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HALYOMORPHA HALYS DETECTION USING NEW YOLO
ARCHITECTURES AND NEXT.JS WEB APPLICATION

Marius-Alexandru DINCA!, Dan POPESCU?

Automated detection of insect pests is a critical task to ensure modern
agricultural practices, crop health, and productivity. The present study focuses on
implementing and optimizing modern YOLO architectures, specifically YOLOVS,
YOLOV9, and YOLOvV10, for detecting Halyomorpha Halys, an orchard-specific pest.
The performance results obtained demonstrate that the YOLOV8 architecture
outperforms other modern versions of this family, obtaining higher and balanced
metrics and reducing false positive rates. In the same framework, the new models
YOLOV9 and YOLOv10 demonstrate competitive performance being viable options
for pest detection applications. In parallel, a web application was designed and
implemented using the Next.js framework. This application offers a modern, modular,
and intuitive interface capable of generating fast predictions based on uploaded
images. Combining web techniques with deep learning highlights the potential of
these innovative solutions in integrated pest management.

Keywords: orchard monitoring, agriculture, convolutional neural networks,
insect detection, web application

1. Introduction

The evolution of agricultural practices has materialized in the field of
modern and precision agriculture. Modern agriculture is based on advanced systems
to optimize production and sustainability. This field nowadays uses intelligent
agricultural machines and advanced IT systems to manage, collect and analyze data
in real-time, allowing agricultural staff to make quick and efficient decisions [1, 2].
This data is collected and carefully analyzed to identify the needs of specific
agricultural areas, allowing the precise integration of agricultural practices, thereby
reducing costs and environmental impact, and increasing agricultural production of
various types. Modern and precision agriculture increases productivity and
efficiency and contributes to long-term sustainability by ensuring sustainable
agricultural practices and responsible use of natural resources and reducing the
negative impact on the environment. These features clearly respond to regional and
global challenges in terms of food security and climate change. Following this
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topic, the integration of deep learning in modern agriculture has been an important
step for real-time monitoring and analysis of crop images, especially for the control
and management of insect pests that can cause major economic losses through crop
devastation [3]. Monitoring and controlling insect pests often involve manual,
traditional methods. These include classical monitoring by specialized agricultural
staff in various forms and pesticide applications, but they are often ineffective,
unsustainable, and time-consuming [4]. The technological advance of recent years,
especially in the field of deep learning, offers innovative solutions to solve these
problems and to characterize modern agriculture through advanced
implementations of real-time analysis and monitoring [5]. Looking at this important
area, the problem of insect pests is quite pronounced and is found in many crops
[6]. Insect pests are a major threat to agriculture affecting crop quality, and their
damage results in considerable financial losses for farmers worldwide. Among
these challenges the identification and management of pest populations is a critical
issue, particularly in orchards where dense and diverse areas can be affected by a
multitude of pest species [7]. Within orchards, fruit trees are critical crops and insect
pests can cause extensive damage. Examples of such pests include stink bugs,
aphids, or codling moths. They can attack leaves and fruits causing deformation,
premature fruit loss and, in severe cases, crop destruction [8, 9].

Halyomorpha Halys (HH), popularly known as the brown marmorated stink
bug, is a pest of the Pentatomidae family native to East Asia (China, Japan). Due to
its massive potential for migration and adaptation, this insect has quickly become
one of the major pests in various regions of the world, including Europe and North
America [10]. The negative impact on various crops and the economy due to this
insect has been the motivation for more research and development focused on
studying its behavior, life cycle and control [11]. General appearance characteristics
of this insect include an oval-shaped body and a color ranging from dark brown to
marble gray. In terms of life cycle, this bug goes through several stages from egg,
nymphal stages, and an adult stage. The behavior of this bug is polyphagous,
feeding on plant juice by piercing them. HH causes direct damage by feeding on
various crops (fruits and vegetables) and causing discoloration, deformation and
other types of damage that make agricultural products unmarketable. Its spread
affects well-known crops that include fruits (apples, pears), vegetables and some
field crops (corn or soybeans) [12]. On the other hand, from an economic and
ecological point of view, the losses can be significant [13]. Given these
characteristics, deep learning can be used in orchards to monitor the condition of
crops and quickly identify the presence of harmful insects, such as Halyomorpha
Halys [14]. These advanced systems can be integrated to monitor crops in real time
and detect signs that could indicate problems or pest infestations, allowing farmers
to intervene before damage becomes severe [15, 16]. The present study is aimed at
providing such solutions by combining detection models from the YOLO family
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with a Next.js web application that uses the exported models for the automatic
detection of pest insects from digital images. Apart from the introduction, the
present work is organized into several sections. Materials and methods section
presents the methodology and tools that were the basis of the present study with
emphasis on the dataset used, the presentation of the neural networks used, web
application and hardware and software characteristics. The next section presents the
experimental results and discussions based on the metrics and performances
obtained for each detection model. Finally, a conclusion section is introduced to
create a summary of the research and outlines the key aspects and future directions
of this study.

2. Materials and methods
2.1 Dataset used

The dataset used for training and evaluating the detection models is
represented by a series of RGB digital images taken from orchard contexts. The
images of the dataset were captured using various devices such as drones, digital
cameras, and smartphones. The final dataset contains 500 images illustrating the
reference insect HH. The total number of annotated instances was 635. Since the
dataset is the basis of a detection model, it was split following a percentage of 70%
for training, 20% for validation, and 10% for testing, totaling 350 images for
training, 100 for validation, and 50 for testing respectively. Examples of images are
presented in Fig. 1.
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Fig. 1. Example images from the dataset

Image augmentation techniques for the training set were performed to
increase the size and diversity of the dataset. Applying various transformations
generates new instances that help the detection model to become more robust to
variations in the presented data. Some examples in Fig. 1 illustrate augmentation
techniques applied to digital images in the dataset. On the other hand, the
augmentation process helps to prevent overlearning by exposing the model to a
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wider range of examples. For the present case, the augmentation part included: flip
(vertical and horizontal), rotate (clockwise, counter-clockwise, upside down), shear
(+- 10° deg horizontal and vertical), hue (between -15° and +15°), saturation
(between -25% and +25%), brightness (between -15% and +15%), exposure
(between -10% and +10%), noise (salt and pepper, up to 0.2% of pixels), blur (up
to 2px). The input image size for the detection module was 640x640px.

2.2 Neural networks used

The areas represented by orchards represent a complex and variable setting,
and the detection of HH pest populations is a critical task considering the power of
adaptability and migration of this insect. For the present work, optimized versions
of the new state-of-the-art YOLO architectures have been implemented for the
automatic detection of HH to demonstrate the performance of this detection model.

The first model chosen for implementation in the present study is YOLOVS,
an advanced version of the YOLO family that introduces significant improvements
based on the foundations of previous versions [17]. The key features of this new
architecture are outlined by changes and innovations on the training and
optimization side to successfully manage superior performance in common
computer vision tasks, such as object detection. A specialized backbone
architecture is seen in this iteration that includes residual convolutional blocks and
CSP - Cross-Stage Partial Connections. As with previous versions, the backbone is
followed by a Neck architecture featuring PANet (Path Aggregation Network) or
FPN (Feature Pyramid Network) blocks. The changes help to efficiently extract
features and aggregate them for the detection of objects with various shapes and
sizes. Key features are complemented by advanced mosaic and cut mix
augmentation mechanisms as well as detection model training optimization tools.
The model retains key details for the fast and robust one-stage network
characteristic specific to the YOLO family and is built on a framework that allows
flexibility, adaptability, and efficiency in real-time applications.

Released in early 2024, YOLOV9 is another advanced iteration of the
YOLO family of detection models [18]. The YOLOV9 architecture focuses on
solving the problem of loss of information within deep learning architectures during
the feature extraction and spatial transformation processes that take place layer by
layer. These losses are noted to be the cause of poor model performance and biased
gradient flow. Key contributions of YOLOV9 are focused on concepts such as
Programmable Gradient Information (PGI) and Generalized Efficient Layer
Aggregation Network (GELAN) (Wang, C et al. 2024). Integrating these concepts
significantly improves the learning ability of the detection model and ensures that
important information is retained throughout the detection and training process. An
innovative design for Auxiliary Reversible Branch and Multi-Level Auxiliary
Information features components that ensure complete information is preserved and
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key features are maintained for accurate execution of the detection process.
GELAN improves the use of parameters by applying convolution operations and
offers flexibility, the architecture being adapted for a wide range of computational
blocks, model sizes, and tasks. At the time of study implementation, only YOLOv9c
and YOLOv9e versions were available for the YOLOV9 architecture.

YOLOvV10 [19] stands out among the latest variants of the YOLO family
ensuring a real-time end-to-end object detection architecture. Developed based on
the ultralytics architecture, the new architecture design follows the key parts of the
YOLO family with significant improvements attached. The backbone architecture
introduces an improved version of CSPNet, facilitating feature extraction and
improving gradient flow. The neck architecture uses a PAN model for multi-scale
feature fusion. The head architecture in this iteration features two key strategies
One-to-Many Head and One-to-One Head, responsible for improving the training
and prediction generation process, as part of an advanced consistent dual
assignment structure. On the other hand, the model capability is extended by using
NMS-Free training and a holistic model. They aim to improve performance by
using advanced modules such as large-kernel convolutions, lightweight
classification heads, and partial self-attention blocks. Finally, this model has the
role of generating quality predictions, with low computational cost and adequate
efficiency for various scenarios and resources.

2.3 Performance metrics

The evaluation of the detection model was done using common metrics
following the object detection task. They were represented by precision, recall, F1
score, MAP@50, and mAP@50:95. Table 1 presents the details of performance
indicators and representative calculation formulas. In this sense, the confusion
matrix analysis denotes representative indices TP — True Positive, TN — True
Negative, FP — False Positive, FN — False Negative.

Table 1

Performance indicators for object detection

Indicator Formula
. TP

Precision (P) P= o rp
TP

Recall (R) R=Tp+rn

Precision - Recall 2-TP

F1 Score (F1) Rl = 2 g ecision + Recall - 2.TP + FP+ FN

Mean Average Precision 1+
(MAP) mAP = E'; AP;

Precision represents the proportion of correct detections out of the total
number of detections performed. Recall represents the proportion of correct
detections out of the total number of objects that should have been detected. mAP
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represents a performance indicator specific to the object detection task, which
includes an loU metric (Intersection over Union). loU measures the overlap
between the predicted detection area and the reference area (ground truth).
MAP@50 implies the calculation where loU is 50%. The F1 score is a performance
metric that combines precision and recall and is defined as the harmonic mean of
precision and recall. Calculating the F1 score is useful when there is an imbalance
between classes, providing a balanced performance and being sensitive to both FP
and FN types of errors.

2.4 Web application

To complete and validate the present study a web application was created
using the JavaScript language and the Next.js framework. This web application can
use a detection model exported in ONNX (Open Neural Network Exchange) format
and make predictions on the uploaded digital images using the best weights of the
trained model. The implemented web application aims to provide a tool to allow
users to upload various images and obtain predictions from the detection model
exported in the format of their choice. The application architecture is defined in a
modular structure involving a backend and a frontend part, for attaching logic and
web interface components.

The frontend was implemented using Next.js (React.js). These are popular
and established technologies that provide top performance and scalability in web
technologies. The web interface is developed by defining and attaching React
components with various states and properties and implemented in a secure and
robust web application context as part of React and Next.js. The main defined
components are represented by a header area that contains the control and
navigation part of the web application and a main content area that is responsible
for rendering information related to the uploaded images and generating predictions
in the web scene. A central web form allows users to select and upload images. The
loader component generates an image preview model to display visual information
to the user for confirmation. Functionalities of this type are implemented using
React Context and State Management tools. The uploaded image starts the
inference module, and once the prediction is ready, the resulting information is
displayed in the web page component. The results include labels and probabilities
associated with the predictions and the resulting image renders this information to
display the detected objects. The web interface template, with example predictions,
is attached in Fig. 2. As part of the backend area, the web application integrates
representative modules for file upload handling and model inference. APl Routes
using Next.js, and server components are also attached in this context. Next's Route
API receives the uploaded image and sends it for processing. The received image
is used within the onnx-runtime-web modules to run the exported ONNX model on
the image. A Node.js script was developed to process the image and perform the
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inference. The choice of libraries and frameworks was made based of their state-
of-the-art performance, ease of integration, and support for ONNX model
deployment. The frontend is developed with Next.js to provide a responsive user
interface. The ONNX runtime was implemented for model inference, ensuring
compatibility and performance optimization. The design decisions, such as the use
of Next.js, React.js and ONNX, were based on their ability to efficiently handle
real-time detection and provide a seamless user experience with modern user
interface.

BE

YOLO Object Detection
b A

Fig. 2. Web application interface for HH detection
2.5 Hardware and software used

The development of the detection model of the experiments was done on a
custom hardware and software platform. This included an Ubuntu operating system
with several important features. The hardware part included an Intel Core i9-
11900K CPU, 128GB of RAM, and an ASUS NVIDIA RTX 2080Ti GPU (11GB
memory and CUDA support). The implementation details for the hardware and
software part significantly influence the computational performance of the chosen
architectures. The training was conducted on an NVIDIA RTX GPU which reduced
time for training compared to a standard low-end GPU or a CPU. On the other hand,
the software stack included Python v3.10, PyTorch and CUDA, optimized for high-
performance computing. In this sense the hardware and software resources
enhanced the efficiency of both training and inference processes.

3. Experimental Results and Discussions

By integrating a series of key innovations in the neural network architecture,
the YOLO architecture proves to be a powerful tool for the applicability of accurate
HH detection in orchards. The approach in the present study included transfer
learning and fine-tuning techniques to develop the detection model in relation to
the previously described insect dataset. Pre-trained weights are used to speed up the
process and to optimize the model based on the characteristics of the dataset. The
experiments for the detection model included the following parameters for the
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training and validation part: learning rate 0.01, momentum 0.9, weight decay
0.0005, 300 epochs, batch size 16, workers 8, and SGD optimizer. Table 2 shows
the resulting values, calculated based on the expressions of the performance
indicators in Table 1. Fig. 3 shows the evolution of the metrics for each detection
model.

Table 2
Validation results for YOLO models
Model Precision Recall MAP@50 mMAP@50:95 F1 Score
YOLOv8n 0,981 0,745 0,848 0,504 0.850
YOLOVS8s 0,989 0,850 0,905 0,476 0.910
YOLOv8m 0,991 0,800 0,907 0,511 0.890
YOLOvSI 0,928 0,800 0,840 0,481 0.860
YOLOv9c 0,889 0,792 0,793 0,386 0.837
YOLOv9e 0,905 0,708 0,815 0,436 0.800
YOLOv10n 0,976 0,788 0,876 0,498 0.870
YOLOvV10s 0,988 0,750 0,805 0,452 0.852
YOLOv10m 0,990 0,747 0,815 0,509 0.851
YOLOv101 0,884 0,762 0,865 0,480 0.820
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Fig. 3. Validation metrics and evolution of the loss function: a, d. YOLOVS; b, e. YOLOV9; ¢, f.
YOLOvV10.

The obtained results demonstrate a good performance in the detection process. The
top results have been marked in bold to facilitate comparison with the rest of the
implemented models. The study is aimed at comparing the results obtained within
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each detection model proposed for implementation and optimization. In this step,
the characteristics of each architecture are highlighted in the insect identification
task.

The analysis of the obtained results shows notable values for the YOLO
detection models. The YOLOvV8 architecture stands out in this case, providing the
best metrics in insect detection. The most balanced results are observed for the
YOLOv8s and YOLOv8m variants, combining high precision and good recall.
Metrics of this type ensure accurate detection of most insects with a minimal false
positive or false negative rate. The YOLOvV10 detection model shows solid
performance, but generally below YOLOVS. In this case, the YOLOv10n, s, and m
variants are representative, providing metrics relevant to this study. Although
competitive the models may have slight insect misidentification problems with poor
detection values compared to YOLOvVS8. Lower performance is observed for the
YOLOV9 model compared to YOLOvV8 or YOLOV10, indicating a higher risk of
missing insect pests to be detected. The moderate performances of this YOLOv9
architecture indicate the need for careful optimization and improvements on the part
of the architecture and algorithms, capable of providing solutions to these
limitations for the detection of insects in the presented scenarios. For the detection
of HH insects at the orchard level, the performances of the detection models suggest
that such architectures are suitable to be developed and implemented in practice in
agriculture, minimizing losses associated with insect pest populations and ensuring
effective protection.

The technical implementation demonstrates the ability to combine modern
web technologies and deep learning to create an effective prediction solution in the
web browser. Uploading images start at the interface accessed by the user using
accordingly validated web forms that send the digital image to a specific endpoint.
For the object detection experiments, using the implemented web application, the
image processing is required within this API endpoint to match model features
(resizing, normalizing, tensors). Using the inference model, the processed image
with the relevant results is sent by the API back to the frontend where they are
rendered within the interface and prediction components. Fig. 4 shows examples of
images with predictions resulting from the testing process.
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Fig. 4. Example images with predictions
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The methodology for the study is characterized by important steps that start
from the data acquisition step, up to the end-user application. The first step is to
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collect images of HH using high-resolution cameras. The data is then preprocessed
to enhance image quality and annotated for training purposes. Subsequently, the
annotated images are used to train various YOLO neural network architectures. The
trained models are evaluated using standardized metrics, and the best-performing
model is deployed in a web application for real-time detection.

The approach described above has numerous advantages. These are
performance and scalability, portability, availability, superior user experience, as
well as security and control over data flow. The scientific contribution is noted by
addressing the gap between advanced neural network models and their practical
application in agriculture, demonstrating the potential of intelligent systems in
mitigating economic damage in orchards. The web application enhances the
usability and accessibility of the detection system. It serves as an interface between
the trained models and the end-users, typically farmers or agricultural experts. By
providing real-time detection capabilities, the application enables prompt
identification and mitigation of HH infestations.

Analyzing and testing the architectures of the present study, top
performances are observed for most of the models and variants chosen for
implementation. However, maximum detection and accurate identification
performance of the reference insect is noted when it is visible under favorable
conditions. However, various observations regarding the evolution of metrics and
the general detection can be noted. The main problem in identifying this type of
insect is its presence in the context of orchards and trees. Most of the time the insect
is partially hidden, among leaves and tree crowns, and this context has a
considerable negative impact on the detection process. Other limitations observed
are represented by the fact that the insect can be easily confused with some artifacts
visible within the crops, the color of the insect being close to that of the branches,
the small textures of the trees, or the various spots on the leaves. Another problem
observed that influences the detection process is the blur effect that can affect the
identification of the insect, with the models having trouble extracting the features
necessary for correct identification, losing key information such as the shape,
texture, and specific details of the insect.

The limitations observed throughout the study open the way to new
directions of development and research to solve the problems that have arisen and
to identify the pests under various unfavorable conditions. The first step in this
direction of future research is the increase of the data set, which will favor this
study, in the correct identification of the insect regardless of its size. A second step
can integrate new classes into the dataset, often pest populations have various stages
of emergence and development, especially for HH (nymphs, adults, etc.). Other
species can be attached in the same context. Careful optimization of the proposed
architectures may include new feature extraction methods, particularly targeting
specific backbone, neck, or head architectural areas.
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4. Conclusions

The study of YOLO architectures for HH detection of using digital imagery
taken from the orchard level revealed superior performance. In this study, variants
of the YOLOVS, YOLOvV19, and YOLOv10 models were studied and optimized for
accurate detection of the reference insect. A specific and comprehensive dataset
was used to train and evaluate the YOLO detection models. The proposed analysis
and evaluation of the detection models revealed the superiority of the YOLOv8
architecture for these tasks, especially YOLOv8s and YOLOv8m, balancing
precision and recall metrics, providing satisfactory global accuracy, and
minimizing false positives and negatives. In contrast, the YOLOV9 and YOLOv10
models achieved lower performance and failed to match the performance achieved
by YOLOv8. Now, the YOLOvVS8 architecture can be highlighted as the most
suitable for practical implementation, in solutions with automated systems,
providing accurate and consistent detection of HH, and ensuring effective crop
protection. However, the capabilities and key features of the YOLOvV9 and
YOLOvV10 models can be noted in this framework to extend the study by generating
detection architectures that can outperform existing state-of-the-art models,
leveraging the associated flexibility and performance. In addition to the study, a
Next.js web application is presented that integrates web and deep learning
technologies to make predictions on uploaded images, using detection models
exported inacommon ONNX format. This implementation optimizes inference and
allows the application to run on different platforms and in relation with different
services. The user experience is improved by offering a modern and interactive
solution. The presented solution is robust and performant and manages to ensure
the safe functionalities in fast prediction based on digital images.
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