecture stands out in this case, providing the 

best metrics in insect detection. The most balanced results are observed for the 

YOLOv8s and YOLOv8m variants, combining high precision and good recall. 

Metrics of this type ensure accurate detection of most insects with a minimal false 

positive or false negative rate. The YOLOv10 detection model shows solid 

performance, but generally below YOLOv8. In this case, the YOLOv10n, s, and m 

variants are representative, providing metrics relevant to this study. Although 

competitive the models may have slight insect misidentification problems with poor 

detection values compared to YOLOv8. Lower performance is observed for the 

YOLOv9 model compared to YOLOv8 or YOLOv10, indicating a higher risk of 

missing insect pests to be detected. The moderate performances of this YOLOv9 

architecture indicate the need for careful optimization and improvements on the part 

of the architecture and algorithms, capable of providing solutions to these 

limitations for the detection of insects in the presented scenarios. For the detection 

of HH insects at the orchard level, the performances of the detection models suggest 

that such architectures are suitable to be developed and implemented in practice in 

agriculture, minimizing losses associated with insect pest populations and ensuring 

effective protection. 

The technical implementation demonstrates the ability to combine modern 

web technologies and deep learning to create an effective prediction solution in the 

web browser. Uploading images start at the interface accessed by the user using 

accordingly validated web forms that send the digital image to a specific endpoint. 

For the object detection experiments, using the implemented web application, the 

image processing is required within this API endpoint to match model features 

(resizing, normalizing, tensors). Using the inference model, the processed image 

with the relevant results is sent by the API back to the frontend where they are 

rendered within the interface and prediction components. Fig. 4 shows examples of 

images with predictions resulting from the testing process.  
 

 
Fig. 4. Example images with predictions 

The methodology for the study is characterized by important steps that start 

from the data acquisition step, up to the end-user application. The first step is to 
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collect images of HH using high-resolution cameras. The data is then preprocessed 

to enhance image quality and annotated for training purposes. Subsequently, the 

annotated images are used to train various YOLO neural network architectures. The 

trained models are evaluated using standardized metrics, and the best-performing 

model is deployed in a web application for real-time detection. 

The approach described above has numerous advantages. These are 

performance and scalability, portability, availability, superior user experience, as 

well as security and control over data flow. The scientific contribution is noted by 

addressing the gap between advanced neural network models and their practical 

application in agriculture, demonstrating the potential of intelligent systems in 

mitigating economic damage in orchards. The web application enhances the 

usability and accessibility of the detection system. It serves as an interface between 

the trained models and the end-users, typically farmers or agricultural experts. By 

providing real-time detection capabilities, the application enables prompt 

identification and mitigation of HH infestations.  

Analyzing and testing the architectures of the present study, top 

performances are observed for most of the models and variants chosen for 

implementation. However, maximum detection and accurate identification 

performance of the reference insect is noted when it is visible under favorable 

conditions. However, various observations regarding the evolution of metrics and 

the general detection can be noted. The main problem in identifying this type of 

insect is its presence in the context of orchards and trees. Most of the time the insect 

is partially hidden, among leaves and tree crowns, and this context has a 

considerable negative impact on the detection process. Other limitations observed 

are represented by the fact that the insect can be easily confused with some artifacts 

visible within the crops, the color of the insect being close to that of the branches, 

the small textures of the trees, or the various spots on the leaves. Another problem 

observed that influences the detection process is the blur effect that can affect the 

identification of the insect, with the models having trouble extracting the features 

necessary for correct identification, losing key information such as the shape, 

texture, and specific details of the insect. 

The limitations observed throughout the study open the way to new 

directions of development and research to solve the problems that have arisen and 

to identify the pests under various unfavorable conditions. The first step in this 

direction of future research is the increase of the data set, which will favor this 

study, in the correct identification of the insect regardless of its size. A second step 

can integrate new classes into the dataset, often pest populations have various stages 

of emergence and development, especially for HH (nymphs, adults, etc.). Other 

species can be attached in the same context. Careful optimization of the proposed 

architectures may include new feature extraction methods, particularly targeting 

specific backbone, neck, or head architectural areas. 
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4. Conclusions 

The study of YOLO architectures for HH detection of using digital imagery 

taken from the orchard level revealed superior performance. In this study, variants 

of the YOLOv8, YOLOv19, and YOLOv10 models were studied and optimized for 

accurate detection of the reference insect. A specific and comprehensive dataset 

was used to train and evaluate the YOLO detection models. The proposed analysis 

and evaluation of the detection models revealed the superiority of the YOLOv8 

architecture for these tasks, especially YOLOv8s and YOLOv8m, balancing 

precision and recall metrics, providing satisfactory global accuracy, and 

minimizing false positives and negatives. In contrast, the YOLOv9 and YOLOv10 

models achieved lower performance and failed to match the performance achieved 

by YOLOv8. Now, the YOLOv8 architecture can be highlighted as the most 

suitable for practical implementation, in solutions with automated systems, 

providing accurate and consistent detection of HH, and ensuring effective crop 

protection. However, the capabilities and key features of the YOLOv9 and 

YOLOv10 models can be noted in this framework to extend the study by generating 

detection architectures that can outperform existing state-of-the-art models, 

leveraging the associated flexibility and performance. In addition to the study, a 

Next.js web application is presented that integrates web and deep learning 

technologies to make predictions on uploaded images, using detection models 

exported in a common ONNX format. This implementation optimizes inference and 

allows the application to run on different platforms and in relation with different 

services. The user experience is improved by offering a modern and interactive 

solution. The presented solution is robust and performant and manages to ensure 

the safe functionalities in fast prediction based on digital images. 
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