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LOCATION PRIVACY FOR NON-STATIONARY USERS 

Iulia-Maria FLOREA1, Dan VORNICU2, Ștefan-Dan CIOCÎRLAN3,             

Răzvan RUGHINIȘ4 

In the last years, privacy has been a debated topic since the approval of the 

European GDPR. People have become more aware of the information gathered by 

the applications they are using often. Many of them require specific accuracy that 

may not necessarily need. For instance, weather-based services do not need the 

exact user location, since the weather is almost the same in a city. This paper 

focuses on location obfuscation techniques for a user moving in a city. Our solution 

provides a fake path, based on the real locations and we test it against state-of-the-

art attacks to prove its resistance. 
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1. Introduction 

Day by day, we advance deeper into the universe of technology, of devices 

and applications that provide services. A segment of these services are the ones 

that are based on user location. No matter if you are on vacation and want to 

check the local weather, or you need a little help finding a destination in a less 

frequented area, there is at least one service that, by tracking your location, can 

send you all the necessary information. Location-Based Services (LBS) are 

currently an undeniable part of everyday life ([1, 2]). 

Since users do not know how these applications handle, store and use the 

locations, it is safer to adopt a precautionary behavior. The best-case scenario is 

when a user’s location is shared with other entities only with the user’s consent, 

but this is not always a guarantee. Some applications might collect user locations 

without them knowing [3, 4].  

The need to maintain location privacy is only stronger in today’s 

environment, when context-awareness, location-awareness services are 

everywhere. Current systems are able to track anyone in real time, with incredible 

accuracy. Together with technological advancements in processing power and 

capacity, the population can be followed wherever they go, much easier than ever 
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before. But privacy is a human right, internationally recognized. Even though this 

right to privacy is debated by many, there are some clear negative aspects with not 

respecting this right. For instance, one’s location can be used maliciously to send 

spam messages containing products or services related to the victim’s location. 

Another risk of ignoring location privacy is given by physical abuse. An attacker 

might use someone’s location to follow around, rob, assault this victim. A third 

reason why the lack of location privacy can cause harm to a person is that the 

location can tell things about a person. Just by knowing where someone was in the 

past can lead to fair assumptions about religion, political orientation, health status 

and other similar private information [5]. Although it is not a universal concern, 

there are individuals who believe that their information could be used differently 

than what had been agreed upon. 

In this paper, we provide a solution that creates an obfuscated, but realistic 

path for moving users in cities, so attackers gaining access will not be able to 

reconstruct the real locations. The current algorithm continues the work in [6] and 

it is based on an idea and a dataset included in the “Optimal Geo-

Indistinguishable Mechanisms for Location Privacy” [7], a paper that concentrates 

on finding the balance between privacy gain and quality loss. Given the city of 

Beijing, China, and a map of the most frequently visited areas within the city, the 

initial algorithm processes the real location and outputs locations as close as 

possible to popular areas. We also prove that out solution is resistant to state-of-

the-art attacks.  
 

2. Related work 

2.1 Real location obfuscation techniques 

A similar work, “Geo-indistinguishability: A Principled Approach to 

Location Privacy” [3], introduces the concept of following a location trace. The 

authors present a way of doing so with a limited degradation of the privacy factor 

that is inevitable to a certain degree due to the correlation between locations. They 

consider an input made of an array of locations, together forming a location trace. 

In their view, the first and most basic solution to hide the user’s path is to add 

noise individually to each element of the array. The next step towards a stronger 

solution is a prediction-based approach, that takes into account all the previous 

information about the trace. If the new location can be easily predicted, then it is 

returned without the addition of supplementary noise. They call this the easy 

point. A hard point cannot be predicted based on the existing data while 

maintaining privacy. This type of point is sanitized with noise. In their prediction 

step, they perform calculations in order to generate a new location at an 

acceptable distance from the previous point. This idea represents the foundation 

for the algorithm presented in the next chapter. Their solution is based on 

differential privacy, which leads to further computations and overhead. Our 
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approach aims to provide a similar solution, but with a lower number of 

computations, so it would be suitable for embedded devices. 

The same general concept of location obfuscation is also debated in a 

different paper, “Evaluation of Location Obfuscation Techniques for Privacy in 

Location Based Information Systems” [4]. The researchers compare multiple 

obfuscation techniques by running five algorithms on the same dataset. “Rand” is 

an algorithm that generates a completely random location wherever within a 

specified radius from the real location. “N-Rand” is a modification of the regular 

“Rand”, generating N random locations and selecting the one that is furthest from 

the real location. “N-Mix” was supposed to return a false location based on the 

location histories of other people, very similar with the current approach 

explained in this paper. However, due to the lack of data, the authors chose to 

generate N random points and compute the average coordinates between those 

points. “Dispersion” selects a random point like “Rand” does, then runs “Rand” 

again with a smaller radius and with the origin set on this random point. “N-

Dispersion” determines the random point with the “N-Rand” algorithm, then runs 

“Rand” on said point with a smaller radius. The metrics of reference are based on 

the distance between the real and the fabricated locations. In particular, the final 

result is determined according to the average distance between these two types of 

locations after all the algorithms process a simulated route on the map. Their 

results pointed towards “N-Rand” as the most efficient method as long as N is not 

higher than 4. The “N-Rand” algorithm followed the route in a zig-zag pattern, 

with an average distance of approximately 25 meters. According to their analysis, 

the “N-Dispersion” would have also generated satisfactory results, however the 

complexity of this algorithm makes it inefficient compared to the others. 

2.2 Attacks on location obfuscation techniques 

The first type of attack is the same-origin [8]. It is based on the 

presumption that the user uses the same original location i and it generates 

obfuscated locations j with probability pi(j). The attacker is supposed to know the 

probability mass functions of the algorithm and so, he can build an obfuscation 

pattern for the several origin points in the same region of interest. By comparing 

the results with the observation points, he can obtain the original location. This 

idea was tested against several state-of-the art-implementations: spatial-cloaking, 

geo-indistinguishability and a maximum-entropy method that they developed. The 

attack success is measured in two ways. The first is the probability of getting the 

original location after t observations. The other one is the distance between the 

true location and the chosen location after t observations. The success probability 

is determined in their experiments after 200 observations. The k-cloaking 

mechanism has worse results than geo-indistinguishability and maximum-entropy 

solutions, that provide similar numbers. 
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The second type of attacks, brute force, are evaluated in [11] against two 

state-of-the art location obfuscation mechanisms: geo-indistinguishability [7] and 

expected inference error [12], [13]. It is composed of two different types, optimal 

inference attack [13] and Bayesian inference attack. The former tries to minimize 

the error between the estimated and the real locations, using the observed 

obfuscated location.  In this case, the distance between points is Euclidian. The 

latter considers the Hamming distance, since experiments proved that the optimal 

inference attack will consider the estimated point as the one with maximum 

posterior probability. In both cases, they ran the adversary algorithm for 1000 

times. For the optimal inference attack obtained an inference error of 0.89 km at 

most points for both solutions In case of Bayesian inference attack, they analyzed 

the number of times the algorithm made the right guess on the user’s true location. 

In case of expected inference error, the average probability is around 50% for 

most points, while geo-indistinguishability shows better results. For most regions, 

the attack success is around 0, but there are some points where it goes up to 80%. 

Another paper, “AGENT: an adaptive geo-indistinguishable mechanism 

for continuous location-based service” [9], introduces a novel solution to tackle 

the continuous GPS tracking leading to the exposure of the real location, which is 

a flaw of the frequently used geo-indistinguishability mechanism. Their solution 

uses an R-tree that stores small regions, each region containing some already 

sanitized locations. When the user sends a real location, their algorithm first 

identifies any existing sanitized locations within the given region and returns one 

if available. Although the number of sanitized locations is quite finite, the 

generated trace does look like a replica of a real trace. 

 3. System Architecture 

In [6], we presented the architectural model of the solution, also described 

in Figure 1. We add a transparent layer, a browser extension that intercepts the 

HTML5 geolocation API, based on the implementation of LocationGuard [14]. 

The websites may require location information from the browser and, in case of 

the user’s approval, it detects the exact location by querying a location service and 

forwards it to the website. The transparent layer that we provide intercepts the 

messages sent between the browser and the location service and runs an 

obfuscation algorithm before sending the response to the website. It is addressed 

mainly to mobile phones and it requires storage space, since it uses predefined 

maps of places where the user is located. Its aim is to protect the user’s privacy 

against malicious or curious websites, which may track locations and get behavior 

patterns out of data. Since websites may remain open in browsers after usage, it is 

possible for them to get location data from the users without their knowledge. A 

browser extension is a lightweight solution that does not require additional 

changes, nor user technical knowledge.  
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Fig. 1 Solution architecture 

4. Implementation 

A fundamental piece of data is the matrix of cell popularity scores within 

the grid that lays over Beijing. Each cell of the grid holds a popularity score 

ranging from 0 to 9. The higher the score, the higher the popularity of an area. 

The algorithm is more likely to generate a fake location in a more popular area, 

using a random distribution in order to avoid selecting the same most popular area 

every time. A configuration file allows the user to set preferences regarding the 

approximate distance between the real and the false location. 

The extension of the algorithm from [6] is a code section that performs the 

logic of determining where a new fabricated location could be placed. The first 

step is to read the current real location and identify the cell within the matrix 

where those coordinates belong. This knowledge, together with the user 

preferences regarding the level of obfuscation, helps contour a smaller or larger 

area surrounding the real location. This area contains multiple cells with 

individual popularity scores. Each cell is a candidate to become the cell of the 

newly fabricated location. If the algorithm is not at its first run, there will be a 

previous fake location that it generated based on the last known real location. At 

this point, the code attempts to identify the cell of that fake location. This can 

either succeed or fail. If it fails, it means that there was no previous fake location 

set, so the entire area determined earlier is valid. If it succeeds, however, it will 

determine new boundaries for the new fake location. 

As explained visually in Figure 2, when a real location is being processed 

and it is close to a fake location, these two locations help identify the orientation 

of the user. The yellow marker with the label “1” has an entire area (drawn in this 

figure as a circle) available to generate a location. It generates the corresponding 
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red “1”. The user moves to where the yellow “2” marker is on the map, so the 

algorithm attempts to generate a new fake location. However, since location “2”is 

more to the South-East from the previous fake location “1”, it is an indicator that 

the user is likely to travel in that direction. The algorithm cuts the circle, 

restricting the area above (to the North) and to the left (West) of the fake location 

“1”. This way, it can only generate a location in the desired direction, using the 

same location generation logic applied on smaller locations pool. The following 

real location is the yellow “3”. It is placed at a considerable distance away from 

the previous real location, yellow “2”. Because the areas of the two last real 

locations do not overlap, it is guaranteed that the new fake location will follow the 

direction of travel of the user.  As a positive side effect, the distances between 

consecutive fake locations are proportional to the distances between their 

corresponding real locations, giving more plausibility to the fake trail. 

 
Fig. 2 Location generation limits to ensure a continuous path 

 

Figure 3 shows all three sets of locations. With yellow markers, we 

represented the real trace in this scenario. The numbers on each marker show the 

order in which the markers were generated. The blue markers show the output of 

the stationary version of the algorithm from [6]. According to this result, an 

attacker would find out that the user has supposedly travelled West from position 

1 and then South-East a considerable amount. Depending on the time frame 

available, it may lead to the user losing credibility in front of the attacker. The red 

marks the output of the algorithm described in this paper. At a first glimpse, it 

appears that the fifth location is missing from the result set. In fact, there are five 
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locations but the third and fourth ones are merged. It is immediately visible that 

the real trace and the “red” trace are very similar regarding the heading, which is 

the goal of this algorithm. Each one of the “red” locations is placed on a relatively 

popular cell, therefore the location is plausible. An attacker without prior 

knowledge about the victim is not able to distinguish this fabricated trace from a 

real trace. For a better representation of the real and fabricated headings, a new 

simulation is presented in Figure 4. The false route, drawn with red arrows, 

follows the direction of the real route, black, while maintaining a good average 

distance between pairs of real and fake locations. 

 
Fig.3 Comparison of the current algorithm with the stationary version and the real path 

 

The implemented algorithm has a complexity of O(n*m), where n and m 

are the number of rows and columns of the location matrix. This is built based on 

GPS trajectories of people in GeoLife GPS Trajectories dataset [15]. Starting from 

the information in the plots, we can obtain the most popular areas and load the 

annotated maps in the transparent layer. In case of low-memory systems, the 

preprocessing must be done beforehand, to avoid extra load. A map file contains 

information on the GPS coordinates of each area, together with its popularity 

score.  
 

4. Experiment design 
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The obfuscation layer was implemented as addOn for HTML5 API on the 

mobile device, with [14] as starting point. It runs on browsers that permits 

extensions, such as Firefox on Android or iOS devices. There are available Maps 

APIs, such as [15], that provide developers methods to get the exact location in 

browser. In case of mobile phones, which is considered the main use case, the 

storage space is not an issue. This type of solution may need several MB, 

depending on the maps that the user is willing to download. It can be compared 

with offline maps application, but without the visual and interactive part of the 

application. To test the algorithm, we created a scenario of a person travelling 

across Beijing, leaving a trail of five different real locations. These locations serve 

as input for both the last and the current generations of this algorithm. The older 

one treats the input as an array of five different locations and runs in a stateless 

manner. The result is an array of five false locations, each corresponding to one of 

the real locations. The newer algorithm treats the array as a series of locations, 

and each run remembers the output of the last run, making in run in a stateful 

manner. The result is also an array of five locations but distributed differently on 

the map. 

Although this solution provides a sort of zig-zag line that wraps around the 

real trajectory, which is what paper [10] presents as well with their solution, this 

algorithm is also able to output the same location for multiple successive inputs, 

as explained in the previous paragraph,  regarding  the  missing  fifth  red map 

marker.  We consider this an important mechanism to enhance privacy, because 

from an attacker perspective the target is stationary in a credible spot on the map, 

while the target is in fact moving privately within an area. This mechanism also 

proves that the output of the algorithm is not necessarily dictated by the variations 

in the input data. 

As a supplementary privacy feature, the algorithm avoids generating false 

locations on top of real locations. If the user is in a popular place in the city, the 

fake location could have been generated exactly in that particular spot, because it 

is marked as a popular place. But by doing so, an attacker that believes the output 

to be true, will in fact know the user’s real location.  

When comparing our solution with the original paper based on Laplace 

distribution [16], we prove a higher level of security. Their path result after 

running “N-Rand” essentially states that the average distance between pairs of real 

and fake locations is approximately 25 meters, with a standard deviation of up to 

10 meters. It appears that the output route follows the real route closely, which 

leads to possibly identifying the real route easily, only based on the observations. 

This flaw may be reduced by increasing the range of the “N-Rand” algorithm. 

Another flaw of the Random algorithms is triangulation and presents itself when 

the algorithm runs multiple times on a stationary input. Multiple random output 

locations tend to be distributed evenly around the real location, forming a circle. 
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At the center of this circle is the real location, the one that is supposed to be 

hidden. The risk of triangulation is mitigated with an approach based on popular 

locations, since the output is no longer directly relative to the real location.  

Our algorithm provides higher numbers related to overhead and latency 

than a basic algorithm based on random function distribution, such as the solution 

in [16]. A planar Laplace function is faster and it does not require any extra files 

or memory, but further experiments will expose its vulnerabilities. On the other 

hand, our solution will require storage space, which will not affect mobile 

devices, such as smartphones and processing power. The latency will go up to 

several seconds, depending on the accuracy level, but this should not drastically 

affect the user. 
 

 
Fig.4 Real (black) and fabricated (red) path across Beijing 

5. Evaluation 

The first attack that the algorithm is tested against is the same-origin 

attack. A random input location is selected. This location is stationary and it is 

going to be the origin of the obfuscation requests. In the next phase, a fabricated 

location will be generated 1000 times, using the same input. Although paper [4] 

states that less runs are necessary in order to leak a real location, the result is 

going to be more relevant and visible when more iterations are performed.  

In order to compare the results between our algorithm and the starting 

solution based on Laplace distribution [16], we ran the algorithm for both cases. 

In case of Laplace based solution, the result in presented in Figure 5. The blue 

marker icon in the center of the image represents the location of origin. All the 

blue, yellow and red clusters, together with the independent yellow markers, are 
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locations that were generated by the algorithm, based on the input origin. The 

number on each cluster represents the number of generated locations that are 

wrapped by that particular cluster. It is immediately noticeable that the same-

origin attack is effective against this obfuscation solution. After multiple runs, the 

majority of the output locations are distributed close to the real location, 

becoming gradually sparser towards the ends of the available area. The real 

location is always where the density of generated locations is higher. 

 
Fig. 5 Same-origin attack against Planar Laplace algorithm 

 

In our case, the results are presented in Figure 6. The clusters are scattered 

across the city, with no relationship between the position of the cluster relative to 

the origin and the density of the cluster. There are larger clusters in the bottom-

left quadrant because that is where some of the most popular areas are. As a 

general rule, the density of a cluster is only proportional to the popularity of that 

area of the map. As a precautionary measure, if the real location of a user happens 

to be in such a popular place, no false location will be generated in that place. The 

output locations will only be generated in popular places different than the origin. 

The algorithm is not vulnerable to the same-origin attack, because the distribution 

of the generated locations on the map does not point towards the original location. 

The second type of attack is described as testing the algorithm with 

multiple different inputs, hoping to identify the input that generates one specific 

output. In general, the attacks of this fashion are called brute-force attacks. This 

type of attack is mainly effective in the case of deterministic algorithms, but to 

some extent can be used to guess approximate input areas when deployed against 

location obfuscation algorithms. The attacker starts with a given output 
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(obfuscated) location. For instance, we can assume that this output location is 

placed at the North end of a fairly large city. The attacker feeds the algorithm with 

different input locations, attempting to generate various outputs. While he may 

not be able to choose between multiple apparently valid inputs, he will most likely 

notice that inputs close to the South end of the city do not generate outputs in the 

North (because it is too far). Based on this observation, he is able to place the real 

location of the user somewhere towards the North, or the city center, or slightly 

towards North-West or North-East. For a given fixed output, we will run the 

algorithm with various inputs and analyze the results. 
 

 
Fig. 6 Same-origin attack against our location obfuscation solution 

 

The behavior of the algorithm varies considerably with respect to the 

position of the designated output. It scans a limited area around the input location 

and chooses a random map cell that is more popular than a given popularity 

threshold. Naturally, if a map cell does not have a high enough popularity score, it 

will never be chosen as output. If the designated output falls in any one of these 

cells, this attack fails because there will be no input that could generate the 

expected output. For the edge case where the output location is placed in the only 

highly popular spot in a region, the algorithm is expected to return that map cell 

very often.  

In a regular scenario, the map is likely to contain multiple popular 

locations in the fairly wide area surrounding the designated output. A regular 

scenario was tested and the result was plotted in Fig. 7. This bar graph was 

generated with data collected based on the same map and input location that were 

used for the rest of the experiment. The score of the map cell where the input 

belongs was changed with each iteration, while all the other scores remained the 
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same. The popularity scores are normalized to fit in the range from 0 to 9, 0 being 

an area with no interest from pedestrians and 9 being a highly popular area for 

many citizens. When the popularity score of the input location area is lower than a 

certain threshold, currently set to 3, there are no locations generated there. Then, 

as the score increases, some of the generated locations are placed next to the input 

location. Since the scores map is fairly balanced, even with a maximum score of 9 

points, only 2.4% of locations are placed in the observed area. This balance is 

enforced by the rule that even if an area has the maximum score, it is not 

guaranteed to be selected. Instead, it only has a slightly higher chance (weight, in 

a weighted random distribution) compared to other areas with scores of 8 or 

lower. 

 
Fig.7 Location distribution based on a fixed output 

 

The experimental result is shown in Figure 8. Given the popularity score 

of the map cell where the blue marker is, only some inputs from the North-East 

side were able to generate the expected output. We also made the assumption that 

the attacker does not know that the algorithm uses a grid and rectangular shapes. 

Therefore, the attacker is now able to draw a circle with the radius equal to the 

distance between the designated output and the farthest good input. With enough 

iterations of the brute-force attack, it is plausible that the attacker may be able to 

detect a fairly accurate radius for the green circle. Same as before, the real 

location is somewhere within this green circle, but there are no further clues as to 

where precisely it may be. As the obfuscation radius increases, the green circle’s 

radius will grow as well, and the privacy level will be higher. 
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Fig. 8 Brute force attack against the location obfuscation algorithm 

6. Conclusions 

To sum up, we started from the implementation of the stationary algorithm 

in [6], expanding a stateless solution to a stateful version, that takes into 

consideration the previous locations of the user. We generate new locations based 

on the popularity score of the points of interest nearby the user and on his/her 

pervious location. The results are consistent with the theoretical expectations. 

Given a trajectory based on real locations, the output appears very similar in 

orientation, with locations generated in plausible places. 

After building the algorithm, we tested it against state-of-the art attacks 

over location privacy obfuscators.  The algorithm behaves similarly in most cases, 

but there are a few edge scenarios to be taken into account. When the obfuscated 

location, somehow, is placed in an unpopular place on the map, the algorithm will 

never be broken by the brute- force attack. When the area of the obfuscated 

location is minimally popular and some more popular areas are in the vicinity, the 

algorithm is likely to choose those popular places as output. This may lead the 

attacker into believing that the area containing the real location is smaller than it 

actually is. However, the usual scenario matches the behavior of the original 

algorithm, meaning that the improved algorithm is also offering protection against 

the brute-force attack.  

Regarding the idea of extending the solution to embedded system, the 

work in [17, 18] has proved that the a properly implemented secure 

communication channel requires only a small fraction of the energy. In this case, a 
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low complexity algorithm would not affect IoT the devices, especially if there are 

only a few necessary preprocessed maps.  
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