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Distributed Machine Learning (DML) utilizes several nodes for training 

machine learning models, with a central node overseeing data distribution and 

communication. Federated Learning (FL), a Distributed Machine Learning (DML) 

branch, improves data privacy by retaining data on local devices. The realm of 

Federated Learning (FL) has primarily functioned synchronously; nevertheless, 

recent advancements have initiated a new phase of asynchronous FL. This innovative 

method enables nodes to update the model, independently facilitating exceptional 

scalability and adaptability. This study thoroughly examines asynchronous federated 

learning, analyzing its distributed architecture, communication protocols, 

optimization methods, and the numerous hurdles it faces, such as data heterogeneity, 

node delays, and convergence problems. The findings illustrate that, despite these 

challenges, the system attains near-centralized accuracy and exhibits accelerated 

convergence rates. This serves as a compelling demonstration of the potential of 

asynchronous federated learning in transforming actual applications. 
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1. Introduction 

This research focuses on Distributed Machine Learning (DML), a technique 

for training machine learning models across several nodes. This approach helps 

overcome the memory limitations often encountered with systems that rely on a 

single node [1]. Data is aggregated at a central server and distributed to nodes, 

improving the model’s performance, accuracy, and scalability for large datasets. 
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Federated Learning (FL) has revolutionized DML by allowing distributed 

training across various devices while prioritizing data privacy [3]. Unlike DML, 

where data is transferred to a central location for training, FL maintains data on 

local devices, transmitting only model updates to a central server. Synchronous FL, 

where nodes wait for each other to complete their updates, has been widely used 

but presents challenges in real-world applications, especially in heterogeneous 

environments with inconsistent network availability [15]. 

In federated learning (FL), the challenges associated with synchronized 

updates have prompted the emergence of asynchronous FL as a viable solution, 

offering enhanced system flexibility and scalability [16]. Nonetheless, 

asynchronous FL presents unique challenges, including slower convergence rates 

resulting from inconsistent data distributions and divergent computational 

capacities among devices [16]. Consequently, these factors can lead to delayed 

model improvements and suboptimal performance. To address these issues, this 

study proposes integrating adaptive weighting strategies into the aggregation 

process of asynchronous FL. This strategic approach aims to mitigate the challenges 

associated with asynchronous updates, ultimately enhancing the efficacy of the 

learning process. Instead of treating all updates from participants equally, the 

system dynamically adjusts the weights based on the quality, relevance, and 

timeliness of the data provided by each participant. This ensures that contributions 

from devices with more informative data are prioritized, leading to faster model 

convergence and improved accuracy [3]. This approach also helps mitigate the 

impact of delayed or inconsistent updates from slower participants, a common 

problem in both synchronous and asynchronous setups [2]. (selected to assess 

scalability and convergence behavior under different load conditions) (particularly 

important for reducing computational load in resource-limited environments such 

as IoT) 

This research addresses the primary challenge of reducing computational 

time in a distributed system while maintaining high model accuracy. Traditional 

DML architectures face synchronization bottlenecks, as the slowest devices can 

delay the entire training process. Moreover, centralized servers expose a 

vulnerability where third parties can access participant data, undermining privacy 

guarantees [2].  

By penalizing clients that transmit updates infrequently, this research 

proposes a system that maintains robust performance even with infrequent updates, 

further ensuring security and stability against potential malicious participants [2]. 

This study also extensively evaluates adaptive weighting in asynchronous FL 

through experimental analysis of real-world datasets. Different weighting strategies 

were applied to participant updates, considering the distribution and quality of data. 

Results show that adaptive weighting reduces training time and improves 

convergence speed compared to traditional synchronous FL methods, especially in 
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scenarios with data heterogeneity and intermittent device availability [9]. (selected 

to assess scalability and convergence behavior under different load conditions) 

A foundational Federated Learning (FL) model was fine-tuned during the 

experimental evaluation by incorporating an age parameter and precision metrics. 

The research involved a detailed comparison between centralized and distributed 

models, examining their computational time, energy consumption, and 

convergence rate. The Street View House Numbers (SVHN) dataset was chosen 

due to its size, with varying numbers of participants (5, 10, 15) and iterations (50, 

100) tested. The distributed model achieved an accuracy of 88.71%, closely 

mirroring the centralized model’s performance of 90.54%, with faster convergence 

due to the asynchronous implementation [2]. (selected to assess scalability and 

convergence behavior under different load conditions) 

The comprehensive research findings highlight that integrating adaptive 

weighting strategies, such as differential privacy and personalized local updates, 

into asynchronous FL significantly accelerates convergence and substantially 

enhances model performance in distributed environments. By leveraging 

techniques such as personalized local updates, where each client device updates its 

local model independently, the study demonstrates a marked improvement in the 

overall performance and privacy preservation of federated learning models. These 

results contribute significantly to the ongoing development of federated learning 

technologies and underscore the importance of optimizing the use of distributed 

data while maintaining high levels of privacy and performance. This 

groundbreaking research provides a solid foundation for further investigation into 

the practical applications of asynchronous federated learning across various real-

world settings, including healthcare, finance, and IoT networks. (particularly 

important for reducing computational load in resource-limited environments such 

as IoT) 

2. Literature Review 

Distributed Machine Learning (DML) provides valuable insights into 

optimizing the training of machine learning models across multiple nodes, 

effectively addressing the memory limitations associated with single-node 

architectures. One proposed approach involves utilizing personal devices as 

computational nodes, enabling the processing of local user data without 

overburdening a central data center. In this system, the central node primarily serves 

as a coordinator, decoupling data from the central node to minimize communication 

frequency, which is proposed to occur once daily. Model updates, represented as 

small vectors of model weights, are centrally aggregated based on data distribution, 

ensuring computational efficiency even in the absence of independently and 

identically distributed (IID) datasets. The introduction of a novel algorithm 
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demonstrates promising experimental results, particularly for convex problems in 

distributed environments, with Federated SVRG (Stochastic Variance Reduced 

Gradient) improving upon traditional methods such as Gradient Descent and 

CoCoA (Communication-efficient distributed optimization with composite 

oracles), achieving satisfactory error rates with fewer communication rounds, albeit 

requiring further enhancements. 

In a separate study, authors propose strategies to mitigate communication 

costs between servers and clients when transmitting models. They argue that upload 

times typically exceed download times, suggesting that structured updates, which 

involve learning from a limited parameter space with fewer variables, can alleviate 

this bottleneck. Evaluations across multiple datasets demonstrate that client 

selection can be expanded without compromising accuracy, particularly effective 

in bandwidth-constrained environments. A vital outcome of this approach is the 

achieved balance, allowing for the inclusion of more clients per communication 

round. At the same time, each transmits less data, ensuring scalability, especially in 

scenarios where clients have limited bandwidth, a common real-world constraint. 

Experiments detailed in a different study showcase the robustness of the 

Federated Averaging (FedAvg) algorithm in addressing non-IID and imbalanced 

data distributions, common characteristics of real-world datasets. By significantly 

reducing communication rounds compared to synchronized stochastic gradient 

descent (SGD), FedAvg emerges as a practical solution for real-world federated 

learning systems. FedAvg integrates local SGD on each client with central 

aggregation, leading to substantial resource savings while maintaining user privacy. 

The study's findings demonstrate that federated learning significantly improves 

resource consumption without compromising accuracy, indicating the algorithm's 

effectiveness across various model architectures, including multi-layer perceptrons 

and word-level LSTM models. 

In another development, FedProx, introduced in a separate study, extends 

the capabilities of FedAvg by addressing the interaction between system 

heterogeneity and statistical heterogeneity. The study emphasizes how the 

exclusion of clients due to system constraints can exacerbate statistical 

heterogeneity. FedProx addresses this by permitting partial work on devices and 

incorporating a proximal term to aggregate partial updates safely. This modification 

presents a more reliable approach to handling diverse client data without 

compromising performance. The study comprehensively explores these 

modifications, highlighting their significant implications for real-world federated 

systems where heterogeneity is an inevitable challenge. 

Furthermore, a study presents a scalable Federated Learning (FL) 

production system on mobile devices developed using TensorFlow. This work 

addresses ensuring sufficient devices connect simultaneously to maintain task 

progress and uphold security properties. The proposed probabilistic algorithm for 
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device reconnection reduces the need for additional device-server communications, 

ensuring operational efficiency in live environments. The system also monitors the 

device health metrics, including memory usage, error rates, and battery 

consumption, to prevent resource wastage. This work marks one of the initial large-

scale implementations of FL in production settings, explicitly focusing on federated 

mediation algorithms operating directly on mobile devices, indicating broad 

implications for future FL deployments beyond mobile settings. 

A separate article demonstrates the efficacy of using federated averaging to 

train recurrent neural network (RNN) models on client devices compared to 

traditional server-based methods. The study focuses on the Gboard system's word 

prediction, illustrating how federated learning maintains data privacy by preserving 

user data on devices without transferring it to central servers. Unlike server-based 

learning, which necessitates large uniformly distributed datasets across servers, 

federated learning aggregates model updates while safeguarding user privacy. This 

technique has been successfully deployed on Gboard, enhancing suggestions for 

hundreds of millions of users in 2021. 

3. Architecture 

The architectural solution for this project involves using a central server to 

manage the primary model and coordinate with other participants (workers). This 

approach optimizes energy consumption at the expense of potentially lower model 

performance than training on a single dataset. Each client registers with the central 

server to receive a pre-trained model for optimal initialization. With the server 

aggregating participant updates, both trusted clients and potential adversaries are 

considered. The asynchronous approach ensures real-time model updates as clients 

send new data, allowing workers to receive the updated model through weight 

sharing. The model is trained in each iteration using local data, and the updates are 

transmitted to the central node. The central server aggregates the updates from all 

active participants and adjusts the general model’s weights accordingly. The 

updated model is then shared with the participants by only transmitting the modified 

weights. Clients with delayed responses have a reduced impact on the central node’s 

updates. The asynchronous mechanism updates the central model for each client’s 

new information and notifies other participants when they transmit their data. Upon 

receiving the model, each participant independently trains it using their local 

dataset, which may consist of diverse data points with varying characteristics, such 

as size, distribution, and quality. The learned values from these individual training 

processes are combined through weighted averaging to improve the overall model. 

It's crucial to account for the data heterogeneity present in participant datasets, as 

differences in volume and distribution can significantly impact the convergence and 

generalization of the final model. The importance of each participant's contribution 
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is carefully assessed using the functions proposed in this work. This assessment 

reveals that a significant majority, estimated to be over 80% of the model's weight 

is attributed to key contributors. The determination of participant weights is based 

on the functions (6), (7), (8), and (9) outlined in this paper, which consider the 

unique characteristics of each participant's dataset and the impact of their 

contribution on the overall model's performance. This proposed architecture 

ensures the system can converge toward a well-performing, generalized model even 

with heterogeneity among participants and asynchronous updates. (selected to 

assess scalability and convergence behavior under different load conditions) 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 

𝐺 = 𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑠𝑒𝑟𝑣𝑒𝑟’𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 
𝑊 = 𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡’𝑠 𝑚𝑜𝑑𝑒𝑙 

𝑓𝑟 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑙𝑖𝑒𝑛𝑡 

𝑎𝑐𝑐 = 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

𝑓1(N, G, W, 𝑓𝑟, acc) = 
1

(𝑎𝑐𝑐 ⋅ 𝑓𝑟 ⋅ (𝑁 + 𝐺 − 𝑊) )
 

 𝑓2(N, G, W, 𝑓𝑟, acc) = 
𝑎𝑐𝑐

(𝑁 ⋅ 𝑓𝑟)
 ⋅  

1

(𝐺 + 1 − 𝑊) 
 

𝑓3( G, W, 𝑓𝑟, acc) = 
1

(𝑎𝑐𝑐 ⋅ 𝑓𝑟 ⋅ 
(2 ⋅ 𝐺 + 1 ⋅ 𝑊)

3
 )
 

𝑓4(N,  G, W, 𝑓𝑟, acc) = 
(𝑓1 ⋅𝑓2)

𝑓𝑟
 

 

Fig. 1. General architecture 
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The age of each participant (W) or the general model (G) represents the 

duration of time or synchronization cycles since the last update between the 

participant's model and the central model. This age difference directly impacts the 

weight assigned to the participant's contribution during the aggregation process, 

with more significant discrepancies leading to a reduced influence, thereby 

penalizing outdated models. The frequency parameter (fr) further accounts for the 

frequency of a participant's appearance in random aggregation, penalizing repeated 

appearances by diminishing the potential for new improvements over consecutive 

iterations. In addition, the accuracy (acc) parameter plays a crucial role in the 

weight distribution, ensuring that models deviating significantly from the general 

model are proportionally assigned less influence during the aggregation process. 

(selected to assess scalability and convergence behavior under different load 

conditions).  

Functions (𝑓1), (𝑓2), (𝑓3), and (𝑓4) determine the weight distribution based on 

parameters (N), (G), (W), (𝑓𝑟), and (acc), balancing the most promising and least-

performing updates. The general model's weight importance is given by: 

1 −  𝑎𝑣𝑔𝑤𝑒𝑖𝑔ℎ𝑡 

Where 𝑎𝑣𝑔𝑤𝑒𝑖𝑔ℎ𝑡 results from applying any of the functions 𝑓1, 𝑓2, 𝑓3 or 𝑓4. 

4. Evaluation 

The application was developed and run locally on a computer with the 

following specifications: 

● Intel i5-10500F 

● 32GB DDR4 2933MHz RAM 

● QUADRO RTX 4000 (12GB VRAM) 

● 256GB SSD 

The system architecture incorporates a specialized class to store participant-

specific information, encompassing details such as the participant's name, the time 

since the last model update, the dataset used for training, the frequency of 

consecutive updates, and the most recent accuracy. Initially, data distribution 

among participants can be equal or unequal. A list of participants is generated, and 

a random participant is selected for each iteration, thereby simulating an 

asynchronous environment. The chosen participant proceeds to train on their local 

dataset, calculating the importance of weight for aggregation with the general 

model's weights. (selected to assess scalability and convergence behavior under 

different load conditions) 

The central model is systematically updated with each participant's 

contribution, and this process continues for a predetermined number of iterations. 
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An extensive analysis of various parameters was conducted, including the number 

of iterations (50, 55, 100), different functions to calculate the participant's weight 

importance, and varying numbers of participants (5, 10, 15)—additionally, a 

thorough evaluation of the training time before aggregation was carried out. 

(selected to assess scalability and convergence behavior under different load 

conditions) 

Two distinct scenarios were rigorously tested: one involving an even 

distribution of data and another featuring unequal distribution to simulate real-

world conditions. Furthermore, the system's resilience against malicious 

participants was carefully evaluated. Specific models were intentionally introduced 

with irrelevant or random weights to assess their impact on the overall model's 

performance. This was done by initializing specific participants with zero or 

random weights to gauge their influence. (selected to assess scalability and 

convergence behavior under different load conditions) 

Regarding data exposure, it was assumed that the data was homogeneous, 

disregarding differences between clients. Figure 2 provides a detailed 

demonstration of the model's performance over a centralized 60-epoch training 

period. The model successfully achieved convergence in 30 epochs, stabilized at 50 

epochs, and reached a final accuracy of 88.94%. This accuracy threshold was 

established, as further training would not significantly enhance the test accuracy 

beyond 90%. 

 

Fig. 2. Centralize model 

4.1 Subsection (A) 

This subsection examines the general model's performance using the client 

weight importance function 𝒇𝟏 (6). The figures illustrate that the model converges 

rapidly, stabilizing around the 20th epoch. Accuracy fluctuations are minimal, and 

the final results closely align with the centralized model's performance when 

participants act honestly. However, when a participant initializes model weights to 
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zero, the 𝑓1 function becomes more sensitive, highlighting its responsiveness to 

poorly performing or intentionally flawed models in the federated learning process. 

(selected to assess scalability and convergence behavior under different load 

conditions) 

Fig. 3. General model & Workers model accuracy evolution using weight function 𝒇𝟏 

4.2 Subsection (B) 
 

In this subsection, the general model's evolution is examined using the client 

weight importance function 𝒇𝟐 (7). The figures show that the model converges 

faster, stabilizing around the 15th epoch with fewer steps. Accuracy fluctuations 

are kept within a 3% margin, and the final results show only a 2% drop in accuracy 

compared to the centralized model.  

 

Fig. 4. General model & Workers model accuracy evolution using weight function 𝒇𝟐 

Malicious participants have a significantly reduced impact on the overall 

mediation process, both on the general model and other participants, though their 
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influence on the final model quality remains slightly noticeable. (selected to assess 

scalability and convergence behavior under different load conditions) 

 

4.3 Subsection (C) 

This subsection presents the results obtained using the client weight 

importance function 𝒇𝟑 (8). The figures show that the general model struggles with 

convergence, stabilizing slowly and remaining volatile. Accuracy fluctuations 

exceed a 10% margin, and the final results indicate an 11% decrease in overall 

accuracy compared to the centralized model. Malicious participants exacerbate the 

instability, leading to the weakest outcome observed using this weighting function. 

Their presence significantly undermines the model's performance, demonstrating 

the function's limitations in handling adversarial inputs. (selected to assess 

scalability and convergence behavior under different load conditions) 

 

Fig. 5. General model & Workers model accuracy evolution using weight function 𝒇𝟑 

4.4 Subsection (D) 

In this subsection, we analyze the performance of the general model using 

the client weight importance function 𝑓4 (9). The graphs show that the model 

converges quickly, requiring fewer iterations to stabilize around the 20th epoch. 

Accuracy fluctuations remain within a 4% margin, and the final results show only 

a 2% reduction in accuracy compared to the centralized model. Malicious 

participants have a diminished impact on the general model's performance and the 

other participants. The use of this function, while less effective than 𝑓2, shows that 

hybrid approaches can be equally efficient. (selected to assess scalability and 

convergence behavior under different load conditions) 
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Fig. 6. General model & Workers model accuracy evolution using weight function 𝒇𝟒 

5. Conclusions 

The findings of this research demonstrate that asynchronous distributed 

learning can be successfully implemented, with minimal performance differences 

between centralized and decentralized models, provided that data privacy remains 

a priority. Preliminary results indicate that the decentralized general model can 

capture essential features within a short training period. Utilizing the weight 

importance functions 𝒇𝟐 (7) and 𝒇𝟒 (9) has proven to be an efficient and secure 

method for federated learning. These functions offer substantial advantages, 

including enhanced protection against malicious users and faster convergence, 

while safeguarding data privacy. By applying 𝒇𝟐 and 𝒇𝟒 will effectively manage 

malicious participants by detecting and mitigating their impact. This ensures 

minimal model degradation or corruption risk, thus improving system security and 

integrity during distributed learning.  (selected to assess scalability and 

convergence behavior under different load conditions) 

In addition to protecting against adversarial actors, these functions enable 

faster convergence, achieving model stability and desired performance in fewer 

steps. This results in better and quicker outcomes within the federated learning 

framework. Another key benefit of the approach using 𝒇𝟐 and 𝒇𝟒 is the preservation 

of data privacy. By transmitting only model weights, rather than raw data, the 

approach ensures that sensitive user information remains protected, minimizing 

exposure risks during the aggregation process. 

In conclusion, the use of 𝒇𝟐 and 𝒇𝟒 in federated learning is both effective and 

secure, providing multiple benefits in terms of protection against malicious users, 

faster model convergence, and data privacy preservation. This approach performs 

comparably to traditional methods while offering additional advantages for 
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managing adversarial users and enhancing the efficiency of the federated learning 

system.   
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