
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 4, 2024 ISSN 2286-3540

ASYNCHRONOUS FEDERATED LEARNING:

CONVERGENCE AND PERFORMANCE IN

HETEROGENEOUS ENVIRONMENTS

Dan Gabriel BADEA1*, Ștefan-Dan CIOCÎRLAN2, Răzvan-Victor RUGHINIȘ 3,

Dinu ȚURCANU4

Distributed Machine Learning (DML) utilizes several nodes for training

machine learning models, with a central node overseeing data distribution and

communication. Federated Learning (FL), a Distributed Machine Learning (DML)

branch, improves data privacy by retaining data on local devices. The realm of

Federated Learning (FL) has primarily functioned synchronously; nevertheless,

recent advancements have initiated a new phase of asynchronous FL. This innovative

method enables nodes to update the model, independently facilitating exceptional

scalability and adaptability. This study thoroughly examines asynchronous federated

learning, analyzing its distributed architecture, communication protocols,

optimization methods, and the numerous hurdles it faces, such as data heterogeneity,

node delays, and convergence problems. The findings illustrate that, despite these

challenges, the system attains near-centralized accuracy and exhibits accelerated

convergence rates. This serves as a compelling demonstration of the potential of

asynchronous federated learning in transforming actual applications.

Keywords: FL - Federated Learning, DML - Distributed Machine Learning,

Convergence

1. Introduction

This research focuses on Distributed Machine Learning (DML), a technique

for training machine learning models across several nodes. This approach helps

overcome the memory limitations often encountered with systems that rely on a

single node [1]. Data is aggregated at a central server and distributed to nodes,

improving the model’s performance, accuracy, and scalability for large datasets.

1* Eng., National University of Science and Technology POLITEHNICA Bucharest, Romania,

*corresponding author, e-mail: dan_gabriel.badea@upb.ro
2 Lecturer, PhD Eng., National University of Science and Technology POLITEHNICA Bucharest,

Romania, e-mail: stefan_dan.ciocirlan@upb.ro
3 Professor, National University of Science and Technology POLITEHNICA Bucharest, Romania,

e-mail: razvan.rughinis@upb.ro
4 Professor, Technical University of Moldova, Republic of Moldova, e-mail:

dinu.turcanu@adm.utm.md

mailto:razvan.rughinis@upb.ro

20 Dan Gabriel Badea, Ștefan-Dan Ciocîrlan, Răzvan-Victor Rughiniș, Dinu Țurcanu

Federated Learning (FL) has revolutionized DML by allowing distributed

training across various devices while prioritizing data privacy [3]. Unlike DML,

where data is transferred to a central location for training, FL maintains data on

local devices, transmitting only model updates to a central server. Synchronous FL,

where nodes wait for each other to complete their updates, has been widely used

but presents challenges in real-world applications, especially in heterogeneous

environments with inconsistent network availability [15].

In federated learning (FL), the challenges associated with synchronized

updates have prompted the emergence of asynchronous FL as a viable solution,

offering enhanced system flexibility and scalability [16]. Nonetheless,

asynchronous FL presents unique challenges, including slower convergence rates

resulting from inconsistent data distributions and divergent computational

capacities among devices [16]. Consequently, these factors can lead to delayed

model improvements and suboptimal performance. To address these issues, this

study proposes integrating adaptive weighting strategies into the aggregation

process of asynchronous FL. This strategic approach aims to mitigate the challenges

associated with asynchronous updates, ultimately enhancing the efficacy of the

learning process. Instead of treating all updates from participants equally, the

system dynamically adjusts the weights based on the quality, relevance, and

timeliness of the data provided by each participant. This ensures that contributions

from devices with more informative data are prioritized, leading to faster model

convergence and improved accuracy [3]. This approach also helps mitigate the

impact of delayed or inconsistent updates from slower participants, a common

problem in both synchronous and asynchronous setups [2]. (selected to assess

scalability and convergence behavior under different load conditions) (particularly

important for reducing computational load in resource-limited environments such

as IoT)

This research addresses the primary challenge of reducing computational

time in a distributed system while maintaining high model accuracy. Traditional

DML architectures face synchronization bottlenecks, as the slowest devices can

delay the entire training process. Moreover, centralized servers expose a

vulnerability where third parties can access participant data, undermining privacy

guarantees [2].

By penalizing clients that transmit updates infrequently, this research

proposes a system that maintains robust performance even with infrequent updates,

further ensuring security and stability against potential malicious participants [2].

This study also extensively evaluates adaptive weighting in asynchronous FL

through experimental analysis of real-world datasets. Different weighting strategies

were applied to participant updates, considering the distribution and quality of data.

Results show that adaptive weighting reduces training time and improves

convergence speed compared to traditional synchronous FL methods, especially in

Asynchronous federated learning: convergence and performance in heterogeneous environments 21

scenarios with data heterogeneity and intermittent device availability [9]. (selected

to assess scalability and convergence behavior under different load conditions)

A foundational Federated Learning (FL) model was fine-tuned during the

experimental evaluation by incorporating an age parameter and precision metrics.

The research involved a detailed comparison between centralized and distributed

models, examining their computational time, energy consumption, and

convergence rate. The Street View House Numbers (SVHN) dataset was chosen

due to its size, with varying numbers of participants (5, 10, 15) and iterations (50,

100) tested. The distributed model achieved an accuracy of 88.71%, closely

mirroring the centralized model’s performance of 90.54%, with faster convergence

due to the asynchronous implementation [2]. (selected to assess scalability and

convergence behavior under different load conditions)

The comprehensive research findings highlight that integrating adaptive

weighting strategies, such as differential privacy and personalized local updates,

into asynchronous FL significantly accelerates convergence and substantially

enhances model performance in distributed environments. By leveraging

techniques such as personalized local updates, where each client device updates its

local model independently, the study demonstrates a marked improvement in the

overall performance and privacy preservation of federated learning models. These

results contribute significantly to the ongoing development of federated learning

technologies and underscore the importance of optimizing the use of distributed

data while maintaining high levels of privacy and performance. This

groundbreaking research provides a solid foundation for further investigation into

the practical applications of asynchronous federated learning across various real-

world settings, including healthcare, finance, and IoT networks. (particularly

important for reducing computational load in resource-limited environments such

as IoT)

2. Literature Review

Distributed Machine Learning (DML) provides valuable insights into

optimizing the training of machine learning models across multiple nodes,

effectively addressing the memory limitations associated with single-node

architectures. One proposed approach involves utilizing personal devices as

computational nodes, enabling the processing of local user data without

overburdening a central data center. In this system, the central node primarily serves

as a coordinator, decoupling data from the central node to minimize communication

frequency, which is proposed to occur once daily. Model updates, represented as

small vectors of model weights, are centrally aggregated based on data distribution,

ensuring computational efficiency even in the absence of independently and

identically distributed (IID) datasets. The introduction of a novel algorithm

22 Dan Gabriel Badea, Ștefan-Dan Ciocîrlan, Răzvan-Victor Rughiniș, Dinu Țurcanu

demonstrates promising experimental results, particularly for convex problems in

distributed environments, with Federated SVRG (Stochastic Variance Reduced

Gradient) improving upon traditional methods such as Gradient Descent and

CoCoA (Communication-efficient distributed optimization with composite

oracles), achieving satisfactory error rates with fewer communication rounds, albeit

requiring further enhancements.

In a separate study, authors propose strategies to mitigate communication

costs between servers and clients when transmitting models. They argue that upload

times typically exceed download times, suggesting that structured updates, which

involve learning from a limited parameter space with fewer variables, can alleviate

this bottleneck. Evaluations across multiple datasets demonstrate that client

selection can be expanded without compromising accuracy, particularly effective

in bandwidth-constrained environments. A vital outcome of this approach is the

achieved balance, allowing for the inclusion of more clients per communication

round. At the same time, each transmits less data, ensuring scalability, especially in

scenarios where clients have limited bandwidth, a common real-world constraint.

Experiments detailed in a different study showcase the robustness of the

Federated Averaging (FedAvg) algorithm in addressing non-IID and imbalanced

data distributions, common characteristics of real-world datasets. By significantly

reducing communication rounds compared to synchronized stochastic gradient

descent (SGD), FedAvg emerges as a practical solution for real-world federated

learning systems. FedAvg integrates local SGD on each client with central

aggregation, leading to substantial resource savings while maintaining user privacy.

The study's findings demonstrate that federated learning significantly improves

resource consumption without compromising accuracy, indicating the algorithm's

effectiveness across various model architectures, including multi-layer perceptrons

and word-level LSTM models.

In another development, FedProx, introduced in a separate study, extends

the capabilities of FedAvg by addressing the interaction between system

heterogeneity and statistical heterogeneity. The study emphasizes how the

exclusion of clients due to system constraints can exacerbate statistical

heterogeneity. FedProx addresses this by permitting partial work on devices and

incorporating a proximal term to aggregate partial updates safely. This modification

presents a more reliable approach to handling diverse client data without

compromising performance. The study comprehensively explores these

modifications, highlighting their significant implications for real-world federated

systems where heterogeneity is an inevitable challenge.

Furthermore, a study presents a scalable Federated Learning (FL)

production system on mobile devices developed using TensorFlow. This work

addresses ensuring sufficient devices connect simultaneously to maintain task

progress and uphold security properties. The proposed probabilistic algorithm for

Asynchronous federated learning: convergence and performance in heterogeneous environments 23

device reconnection reduces the need for additional device-server communications,

ensuring operational efficiency in live environments. The system also monitors the

device health metrics, including memory usage, error rates, and battery

consumption, to prevent resource wastage. This work marks one of the initial large-

scale implementations of FL in production settings, explicitly focusing on federated

mediation algorithms operating directly on mobile devices, indicating broad

implications for future FL deployments beyond mobile settings.

A separate article demonstrates the efficacy of using federated averaging to

train recurrent neural network (RNN) models on client devices compared to

traditional server-based methods. The study focuses on the Gboard system's word

prediction, illustrating how federated learning maintains data privacy by preserving

user data on devices without transferring it to central servers. Unlike server-based

learning, which necessitates large uniformly distributed datasets across servers,

federated learning aggregates model updates while safeguarding user privacy. This

technique has been successfully deployed on Gboard, enhancing suggestions for

hundreds of millions of users in 2021.

3. Architecture

The architectural solution for this project involves using a central server to

manage the primary model and coordinate with other participants (workers). This

approach optimizes energy consumption at the expense of potentially lower model

performance than training on a single dataset. Each client registers with the central

server to receive a pre-trained model for optimal initialization. With the server

aggregating participant updates, both trusted clients and potential adversaries are

considered. The asynchronous approach ensures real-time model updates as clients

send new data, allowing workers to receive the updated model through weight

sharing. The model is trained in each iteration using local data, and the updates are

transmitted to the central node. The central server aggregates the updates from all

active participants and adjusts the general model’s weights accordingly. The

updated model is then shared with the participants by only transmitting the modified

weights. Clients with delayed responses have a reduced impact on the central node’s

updates. The asynchronous mechanism updates the central model for each client’s

new information and notifies other participants when they transmit their data. Upon

receiving the model, each participant independently trains it using their local

dataset, which may consist of diverse data points with varying characteristics, such

as size, distribution, and quality. The learned values from these individual training

processes are combined through weighted averaging to improve the overall model.

It's crucial to account for the data heterogeneity present in participant datasets, as

differences in volume and distribution can significantly impact the convergence and

generalization of the final model. The importance of each participant's contribution

24 Dan Gabriel Badea, Ștefan-Dan Ciocîrlan, Răzvan-Victor Rughiniș, Dinu Țurcanu

is carefully assessed using the functions proposed in this work. This assessment

reveals that a significant majority, estimated to be over 80% of the model's weight

is attributed to key contributors. The determination of participant weights is based

on the functions (6), (7), (8), and (9) outlined in this paper, which consider the

unique characteristics of each participant's dataset and the impact of their

contribution on the overall model's performance. This proposed architecture

ensures the system can converge toward a well-performing, generalized model even

with heterogeneity among participants and asynchronous updates. (selected to

assess scalability and convergence behavior under different load conditions)

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠

𝐺 = 𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑠𝑒𝑟𝑣𝑒𝑟’𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑚𝑜𝑑𝑒𝑙
𝑊 = 𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡’𝑠 𝑚𝑜𝑑𝑒𝑙

𝑓𝑟 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑙𝑖𝑒𝑛𝑡

𝑎𝑐𝑐 = 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑓1(N, G, W, 𝑓𝑟, acc) =
1

(𝑎𝑐𝑐 ⋅ 𝑓𝑟 ⋅ (𝑁 + 𝐺 − 𝑊))

 𝑓2(N, G, W, 𝑓𝑟, acc) =
𝑎𝑐𝑐

(𝑁 ⋅ 𝑓𝑟)
 ⋅

1

(𝐺 + 1 − 𝑊)

𝑓3(G, W, 𝑓𝑟, acc) =
1

(𝑎𝑐𝑐 ⋅ 𝑓𝑟 ⋅
(2 ⋅ 𝐺 + 1 ⋅ 𝑊)

3
)

𝑓4(N, G, W, 𝑓𝑟, acc) =
(𝑓1 ⋅𝑓2)

𝑓𝑟

Fig. 1. General architecture

Asynchronous federated learning: convergence and performance in heterogeneous environments 25

The age of each participant (W) or the general model (G) represents the

duration of time or synchronization cycles since the last update between the

participant's model and the central model. This age difference directly impacts the

weight assigned to the participant's contribution during the aggregation process,

with more significant discrepancies leading to a reduced influence, thereby

penalizing outdated models. The frequency parameter (fr) further accounts for the

frequency of a participant's appearance in random aggregation, penalizing repeated

appearances by diminishing the potential for new improvements over consecutive

iterations. In addition, the accuracy (acc) parameter plays a crucial role in the

weight distribution, ensuring that models deviating significantly from the general

model are proportionally assigned less influence during the aggregation process.

(selected to assess scalability and convergence behavior under different load

conditions).

Functions (𝑓1), (𝑓2), (𝑓3), and (𝑓4) determine the weight distribution based on

parameters (N), (G), (W), (𝑓𝑟), and (acc), balancing the most promising and least-

performing updates. The general model's weight importance is given by:

1 − 𝑎𝑣𝑔𝑤𝑒𝑖𝑔ℎ𝑡

Where 𝑎𝑣𝑔𝑤𝑒𝑖𝑔ℎ𝑡 results from applying any of the functions 𝑓1, 𝑓2, 𝑓3 or 𝑓4.

4. Evaluation

The application was developed and run locally on a computer with the

following specifications:

● Intel i5-10500F

● 32GB DDR4 2933MHz RAM

● QUADRO RTX 4000 (12GB VRAM)

● 256GB SSD

The system architecture incorporates a specialized class to store participant-

specific information, encompassing details such as the participant's name, the time

since the last model update, the dataset used for training, the frequency of

consecutive updates, and the most recent accuracy. Initially, data distribution

among participants can be equal or unequal. A list of participants is generated, and

a random participant is selected for each iteration, thereby simulating an

asynchronous environment. The chosen participant proceeds to train on their local

dataset, calculating the importance of weight for aggregation with the general

model's weights. (selected to assess scalability and convergence behavior under

different load conditions)

The central model is systematically updated with each participant's

contribution, and this process continues for a predetermined number of iterations.

26 Dan Gabriel Badea, Ștefan-Dan Ciocîrlan, Răzvan-Victor Rughiniș, Dinu Țurcanu

An extensive analysis of various parameters was conducted, including the number

of iterations (50, 55, 100), different functions to calculate the participant's weight

importance, and varying numbers of participants (5, 10, 15)—additionally, a

thorough evaluation of the training time before aggregation was carried out.

(selected to assess scalability and convergence behavior under different load

conditions)

Two distinct scenarios were rigorously tested: one involving an even

distribution of data and another featuring unequal distribution to simulate real-

world conditions. Furthermore, the system's resilience against malicious

participants was carefully evaluated. Specific models were intentionally introduced

with irrelevant or random weights to assess their impact on the overall model's

performance. This was done by initializing specific participants with zero or

random weights to gauge their influence. (selected to assess scalability and

convergence behavior under different load conditions)

Regarding data exposure, it was assumed that the data was homogeneous,

disregarding differences between clients. Figure 2 provides a detailed

demonstration of the model's performance over a centralized 60-epoch training

period. The model successfully achieved convergence in 30 epochs, stabilized at 50

epochs, and reached a final accuracy of 88.94%. This accuracy threshold was

established, as further training would not significantly enhance the test accuracy

beyond 90%.

Fig. 2. Centralize model

4.1 Subsection (A)

This subsection examines the general model's performance using the client

weight importance function 𝒇𝟏 (6). The figures illustrate that the model converges

rapidly, stabilizing around the 20th epoch. Accuracy fluctuations are minimal, and

the final results closely align with the centralized model's performance when

participants act honestly. However, when a participant initializes model weights to

Asynchronous federated learning: convergence and performance in heterogeneous environments 27

zero, the 𝑓1 function becomes more sensitive, highlighting its responsiveness to

poorly performing or intentionally flawed models in the federated learning process.

(selected to assess scalability and convergence behavior under different load

conditions)

Fig. 3. General model & Workers model accuracy evolution using weight function 𝒇𝟏

4.2 Subsection (B)

In this subsection, the general model's evolution is examined using the client

weight importance function 𝒇𝟐 (7). The figures show that the model converges

faster, stabilizing around the 15th epoch with fewer steps. Accuracy fluctuations

are kept within a 3% margin, and the final results show only a 2% drop in accuracy

compared to the centralized model.

Fig. 4. General model & Workers model accuracy evolution using weight function 𝒇𝟐

Malicious participants have a significantly reduced impact on the overall

mediation process, both on the general model and other participants, though their

28 Dan Gabriel Badea, Ștefan-Dan Ciocîrlan, Răzvan-Victor Rughiniș, Dinu Țurcanu

influence on the final model quality remains slightly noticeable. (selected to assess

scalability and convergence behavior under different load conditions)

4.3 Subsection (C)

This subsection presents the results obtained using the client weight

importance function 𝒇𝟑 (8). The figures show that the general model struggles with

convergence, stabilizing slowly and remaining volatile. Accuracy fluctuations

exceed a 10% margin, and the final results indicate an 11% decrease in overall

accuracy compared to the centralized model. Malicious participants exacerbate the

instability, leading to the weakest outcome observed using this weighting function.

Their presence significantly undermines the model's performance, demonstrating

the function's limitations in handling adversarial inputs. (selected to assess

scalability and convergence behavior under different load conditions)

Fig. 5. General model & Workers model accuracy evolution using weight function 𝒇𝟑

4.4 Subsection (D)

In this subsection, we analyze the performance of the general model using

the client weight importance function 𝑓4 (9). The graphs show that the model

converges quickly, requiring fewer iterations to stabilize around the 20th epoch.

Accuracy fluctuations remain within a 4% margin, and the final results show only

a 2% reduction in accuracy compared to the centralized model. Malicious

participants have a diminished impact on the general model's performance and the

other participants. The use of this function, while less effective than 𝑓2, shows that

hybrid approaches can be equally efficient. (selected to assess scalability and

convergence behavior under different load conditions)

Asynchronous federated learning: convergence and performance in heterogeneous environments 29

Fig. 6. General model & Workers model accuracy evolution using weight function 𝒇𝟒

5. Conclusions

The findings of this research demonstrate that asynchronous distributed

learning can be successfully implemented, with minimal performance differences

between centralized and decentralized models, provided that data privacy remains

a priority. Preliminary results indicate that the decentralized general model can

capture essential features within a short training period. Utilizing the weight

importance functions 𝒇𝟐 (7) and 𝒇𝟒 (9) has proven to be an efficient and secure

method for federated learning. These functions offer substantial advantages,

including enhanced protection against malicious users and faster convergence,

while safeguarding data privacy. By applying 𝒇𝟐 and 𝒇𝟒 will effectively manage

malicious participants by detecting and mitigating their impact. This ensures

minimal model degradation or corruption risk, thus improving system security and

integrity during distributed learning. (selected to assess scalability and

convergence behavior under different load conditions)

In addition to protecting against adversarial actors, these functions enable

faster convergence, achieving model stability and desired performance in fewer

steps. This results in better and quicker outcomes within the federated learning

framework. Another key benefit of the approach using 𝒇𝟐 and 𝒇𝟒 is the preservation

of data privacy. By transmitting only model weights, rather than raw data, the

approach ensures that sensitive user information remains protected, minimizing

exposure risks during the aggregation process.

In conclusion, the use of 𝒇𝟐 and 𝒇𝟒 in federated learning is both effective and

secure, providing multiple benefits in terms of protection against malicious users,

faster model convergence, and data privacy preservation. This approach performs

comparably to traditional methods while offering additional advantages for

30 Dan Gabriel Badea, Ștefan-Dan Ciocîrlan, Răzvan-Victor Rughiniș, Dinu Țurcanu

managing adversarial users and enhancing the efficiency of the federated learning

system.

R E F E R E N C E S

[1] McMahan, and Brendan. “Communication-efficient learning of deep networks from

decentralized data.” Artificial intelligence and statistics, vol. PMLR, 2017.

[2] Konečný, Jakub, et al. "Federated learning: Strategies for improving communication efficiency."

NIPS Workshop on Private Multi-Party Machine Learning. 2016

[3] Wang, J., et al. "Advances in federated learning: A survey." IEEE Transactions on Big Data

(2021)

[4] Konecny, and Jakub. “Federated optimization: Distributed machine learning for on-device

intelligence.” 2016

[5] Li Li, et al. “A review of applications in federated learning.”

[6] Peter Kairouz, et al. “Advances and Open Problems in Federated Learning.”

[7] Qiang Yang, et al. ”Federated Learning”.

[8] Yang, Qiang, et al. "Federated machine learning: Concept and applications." ACM Transactions

on Intelligent Systems and Technology (TIST) 10.2 (2019): 1-19

[9] Tian Li, et al. “Federated Learning Challenges, methods, and future directions.”

[10] McMahan, Brendan, and Daniel Ramage. “Federated Learning: Collaborative

MachineLearning without Centralized Training Data.” Google AI Blog, 6 April 2017

[11] Keith Bonawitz, et al. “Practical Secure Aggregation for Privacy-Preserving Machine

Learning.” Cornell Tech, 2 West Loop Rd., New York, NY 10044

[12] Keith Bonawitz, et al. “TOWARDS FEDERATED LEARNING AT SCALE: SYSTEM

DESIGN”.

[13] Hard, Andrew, et al. "Federated learning for mobile keyboard prediction." Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing. 2018

[14] Li, Tian, et al. "FedAsync: Asynchronous federated learning for distributed deep learning."

arXiv preprint arXiv:1902.02089 (2019)

[15] Hsieh, K., et al. "A survey on federated learning: Challenges, advances, and future directions."

IEEE Transactions on Big Data (2020)

[16] Hsieh, K., et al. "A survey on federated learning: Challenges, advances, and future directions."

IEEE Transactions on Big Data (2020)

[17] Li, Tian, et al. "Federated optimization in heterogeneous networks." arXiv preprint

arXiv:1812.06127 (2018)

