

STUDIES AND RESEARCH ON WASTE MoSi₂ HEATING ELEMENTS

Maria MUSCALU¹, Valeriu-Gabriel GHICA^{2*}, Gheorghe IACOB³,
Mircea-Ionuț PETRESCU⁴, Mihai BUZATU⁵

The capitalization of the used heating elements based on MoSi₂ from the melting furnaces and heat treatments furnaces is economically justified. The paper analyzes the molybdenum market, morphologically and structurally characterizes the MoSi₂ and SiO₂ compounds found in the heating elements and proposes the recovery of molybdenum in the form of MoO₃. The powder obtained from used heating elements ground in a jaw crusher was analyzed by Scanning Electron Microscopy SEM and Energy Dispersive X-ray Spectrometry - EDX. To identify the constitution phase of the powders, we used a Panalytical X'PERT MPD X-ray diffractometer with a CuK α radiation source.

Keywords: molybdenum disilicide; used heating elements; recovery; microstructural characterization; phase analysis

1. Introduction

Molybdenum is a rare metal in nature (it is the 54th most abundant element in the Earth's crust with an average of 1.5 parts per million [1]). Although known and used since antiquity (as Molybdaeum) when its ores were confused with lead, it was not until 1768 that Carl Wilhelm Scheele established that molybdenite (MoS₂) is a sulfur compound of an unknown metal and converted molybdenite in oxide (powder); in 1782, at the suggestion of Carl Wilhelm Scheele, Peter Jacob Hjelm obtained molybdenum powder (chemically reduced carbon monoxide) [2].

Molybdenum found practical use in the late 19th century, under the auspices of World War I when the supply of tungsten fell; it began to replace tungsten in impact-resistant steels - shields - with twice the atomic weight than tungsten [3]. After the World War II, molybdenum found its many applications: it increases the hardness, thermal and corrosion resistance of steels, becoming indispensable in the aeronautical and cosmonautical industry (missiles); when

¹ PhD Student, Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: bratu_21@yahoo.com

² Prof., Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: gvghica@yahoo.com, *corresponding author

^{3, 4, 5} Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, Romania

making protective layers; nuclear medicine and roentgen lamps; MoS_2 + Graphite is a good lubricant even at high temperatures; superalloys, nickel based alloys, chemicals, electronics and many other applications (Fig.1). Molybdenum disilicide (MoSi_2), a refractory metal silicide, is mainly used as a heating element [4, 5].

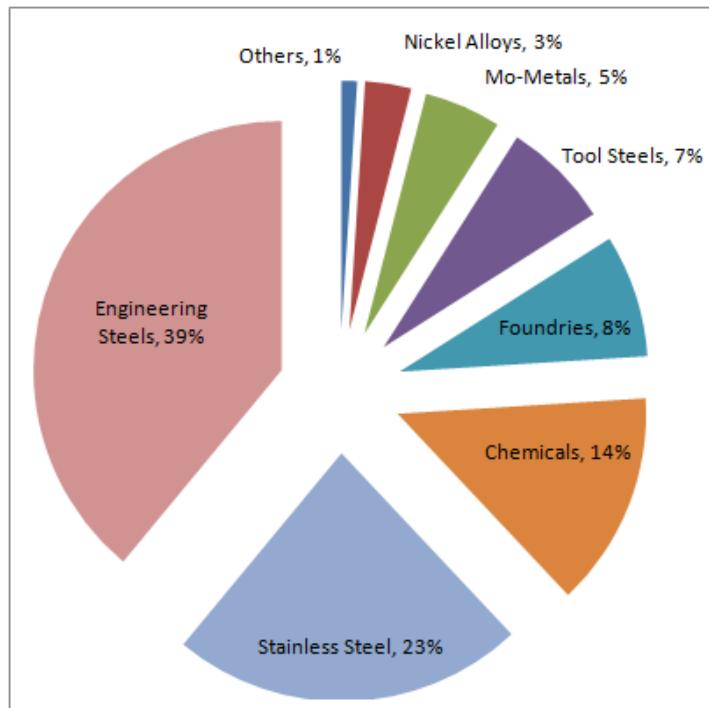


Fig. 1. Technical uses of Molybdenum, 2019 (Total volume year: 2019 – 259,100 tonnes Mo [1]

About 99% of molybdenum are obtained from molybdenite ores (MoS_2) including copper-molybdenum ones. In the ore composition, the molybdenite concentration varies between 0.01 to 0.25%, associated with other sulfides minerals of other metals (copper). Important mineral reserves have: China, USA, Peru and Chile. Molybdenum major producers are US, China and Chile [6, 7 and 8]. After extraction from the mine, the preparation of ores follows the standard stages (crushing, grinding, floatation, leaching). Oxidizing roasting involves the conversion of insoluble molybdenum sulfide into easily soluble molybdenum trioxide using ammoniacal or alkaline solutions. The resulting ammonium molybdate solution is then converted to any one of a number of molybdate products by crystallization or acid precipitation. These can be further processed by calcination to pure molybdenum trioxide [9]. Molybdenum metal is produced by hydrogen reduction of pure molybdcic oxide or ammonium molybdate.

Molybdenum is expected to trade at 18.43 USD/Kg by the end of this quarter, according to Trading Economics global macro models and analysts'

expectations. Tradingeconomics.com estimates it to trade at 15.84 in 12 month's time [10].

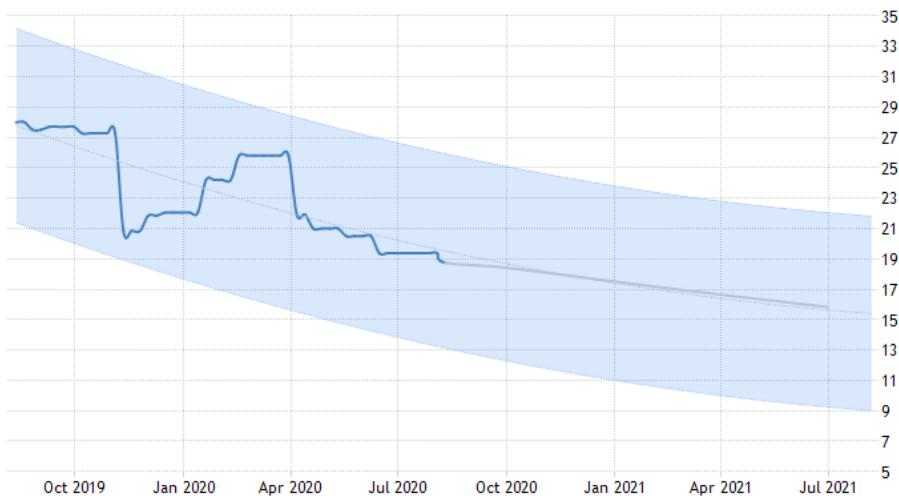


Fig. 2. Forecast for Molybdenum prices [10]

About 73% of the molybdenum supply comes as a by-product of the copper industry and only 27% of the molybdenum mines (China is the largest producer of molybdenum mining). Over 80% of primary molybdenum consumption is used in the steel and alloys industry (eg ilium). The crisis caused by the COVID-19 pandemic that led to a global economic crisis caused the price of molybdenum oxide to fall by 18% in the first quarter of 2020 but forecasts [10] anticipate that the steel industry will recover from next year 2021.

Molybdenum disilicide is commercially used as a heating element (Fig. 3); this is an intermetallic compound, a silicide of molybdenum, a refractory ceramic. It has moderate density (6.3 g/cm³), melting point 2030°C, excellent high-temperature oxidation resistance, and high electrical and thermal conductivity; at high temperatures it forms a passivation layer of silicon dioxide, protecting it from further oxidation [9].

Fig. 3. MoSi_2 heating elements U-type [11]

2. Materials and methods

In the laboratories of the Polytechnic University of Bucharest (Romania) there are such heating elements obsolete (broken) - lifetime of the heating elements it is several years of use, depending on the number of cycles of use of the furnaces, and currently, we are trying to find a use of these materials (to process them under powder form and to be used for air plasma spraying, or in the production of multiphase composites based on Mo-Si-Al-C system).

MoSi_2 heating element is a High-Density Material consisting of molybdenum disilicide and self-forming glaze of silicide dioxide. It can be used up to Furnace Temperature of 1800°C and it can withstand many years of service because of its strength [12]. The main properties are shown in Table 1.

Table 1
Properties of molybdenum disilicide

Property	Value	Measure unit
Density	5.6	g/cm^3
Porosity	< 1	%
Hardness	8.58 – 9.60	GPa
Compression strength	1400 - 1500	MPa
Resistivity: - at room temp - at 1700°C	3.5×10^{-7} 4.0×10^{-6}	$\Omega \cdot \text{cm}$

Worn heating elements from MoSi_2 were recovered from various furnaces (melting furnaces, heat treatment furnaces), and transformed into powder and small cracks (Fig. 4) using a jaw crusher.

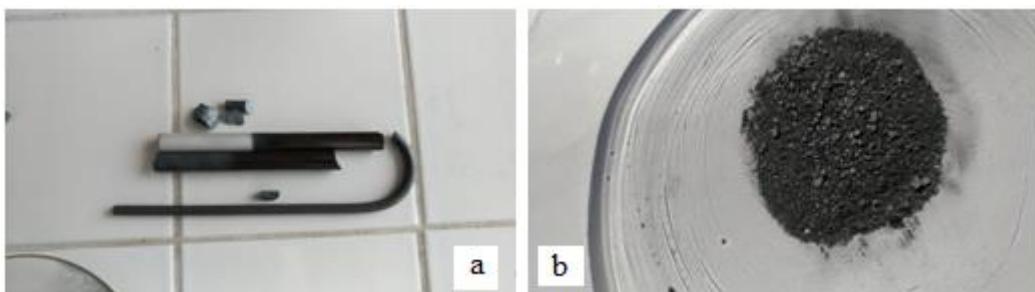


Fig. 4. Processing of worn heating elements made of MoSi₂: a) broken MoSi₂ heating elements; b) powder and small cracks of MoSi₂

The morphology and microstructure of the powders were analyzed by SEM (Quanta Inspect F50, with a field emission gun - FEG with 1.2 nm resolutions and an Energy Dispersive X-ray Spectrometer - EDX having 133 eV resolutions at MnK α).

To identify the phase constitution of the powders, we used a Panalytical X'PERT MPD X-ray diffractometer with a Cu K α radiation source ($\lambda = 1.5418 \text{ \AA}$) in the range $2\theta = 10\text{--}90^\circ$.

3. Results and discussion

MoSi₂ is known to have a C11 b-type body-centered tetragonal structure at temperatures $<1900^\circ\text{C}$ and a C40-type hexagonal structure at temperatures $>1900^\circ\text{C}$ [13]. The crystallographic parameters are presented in Table 2.

Table 2
Crystallographic parameters of MoSi₂ compared to SiO₂

Crystallographic parameters	MoSi ₂	SiO ₂
Crystal system		Tetragonal
Space group	I4/mmm	P41212
Space group number	139	92
a (Å)	3.2000	4.5200
b (Å)	3.2000	4.5200
c (Å)	7.8500	7.4960
Alpha (°)	90.0000	
Beta (°)	90.0000	
Gamma (°)	90.0000	
Calculated density (g/cm ³)	6.28	-
Volume of cell (10 ⁶ pm ³)	80.38	153.15
Z	2	4
RIR	-	3.53

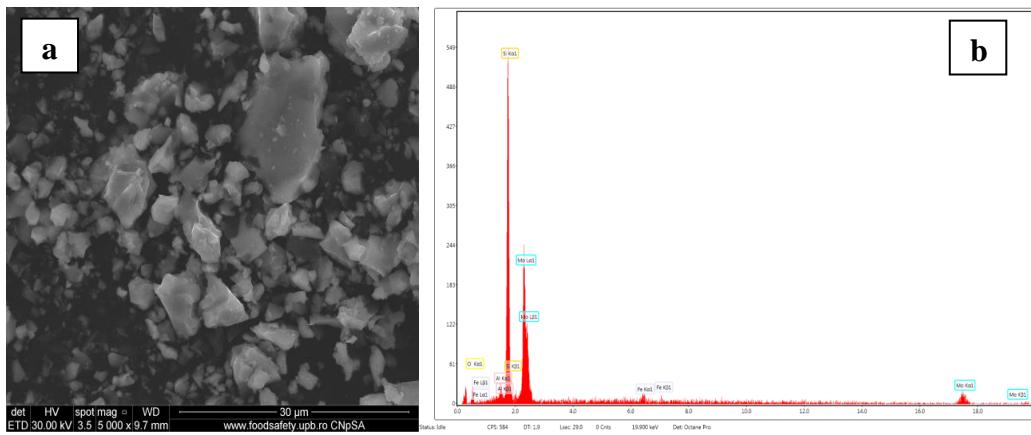


Fig. 5. SEM-EDX characterization of MoSi_2 powdery material: a) SEM micrograph; b) EDX spectrum

The morphology and microstructure of the MoSi_2 powder material were characterized using SEM-EDX analysis (Figures 5 to 8). The phase constitution of the powder was determined by X-ray diffraction (XRD) using $\text{Cu K}\alpha$ radiation (Fig. 9).

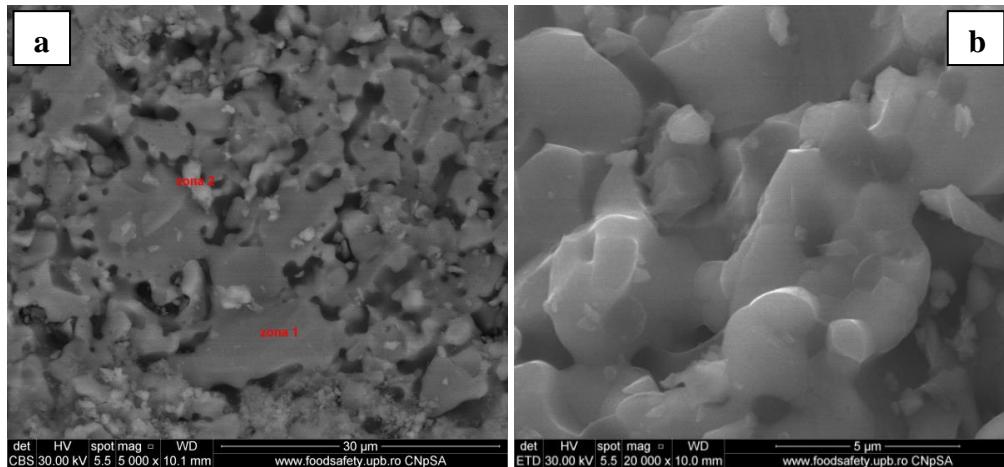


Fig. 6. SEM micrographs of MoSi_2 powders showing: a) two characteristic micro-areas for EDX analyses; b) high magnification morphology of particle surface

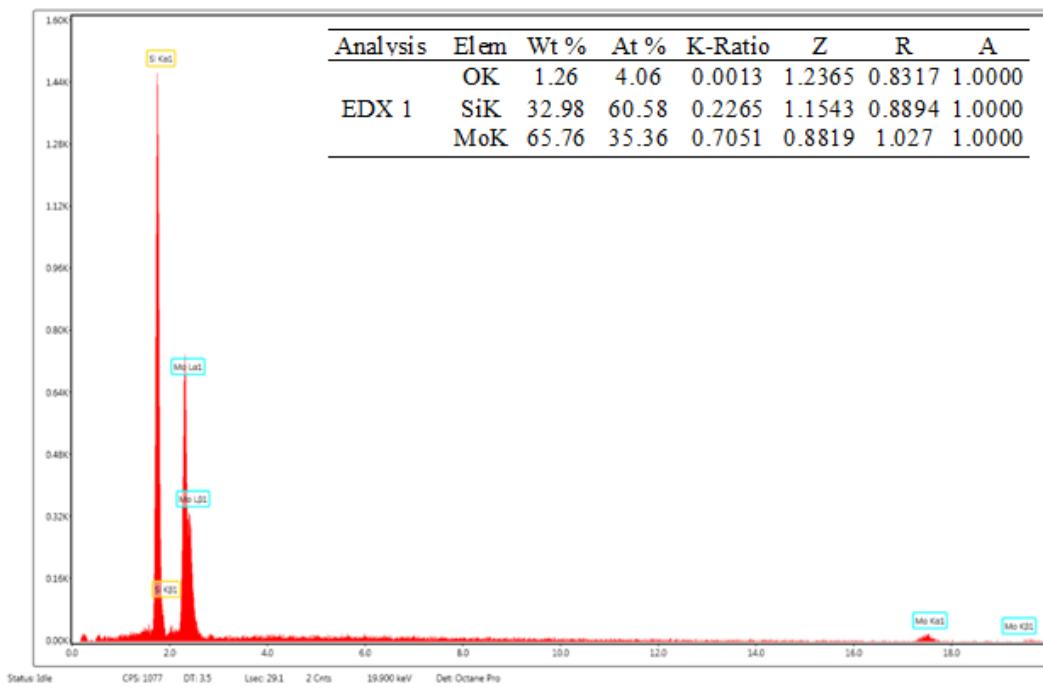


Fig. 7. EDX spectrum for micro-area 1

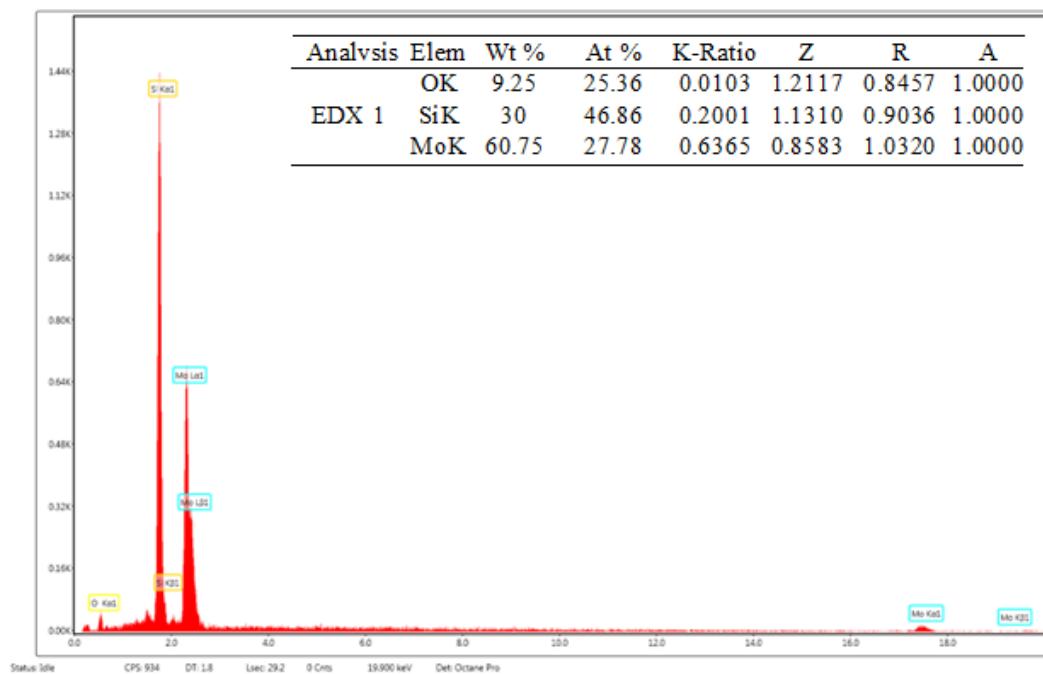


Fig. 8. EDX spectrum for micro-area 2

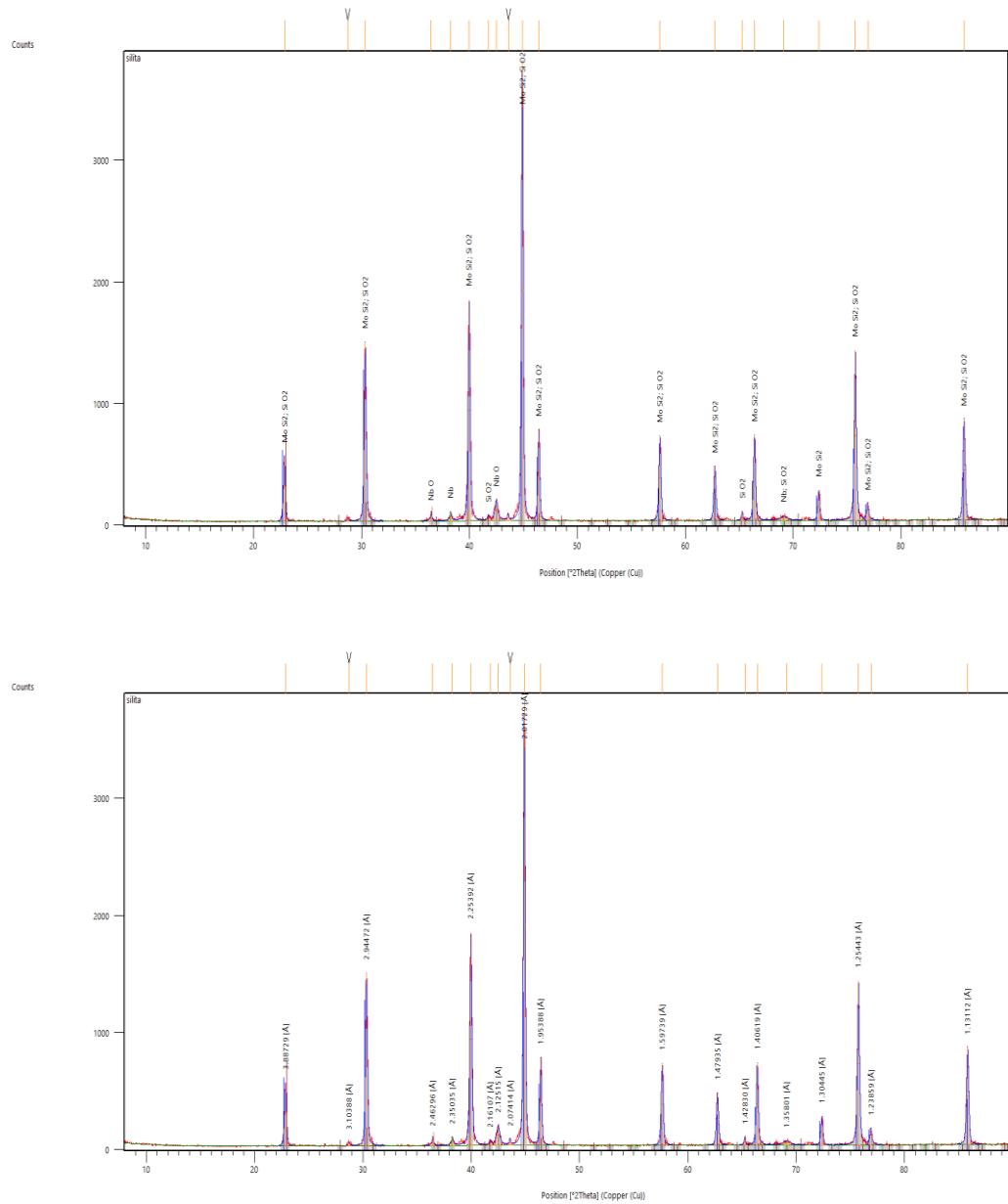
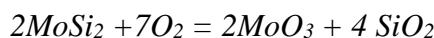


Fig. 9. XRD patterns for molybdenum disilicide

The X-ray diffraction indexation sheet in Figure 9
Peak list

No.	h	k	l	d [Å]	2Theta (deg)	I (%)
1	0	0	2	3.92000	22.665	45.0
2	1	0	1	3.87080	22.957	100.0


Table 3

3	1	0	1	2.96000	30.168	95.0
4	1	1	1	2.94000	30.378	21.9
5	1	1	0	2.26000	39.856	70.0
6	2	0	0	2.26000	39.856	12.9
7	2	1	0	2.02140	44.800	0.3
8	1	0	3	2.02000	44.833	100.0
9	1	1	2	1.96000	46.284	40.0
10	2	1	1	1.95170	46.492	8.9
11	2	0	0	1.60000	57.559	30.0
12	2	2	0	1.59810	57.634	2.4
13	2	0	2	1.48000	62.728	20.0
14	3	0	1	1.47710	62.865	2.5
15	1	0	5	1.42300	65.547	5.1
16	1	0	5	1.41000	66.229	25.0
17	3	1	1	1.40400	66.548	2.8
18	0	0	6	1.30800	72.160	16.0
19	2	1	3	1.25700	75.586	45.0
20	2	0	4	1.24100	76.736	10.0
21	2	2	0	1.13200	85.762	30.0

Structure

No.	Name	Elem.	X	Y	Z	Biso	sof	Wyck.
1	MO1	Mo	0.00000	0.00000	0.00000	0.2000	1.0000	2a
2	SI1	Si	0.00000	0.00000	0.33543	0.3700	1.0000	1d

In the diffraction analyzes (Fig. 9) it is observed that the MoSi₂ peaks are accompanied by those of SiO₂. This is because MoSi₂ is capable of forming a protective SiO₂ scale (thin, layer on the surface of MoSi₂) at elevated temperatures; unfortunately, it degrades its high temperature mechanical properties. The powder obtained can be further processed, in order to obtain a marketable product. For example, the powder must be finely ground in a ball mill (brought to 1.2 - 1.5 microns). Calcinations in air at about 500°C follows, which results in MoO₃ and SiO₂ according to the reaction:

The separation of the two components can be done as follows: after calcinations, the mixture of MoO₃ and SiO₂ will be placed in a circular oven and heated to over 1155°C (MoO₃ boiling point). MoO₃ can be discharged into the Ar stream [14].

4. Conclusions

Molybdenum is a rare and expensive metal so its recovery from waste by any technique is necessary and justified. In the research and production units there

are significant quantities of waste from the heating elements made of MoSi_2 that can be recovered.

By analyzing the samples in powder form resulting from the processing of the heating elements made of MoSi_2 , their structure and morphology were highlighted. X-ray diffraction analyzes confirmed the presence of MoSi_2 and SiO_2 . Following the studies carried out in this paper, a cheap and efficient method of recovering molybdenum in the form of MoO_3 , a salable product, will be proposed.

R E F E R E N C E S

- [1] *G.D. Conisidine* (ed.), “Molybdenum, Van Nostrand's Encyclopedia of Chemistry”, New York: Wiley-Interscience, pp. 1038–1040, 2005.
- [2] *A. Lennartson*, “The Chemical Works of Carl Wilhelm Scheele, In: The Chemical Works of Carl Wilhelm Scheele”, Springer Briefs in Molecular Science, Springer, Cham., 2017.
- [3] *J.E. Hove, L.F. Gowen*, “Retrospective study of selected DoD materials and structures research and development programs, Phase I: Case history data collection”, Institute for Defense Analysis, Science and Technology Division, IDA PAPER P-1391, 1979.
- [4] *R.F. Sebenik, A.R. Burkin, R.R. Dorfler et al.*, “Molybdenum and Molybdenum Compounds, in Ullmann's Encyclopedia of Chemical Technology”, Wiley-VCH, Weinheim, 2000.
- [5] *C.K. Gupta*, “Extractive Metallurgy of Molybdenum”, CRC Press, pp. 1–2, 1992.
- [6] *F. Frascoli, K.A. Hudson-Edwards*, Geochemistry, “Mineralogy and Microbiology of Molybdenum in Mining-Affected Environments”, in Minerals, **vol. 8**, no. 2, 2018, pp. 1-18.
- [7] International Molybdenum Association (IMOA), “Molybdenum Ore Reserves”, <https://www.imoa.info/index.php> [accessed 10.09.2020].
- [8] *A.T. Greaney, R.L. Rudnick, R.M. Gaschnig, J.B. Whalen, B. Luais, J.D. Clemens*, “Geochemistry of molybdenum in the continental crust”, in Geochimica et Cosmochimica Acta, **vol. 238**, 2018, pp 36-54.
- [9] *P.C.H. Mitchell, T. Outeridge, K. Kloska, et al.*, “Molybdenum and Molybdenum Compounds”, in Ullmann's Encyclopedia of Chemical Technology, Wiley-VCH, Weinheim, 2020.
- [10] Trading Economics, Molybdenum, <https://tradingeconomics.com/commodity/molybden>, [accessed 11.09.2020].
- [11] HZS Enterprise Group Co., Ltd, MoSi_2 U type, <https://www.songshanheating.com/category/products/mos2-heating-elements/>, [accessed 9.09.2020].
- [12] Silcarb, MoSi_2 Heating Elements, [<https://www.silcarb.com/mos2-heating-elements.php>], [accessed 11.09.2020].
- [13] *M. Fu, J.A. Sekhar*, “Processing, Microstructures, and Properties of Molybdenum Aluminosilicide”, in Journal of American Ceramic Society, **vol. 81**, no. 12, 1998, pp. 3205–3214.
- [14] *G. Kong, X. Du, X. Cai, P. Feng, X. Wang, F. Aktar*, “Recycling Molybdenum Oxides from Waste Molybdenum Disilicides: Oxidation Experimental Study and Photocatalytic Properties”, in Oxidation of Metals, **vol. 92**, 2019, pp. 1–12.