
U.P.B. Sci. Bull., Series C, Vol. 83, Iss. 4, 2021 ISSN 2286-3540

LOCATION PRIVACY FOR NON-STATIONARY USERS

Iulia-Maria FLOREA1, Dan VORNICU2, Ștefan-Dan CIOCÎRLAN3,

Răzvan RUGHINIȘ4

In the last years, privacy has been a debated topic since the approval of the

European GDPR. People have become more aware of the information gathered by

the applications they are using often. Many of them require specific accuracy that

may not necessarily need. For instance, weather-based services do not need the

exact user location, since the weather is almost the same in a city. This paper

focuses on location obfuscation techniques for a user moving in a city. Our solution

provides a fake path, based on the real locations and we test it against state-of-the-

art attacks to prove its resistance.

Keywords: location obfuscation, privacy, geo-indistinguishability

1. Introduction

Day by day, we advance deeper into the universe of technology, of devices

and applications that provide services. A segment of these services are the ones

that are based on user location. No matter if you are on vacation and want to

check the local weather, or you need a little help finding a destination in a less

frequented area, there is at least one service that, by tracking your location, can

send you all the necessary information. Location-Based Services (LBS) are

currently an undeniable part of everyday life ([1, 2]).

Since users do not know how these applications handle, store and use the

locations, it is safer to adopt a precautionary behavior. The best-case scenario is

when a user’s location is shared with other entities only with the user’s consent,

but this is not always a guarantee. Some applications might collect user locations

without them knowing [3, 4].

The need to maintain location privacy is only stronger in today’s

environment, when context-awareness, location-awareness services are

everywhere. Current systems are able to track anyone in real time, with incredible

accuracy. Together with technological advancements in processing power and

capacity, the population can be followed wherever they go, much easier than ever

1 PhD student., Dept. of Computers and Automatic Control, University POLITEHNICA of

Bucharest, Romania, e-mail: iulia.florea@upb.ro
2 MSc., Dept. of Computers and Automatic Control, University POLITEHNICA of Bucharest,

Romania, e-mail: vornicu_dan2000@yahoo.com
3 PhD Student., Dept. of Computers and Automatic Control, University POLITEHNICA of

Bucharest, Romania, e-mail: stefan_dan.ciocirlan@upb.ro
4 Prof., Dept. of Computers and Automatic Control, University POLITEHNICA of Bucharest,

Romania, e-mail: razvan.rughinis@upb.ro

4 Iulia-Maria Florea, Dan Vornicu, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

before. But privacy is a human right, internationally recognized. Even though this

right to privacy is debated by many, there are some clear negative aspects with not

respecting this right. For instance, one’s location can be used maliciously to send

spam messages containing products or services related to the victim’s location.

Another risk of ignoring location privacy is given by physical abuse. An attacker

might use someone’s location to follow around, rob, assault this victim. A third

reason why the lack of location privacy can cause harm to a person is that the

location can tell things about a person. Just by knowing where someone was in the

past can lead to fair assumptions about religion, political orientation, health status

and other similar private information [5]. Although it is not a universal concern,

there are individuals who believe that their information could be used differently

than what had been agreed upon.

In this paper, we provide a solution that creates an obfuscated, but realistic

path for moving users in cities, so attackers gaining access will not be able to

reconstruct the real locations. The current algorithm continues the work in [6] and

it is based on an idea and a dataset included in the “Optimal Geo-

Indistinguishable Mechanisms for Location Privacy” [7], a paper that concentrates

on finding the balance between privacy gain and quality loss. Given the city of

Beijing, China, and a map of the most frequently visited areas within the city, the

initial algorithm processes the real location and outputs locations as close as

possible to popular areas. We also prove that out solution is resistant to state-of-

the-art attacks.

2. Related work

2.1 Real location obfuscation techniques

A similar work, “Geo-indistinguishability: A Principled Approach to

Location Privacy” [3], introduces the concept of following a location trace. The

authors present a way of doing so with a limited degradation of the privacy factor

that is inevitable to a certain degree due to the correlation between locations. They

consider an input made of an array of locations, together forming a location trace.

In their view, the first and most basic solution to hide the user’s path is to add

noise individually to each element of the array. The next step towards a stronger

solution is a prediction-based approach, that takes into account all the previous

information about the trace. If the new location can be easily predicted, then it is

returned without the addition of supplementary noise. They call this the easy

point. A hard point cannot be predicted based on the existing data while

maintaining privacy. This type of point is sanitized with noise. In their prediction

step, they perform calculations in order to generate a new location at an

acceptable distance from the previous point. This idea represents the foundation

for the algorithm presented in the next chapter. Their solution is based on

differential privacy, which leads to further computations and overhead. Our

Location privacy for non-stationary users 5

approach aims to provide a similar solution, but with a lower number of

computations, so it would be suitable for embedded devices.

The same general concept of location obfuscation is also debated in a

different paper, “Evaluation of Location Obfuscation Techniques for Privacy in

Location Based Information Systems” [4]. The researchers compare multiple

obfuscation techniques by running five algorithms on the same dataset. “Rand” is

an algorithm that generates a completely random location wherever within a

specified radius from the real location. “N-Rand” is a modification of the regular

“Rand”, generating N random locations and selecting the one that is furthest from

the real location. “N-Mix” was supposed to return a false location based on the

location histories of other people, very similar with the current approach

explained in this paper. However, due to the lack of data, the authors chose to

generate N random points and compute the average coordinates between those

points. “Dispersion” selects a random point like “Rand” does, then runs “Rand”

again with a smaller radius and with the origin set on this random point. “N-

Dispersion” determines the random point with the “N-Rand” algorithm, then runs

“Rand” on said point with a smaller radius. The metrics of reference are based on

the distance between the real and the fabricated locations. In particular, the final

result is determined according to the average distance between these two types of

locations after all the algorithms process a simulated route on the map. Their

results pointed towards “N-Rand” as the most efficient method as long as N is not

higher than 4. The “N-Rand” algorithm followed the route in a zig-zag pattern,

with an average distance of approximately 25 meters. According to their analysis,

the “N-Dispersion” would have also generated satisfactory results, however the

complexity of this algorithm makes it inefficient compared to the others.

2.2 Attacks on location obfuscation techniques

The first type of attack is the same-origin [8]. It is based on the

presumption that the user uses the same original location i and it generates

obfuscated locations j with probability pi(j). The attacker is supposed to know the

probability mass functions of the algorithm and so, he can build an obfuscation

pattern for the several origin points in the same region of interest. By comparing

the results with the observation points, he can obtain the original location. This

idea was tested against several state-of-the art-implementations: spatial-cloaking,

geo-indistinguishability and a maximum-entropy method that they developed. The

attack success is measured in two ways. The first is the probability of getting the

original location after t observations. The other one is the distance between the

true location and the chosen location after t observations. The success probability

is determined in their experiments after 200 observations. The k-cloaking

mechanism has worse results than geo-indistinguishability and maximum-entropy

solutions, that provide similar numbers.

6 Iulia-Maria Florea, Dan Vornicu, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

The second type of attacks, brute force, are evaluated in [11] against two

state-of-the art location obfuscation mechanisms: geo-indistinguishability [7] and

expected inference error [12], [13]. It is composed of two different types, optimal

inference attack [13] and Bayesian inference attack. The former tries to minimize

the error between the estimated and the real locations, using the observed

obfuscated location. In this case, the distance between points is Euclidian. The

latter considers the Hamming distance, since experiments proved that the optimal

inference attack will consider the estimated point as the one with maximum

posterior probability. In both cases, they ran the adversary algorithm for 1000

times. For the optimal inference attack obtained an inference error of 0.89 km at

most points for both solutions In case of Bayesian inference attack, they analyzed

the number of times the algorithm made the right guess on the user’s true location.

In case of expected inference error, the average probability is around 50% for

most points, while geo-indistinguishability shows better results. For most regions,

the attack success is around 0, but there are some points where it goes up to 80%.

Another paper, “AGENT: an adaptive geo-indistinguishable mechanism

for continuous location-based service” [9], introduces a novel solution to tackle

the continuous GPS tracking leading to the exposure of the real location, which is

a flaw of the frequently used geo-indistinguishability mechanism. Their solution

uses an R-tree that stores small regions, each region containing some already

sanitized locations. When the user sends a real location, their algorithm first

identifies any existing sanitized locations within the given region and returns one

if available. Although the number of sanitized locations is quite finite, the

generated trace does look like a replica of a real trace.

 3. System Architecture

In [6], we presented the architectural model of the solution, also described

in Figure 1. We add a transparent layer, a browser extension that intercepts the

HTML5 geolocation API, based on the implementation of LocationGuard [14].

The websites may require location information from the browser and, in case of

the user’s approval, it detects the exact location by querying a location service and

forwards it to the website. The transparent layer that we provide intercepts the

messages sent between the browser and the location service and runs an

obfuscation algorithm before sending the response to the website. It is addressed

mainly to mobile phones and it requires storage space, since it uses predefined

maps of places where the user is located. Its aim is to protect the user’s privacy

against malicious or curious websites, which may track locations and get behavior

patterns out of data. Since websites may remain open in browsers after usage, it is

possible for them to get location data from the users without their knowledge. A

browser extension is a lightweight solution that does not require additional

changes, nor user technical knowledge.

Location privacy for non-stationary users 7

Fig. 1 Solution architecture

4. Implementation

A fundamental piece of data is the matrix of cell popularity scores within

the grid that lays over Beijing. Each cell of the grid holds a popularity score

ranging from 0 to 9. The higher the score, the higher the popularity of an area.

The algorithm is more likely to generate a fake location in a more popular area,

using a random distribution in order to avoid selecting the same most popular area

every time. A configuration file allows the user to set preferences regarding the

approximate distance between the real and the false location.

The extension of the algorithm from [6] is a code section that performs the

logic of determining where a new fabricated location could be placed. The first

step is to read the current real location and identify the cell within the matrix

where those coordinates belong. This knowledge, together with the user

preferences regarding the level of obfuscation, helps contour a smaller or larger

area surrounding the real location. This area contains multiple cells with

individual popularity scores. Each cell is a candidate to become the cell of the

newly fabricated location. If the algorithm is not at its first run, there will be a

previous fake location that it generated based on the last known real location. At

this point, the code attempts to identify the cell of that fake location. This can

either succeed or fail. If it fails, it means that there was no previous fake location

set, so the entire area determined earlier is valid. If it succeeds, however, it will

determine new boundaries for the new fake location.

As explained visually in Figure 2, when a real location is being processed

and it is close to a fake location, these two locations help identify the orientation

of the user. The yellow marker with the label “1” has an entire area (drawn in this

figure as a circle) available to generate a location. It generates the corresponding

1

2

4

5

Transparent layer
for location
obfuscaton

Users retrieving the obfuscated location

3

8 Iulia-Maria Florea, Dan Vornicu, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

red “1”. The user moves to where the yellow “2” marker is on the map, so the

algorithm attempts to generate a new fake location. However, since location “2”is

more to the South-East from the previous fake location “1”, it is an indicator that

the user is likely to travel in that direction. The algorithm cuts the circle,

restricting the area above (to the North) and to the left (West) of the fake location

“1”. This way, it can only generate a location in the desired direction, using the

same location generation logic applied on smaller locations pool. The following

real location is the yellow “3”. It is placed at a considerable distance away from

the previous real location, yellow “2”. Because the areas of the two last real

locations do not overlap, it is guaranteed that the new fake location will follow the

direction of travel of the user. As a positive side effect, the distances between

consecutive fake locations are proportional to the distances between their

corresponding real locations, giving more plausibility to the fake trail.

Fig. 2 Location generation limits to ensure a continuous path

Figure 3 shows all three sets of locations. With yellow markers, we

represented the real trace in this scenario. The numbers on each marker show the

order in which the markers were generated. The blue markers show the output of

the stationary version of the algorithm from [6]. According to this result, an

attacker would find out that the user has supposedly travelled West from position

1 and then South-East a considerable amount. Depending on the time frame

available, it may lead to the user losing credibility in front of the attacker. The red

marks the output of the algorithm described in this paper. At a first glimpse, it

appears that the fifth location is missing from the result set. In fact, there are five

Location privacy for non-stationary users 9

locations but the third and fourth ones are merged. It is immediately visible that

the real trace and the “red” trace are very similar regarding the heading, which is

the goal of this algorithm. Each one of the “red” locations is placed on a relatively

popular cell, therefore the location is plausible. An attacker without prior

knowledge about the victim is not able to distinguish this fabricated trace from a

real trace. For a better representation of the real and fabricated headings, a new

simulation is presented in Figure 4. The false route, drawn with red arrows,

follows the direction of the real route, black, while maintaining a good average

distance between pairs of real and fake locations.

Fig.3 Comparison of the current algorithm with the stationary version and the real path

The implemented algorithm has a complexity of O(n*m), where n and m

are the number of rows and columns of the location matrix. This is built based on

GPS trajectories of people in GeoLife GPS Trajectories dataset [15]. Starting from

the information in the plots, we can obtain the most popular areas and load the

annotated maps in the transparent layer. In case of low-memory systems, the

preprocessing must be done beforehand, to avoid extra load. A map file contains

information on the GPS coordinates of each area, together with its popularity

score.

4. Experiment design

10 Iulia-Maria Florea, Dan Vornicu, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

The obfuscation layer was implemented as addOn for HTML5 API on the

mobile device, with [14] as starting point. It runs on browsers that permits

extensions, such as Firefox on Android or iOS devices. There are available Maps

APIs, such as [15], that provide developers methods to get the exact location in

browser. In case of mobile phones, which is considered the main use case, the

storage space is not an issue. This type of solution may need several MB,

depending on the maps that the user is willing to download. It can be compared

with offline maps application, but without the visual and interactive part of the

application. To test the algorithm, we created a scenario of a person travelling

across Beijing, leaving a trail of five different real locations. These locations serve

as input for both the last and the current generations of this algorithm. The older

one treats the input as an array of five different locations and runs in a stateless

manner. The result is an array of five false locations, each corresponding to one of

the real locations. The newer algorithm treats the array as a series of locations,

and each run remembers the output of the last run, making in run in a stateful

manner. The result is also an array of five locations but distributed differently on

the map.

Although this solution provides a sort of zig-zag line that wraps around the

real trajectory, which is what paper [10] presents as well with their solution, this

algorithm is also able to output the same location for multiple successive inputs,

as explained in the previous paragraph, regarding the missing fifth red map

marker. We consider this an important mechanism to enhance privacy, because

from an attacker perspective the target is stationary in a credible spot on the map,

while the target is in fact moving privately within an area. This mechanism also

proves that the output of the algorithm is not necessarily dictated by the variations

in the input data.

As a supplementary privacy feature, the algorithm avoids generating false

locations on top of real locations. If the user is in a popular place in the city, the

fake location could have been generated exactly in that particular spot, because it

is marked as a popular place. But by doing so, an attacker that believes the output

to be true, will in fact know the user’s real location.

When comparing our solution with the original paper based on Laplace

distribution [16], we prove a higher level of security. Their path result after

running “N-Rand” essentially states that the average distance between pairs of real

and fake locations is approximately 25 meters, with a standard deviation of up to

10 meters. It appears that the output route follows the real route closely, which

leads to possibly identifying the real route easily, only based on the observations.

This flaw may be reduced by increasing the range of the “N-Rand” algorithm.

Another flaw of the Random algorithms is triangulation and presents itself when

the algorithm runs multiple times on a stationary input. Multiple random output

locations tend to be distributed evenly around the real location, forming a circle.

Location privacy for non-stationary users 11

At the center of this circle is the real location, the one that is supposed to be

hidden. The risk of triangulation is mitigated with an approach based on popular

locations, since the output is no longer directly relative to the real location.

Our algorithm provides higher numbers related to overhead and latency

than a basic algorithm based on random function distribution, such as the solution

in [16]. A planar Laplace function is faster and it does not require any extra files

or memory, but further experiments will expose its vulnerabilities. On the other

hand, our solution will require storage space, which will not affect mobile

devices, such as smartphones and processing power. The latency will go up to

several seconds, depending on the accuracy level, but this should not drastically

affect the user.

Fig.4 Real (black) and fabricated (red) path across Beijing

5. Evaluation

The first attack that the algorithm is tested against is the same-origin

attack. A random input location is selected. This location is stationary and it is

going to be the origin of the obfuscation requests. In the next phase, a fabricated

location will be generated 1000 times, using the same input. Although paper [4]

states that less runs are necessary in order to leak a real location, the result is

going to be more relevant and visible when more iterations are performed.

In order to compare the results between our algorithm and the starting

solution based on Laplace distribution [16], we ran the algorithm for both cases.

In case of Laplace based solution, the result in presented in Figure 5. The blue

marker icon in the center of the image represents the location of origin. All the

blue, yellow and red clusters, together with the independent yellow markers, are

12 Iulia-Maria Florea, Dan Vornicu, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

locations that were generated by the algorithm, based on the input origin. The

number on each cluster represents the number of generated locations that are

wrapped by that particular cluster. It is immediately noticeable that the same-

origin attack is effective against this obfuscation solution. After multiple runs, the

majority of the output locations are distributed close to the real location,

becoming gradually sparser towards the ends of the available area. The real

location is always where the density of generated locations is higher.

Fig. 5 Same-origin attack against Planar Laplace algorithm

In our case, the results are presented in Figure 6. The clusters are scattered

across the city, with no relationship between the position of the cluster relative to

the origin and the density of the cluster. There are larger clusters in the bottom-

left quadrant because that is where some of the most popular areas are. As a

general rule, the density of a cluster is only proportional to the popularity of that

area of the map. As a precautionary measure, if the real location of a user happens

to be in such a popular place, no false location will be generated in that place. The

output locations will only be generated in popular places different than the origin.

The algorithm is not vulnerable to the same-origin attack, because the distribution

of the generated locations on the map does not point towards the original location.

The second type of attack is described as testing the algorithm with

multiple different inputs, hoping to identify the input that generates one specific

output. In general, the attacks of this fashion are called brute-force attacks. This

type of attack is mainly effective in the case of deterministic algorithms, but to

some extent can be used to guess approximate input areas when deployed against

location obfuscation algorithms. The attacker starts with a given output

Location privacy for non-stationary users 13

(obfuscated) location. For instance, we can assume that this output location is

placed at the North end of a fairly large city. The attacker feeds the algorithm with

different input locations, attempting to generate various outputs. While he may

not be able to choose between multiple apparently valid inputs, he will most likely

notice that inputs close to the South end of the city do not generate outputs in the

North (because it is too far). Based on this observation, he is able to place the real

location of the user somewhere towards the North, or the city center, or slightly

towards North-West or North-East. For a given fixed output, we will run the

algorithm with various inputs and analyze the results.

Fig. 6 Same-origin attack against our location obfuscation solution

The behavior of the algorithm varies considerably with respect to the

position of the designated output. It scans a limited area around the input location

and chooses a random map cell that is more popular than a given popularity

threshold. Naturally, if a map cell does not have a high enough popularity score, it

will never be chosen as output. If the designated output falls in any one of these

cells, this attack fails because there will be no input that could generate the

expected output. For the edge case where the output location is placed in the only

highly popular spot in a region, the algorithm is expected to return that map cell

very often.

In a regular scenario, the map is likely to contain multiple popular

locations in the fairly wide area surrounding the designated output. A regular

scenario was tested and the result was plotted in Fig. 7. This bar graph was

generated with data collected based on the same map and input location that were

used for the rest of the experiment. The score of the map cell where the input

belongs was changed with each iteration, while all the other scores remained the

14 Iulia-Maria Florea, Dan Vornicu, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

same. The popularity scores are normalized to fit in the range from 0 to 9, 0 being

an area with no interest from pedestrians and 9 being a highly popular area for

many citizens. When the popularity score of the input location area is lower than a

certain threshold, currently set to 3, there are no locations generated there. Then,

as the score increases, some of the generated locations are placed next to the input

location. Since the scores map is fairly balanced, even with a maximum score of 9

points, only 2.4% of locations are placed in the observed area. This balance is

enforced by the rule that even if an area has the maximum score, it is not

guaranteed to be selected. Instead, it only has a slightly higher chance (weight, in

a weighted random distribution) compared to other areas with scores of 8 or

lower.

Fig.7 Location distribution based on a fixed output

The experimental result is shown in Figure 8. Given the popularity score

of the map cell where the blue marker is, only some inputs from the North-East

side were able to generate the expected output. We also made the assumption that

the attacker does not know that the algorithm uses a grid and rectangular shapes.

Therefore, the attacker is now able to draw a circle with the radius equal to the

distance between the designated output and the farthest good input. With enough

iterations of the brute-force attack, it is plausible that the attacker may be able to

detect a fairly accurate radius for the green circle. Same as before, the real

location is somewhere within this green circle, but there are no further clues as to

where precisely it may be. As the obfuscation radius increases, the green circle’s

radius will grow as well, and the privacy level will be higher.

Location privacy for non-stationary users 15

Fig. 8 Brute force attack against the location obfuscation algorithm

6. Conclusions

To sum up, we started from the implementation of the stationary algorithm

in [6], expanding a stateless solution to a stateful version, that takes into

consideration the previous locations of the user. We generate new locations based

on the popularity score of the points of interest nearby the user and on his/her

pervious location. The results are consistent with the theoretical expectations.

Given a trajectory based on real locations, the output appears very similar in

orientation, with locations generated in plausible places.

After building the algorithm, we tested it against state-of-the art attacks

over location privacy obfuscators. The algorithm behaves similarly in most cases,

but there are a few edge scenarios to be taken into account. When the obfuscated

location, somehow, is placed in an unpopular place on the map, the algorithm will

never be broken by the brute- force attack. When the area of the obfuscated

location is minimally popular and some more popular areas are in the vicinity, the

algorithm is likely to choose those popular places as output. This may lead the

attacker into believing that the area containing the real location is smaller than it

actually is. However, the usual scenario matches the behavior of the original

algorithm, meaning that the improved algorithm is also offering protection against

the brute-force attack.

Regarding the idea of extending the solution to embedded system, the

work in [17, 18] has proved that the a properly implemented secure

communication channel requires only a small fraction of the energy. In this case, a

16 Iulia-Maria Florea, Dan Vornicu, Ștefan-Dan Ciocîrlan, Răzvan Rughiniș

low complexity algorithm would not affect IoT the devices, especially if there are

only a few necessary preprocessed maps.

R E F E R E N C E S

[1] S. Zeng, Y. Mu, M. He, M. and Y. Chen, “New approach for privacy-aware location-based
service communications” in Wireless Personal Communications, 101(2), 2018, pp. 1057-1073.

[2] Z. Li, Q. Pei, I. Markwood, Y. Liu, M. Pan and H. Li, “Location privacy violation via GPS-
agnostic smart phone car tracking” in IEEE Transactions on Vehicular Technology, 67(6), 2018,
pp. 5042-5053.

[3] Z. Wu, G. Li, Q. Liu, G Xu and E. Chen, “Covering the sensitive subjects to protect personal
privacy in personalized recommendation” in IEEE Transactions on Services Computing, 11(3),
2016, pp. 493-506.

[4] L. Yu, L. Liu and C. Pu, "Dynamic Differential Location Privacy with Personalized Error
Bounds", 2017.

[5] K. Fawaz and K.G. Shin, “Location privacy protection for smartphone users” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security, 2014, pp. 239-
250.

[6] I. M. Florea, D. Vornicu, J.A. Văduva and R. Rughiniș, „TEACHING PRIVACY THROUGH
THE DEVELOPMENT AND TESTING OF A LOCATION OBFUSCATION SOLUTION” In
The International Scientific Conference eLearning and Software for Education, vol. 2, pp. 145-
153, 2020.

[7] N. Bordenabe, K. Chatzikokolakis and C. Palamidessi, "Optimal Geo-Indistinguishable
Mechanisms for Location Privacy" in In: Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security. 2014. p. 251-262

[8] G. Theodorakopoulos, "The Same-Origin Attack against Location Privacy," in Proceedings of the
14th ACM Workshop on Privacy in the Electronic Society, Denver, 2015.

[9] P. Wightman, W. Coronell, D. Jabba, M. Jimeno and M. Labrador, "Evaluation of Location
Obfuscation Techniques for Privacy” in Location Based Information Systems" in 2011 IEEE
Third Latin-American Conference on Communications. IEEE, 2011. p. 1-6.

[10] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon,
1892, pp.68–73.

[11] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, J.-P. Hubaux, “Quantifying location privacy”
in Security and Privacy (SP), 2011 IEEE Symposium on, pages 247–262, May 2011.

[12] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-Y. Le Boudec, “Protecting
location privacy: Optimal strategy againstlocalization attacks” in Proceedings of ACM CCS,
pages 617–627, NewYork, USA, 2012.

[13] X. Ma, J. Ma, H. Li, Q. Jiang and S. Gao, "AGENT: an adaptive geo-indistinguishablemechanism
for continuous location-based service," in Peer-to-Peer Networking and Applications, 11(3), pp.
473-485 2018.

[14] Website: https://github.com/chatziko/location-guard; Last accessed: October 2021

[15] Website: https://download.microsoft.com/download/F/4/8/F4894AA5-FDBC-481E-9285-
D5F8C4C4F039/Geolife%20Trajectories%201.3.zip; Last accessed: October 2021

[16] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis & C. Palamidessi “Geo-indistinguishability:
Differential privacy for location-based systems” In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security (pp. 901-914), 2013

[17] R. Tataroiu, F.A. Stancu & D.C. Tranca, “Energy considerations regarding transport layer security
in wireless iot devices” In 22nd International Conference on Control Systems and Computer
Science (CSCS) , pp. 337-341, 2019.

[18] D.C. Tranca, D. Rosner & A.V. Palacean, Autonomous flexible low power industrial IoT
controller for solar panels cleaning systems, In 2017 21st International Conference on Control
Systems and Computer Science (CSCS), pp. 106-112, 2017

https://github.com/chatziko/location-guard
https://download.microsoft.com/download/F/4/8/F4894AA5-FDBC-481E-9285-D5F8C4C4F039/Geolife%20Trajectories%201.3.zip
https://download.microsoft.com/download/F/4/8/F4894AA5-FDBC-481E-9285-D5F8C4C4F039/Geolife%20Trajectories%201.3.zip

