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CONDUCTIVE-TYPE BEHAVIORS IN THE DYNAMICS OF
COMPLEX SYSTEMS THROUGH SCALE RELATIVITY
THEORY

Valentin-Stelian DRAGAN', Maria-Alexandra PAUN??, Mihaela JARCAU?,
Catalin DUMITRAS?, Constantin PLACINTAS, Vladimir-Alexandru PAUN’,
Maricel AGOP %3, Viorel-Puiu PAUN®?, Tulian-Alin ROSU!

Conductive-type dynamics in complex systems in the framework of Scale
Relativity Theory are analyzed. Using the Madelung scenario in the description of
complex system dynamics through continuous and nondifferentiable curves
(fractal/multifractal ~curves), three types of conductivity are highlighted —
differentiable conductivity, nondifferentiable conductivity, and global conductivity.
These are reciprocally conditional, implying synchronous and nonsynchronous
mechanisms in the conductive-type behaviors.

Keywords: fractal object, scales space, scale relativity theory, multifractal curves,
differentiable conductivity

1. Introduction

The main purpose of the presented model is to be an alternative to the
classical models of complex system dynamics, which analyze the phenomenon only
using differentiable mathematical procedures [1-3]. The starting point of our
theoretical model is the Scale Relativity Theory that in the last years has been used
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successfully in describing the dynamics of complex systems [4-13]. The hypothesis
underlying this theory is that the entities of any complex system move on
continuous and non-differential curves, named fractal/multifractal curves, i.e., three
dimensional fractured/multifractal lines, whose non-linearity is dependent and
proportional with the number of interactions within the system. In this context, the
fractalization/multifractalization degree will be defined as a measure of system
complexity and physical quantities, characterizing the system evolution, will be
fractal/multifractal functions dependent both on spatio-temporal coordinates and
resolution scales. Furthermore, the complex system will be considered as a medium
without interaction between its components [14,15].

One will use these hypotheses in analyzing the studied complex system and
its dynamics which lead to conductive-type behaviors. Such an approach resulted
in an analysis through complex system dynamics in the Mandelung
fractal/multifractal hydrodynamic scenario.

2. Mathematical model

To further understand the behaviors of the differentiable and
nondifferentiable conductivity, a theoretical model has been developed. In the
description of complex system dynamics through a hydrodynamic multifractal
scenario (Mandelung scenario) [14,15], it is possible to find the involvement of the
specific multifractal impulse conservation law:

o, vt +vlovt = -0'Q,i = 1,2,3 (1)
and that of the conservation law of the multifractal states density:
dep +0'(pv") =0 (2)
where:
d d
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p =Y,y = /pe’ (3¢)

4 l L 2
0 = 222(ap) 7@ 61?/_\/5 - “lzu 1 aaan @ o, 3d)
p



Conductive-type behaviors in the dynamics of complex systems through scale relativity theory 205

In the above relations the given measures have the following physical
meanings:

- t is nonmultifractal time, an affine parameter of movement curves of the
entities found in the complex system;

- x! is the multifractal spatial coordinate;

- v! is the velocity field at a differentiable scale resolution;

- u! is the velocity field at a nondifferentiable scale resolution;

- dt is the scale resolution;

- A is a constant coefficient associated to the multifractal-nonmultifractal
scale transition;

- p is the state density;

- Y is the state function with the amplitude \/E and phase s;

- Q is the scalar specific multifractal potential which quantifies the
multifractalization degree of the movement curves in the complex system;

- f(a@) is the singularity spectrum of order @« = a(Dr) where Dy is the
fractal dimension of movement curves of the complex system entities.

This spectrum allows the identification of universality classes in the
complex system dynamics [16], even when attractors have different aspects, and it
also allows the identification of areas in which the dynamics can be characterized
by a specific fractal dimension.

Because of its nonlinearity, the Egs. (1) and (2) admit analytical solutions
only in special, particular cases. Such a case is dictated by one-dimensional
dynamics of the complex system entities through the following:

41,0
0V + v0,v = le(dt)[f(a)] 2 %‘/; (42)
p
dtp + 0,(pv) =0 (4b)
with the initial and boundary constraints:
2\ 2
v(x,t = 0) = v, p(x,t = 0) = pye~\a) (5a)
v(x = ct,t) = vy, p(x = —0,t) = p(x = +00,t) =0 (5b)

The following solution is found:
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This solution, through the nondimensional variables:
v _ X t
v_():v'p T[a:,D,E: ';zn (8)

and through the nondimensional parameters:

[L]_l

o - AdOU@I Tr T (9)

ST e Mt

can be rewritten as:
_ 1+6%n

V=T ene (10)

1 [_uz (E—n)z]
= ——-¢ 1+62n2 (11)

J1+62n?

Through Egs. (3), the solutions in Egs. (6) and (7) allows us to construct the
following set of variables:
- The velocity field at a nondifferentiable scale:
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u= ZA(dt)b%%ﬂ‘l. Gx — vot) :
[%]_1 (12)
o (MO

- The specific multifractal force field:

. X — vot
f=-0,Q= ZA(dt)[f(a)] g ( ot) .~
2
Mo 13
g2 4 [A@DU@ (13)
a
This set of variables employs the notations:
u fT _
14
2170 2170 =/ (14)
Considering the equations (8) and (9) they become:
A |
u—01+92n2 (15)
respectively:
- §—m
=Q2— " 1
f =0 Ay gy (16)

Then, let us assume the functionality, in nondimensional coordinates, of a
relation of the form:

j=of (17)
where J is a mass current density, f is the nondimensional specific multifractal force
field, and & is a mass conductivity, which then allows us to define the following

conductivity types:
- Conductivity at differentiable scale resolutions:

2
___pv +6%n [ iighy]
op =—=+1+60?n? —0——— 1+6%n? (18)
P F 9%5 )
- Conductivity at nondifferentiable scale resolutions:

2 (5—7])2]

B Rp——

- Conductivity at global scale resolutions:

(19)
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3. Results and discussion

In this context, since the 8 parameter is a measure of the multifractality
degree, then ¢ = % will function as a measure of an ordering degree. Then the
conductivity species in Egs. (18-20) change as:

- Conductivity at differentiable scale resolutions:

2 _ 2(E-n)?
o =+ nz%_?)e[ v ] 1)

- Conductivity at nondifferentiable scale resolutions:
¢ —n)z]

_ 2
5F==\/324—nzsu2e[(”g eZ4n?

- Conductivity at global scale resolutions:

5:m[(5

We present in Figs. 1a-c the theoretical dependencies of a5 (€), o, (g) and
a(e) for é,m = const., and the restriction ¢ # 7. By presented selecting clear
resolution scales for particular types of conductivity, it is possible to address both
various interaction scales and fractalization/multifractalization degrees.

Conduction in complex systems is performed through specific mechanisms
dependent on scale resolution. As a consequence, we make the distinction between
differentiable conduction op, nondifferentiable conduction o and global
conduction g. Conduction mechanisms at the two types of scale resolutions are
simultaneous and reciprocally conditional. Thus, the values of 6, and oF increase
along with the increase of the ordering degree (synchronous type conductions) and
with the increase of the multifractalization degree o, values increase and o values
decrease (asynchronous type conductions). We also notice that higher degrees of
fractalization/multifractalization are seen as a higher mismatch in long scale
dynamics of the complex system. In the framework of the model, it reads as losses
in the inflection point of the trajectory.

The conductivity of the complex system in the fractal/multifractal
interpretations is seen as a measure of the available entity of fractal/multifractal

(22)

(E-1)?
guzl -] (23)
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fluid to be transferred in different points of the material [17, 18]. The flow of the
current is well characterized by the fractal/multifractal hydrodynamic model, thus
in each inflection point of the entity trajectories losses can appear and thus lead to
a lower conductivity. It is also seen that there is an optimum where we can obtain a
relatively higher conductivity, this point is an unstable one as the system is
overcome by losses and the conductivity decreases again. with the decrease of the
fractalization/multifractalization degree we observe an exponential-type increase in
conductivity.

Nondifferentiable Conductivity (a.u.)

_ 2(8-m)?
a)  op ="+ nzeﬂze[ o)z

Differentiable Conductivity (a.u.)

2 _ 2(£-m)?
B 7=
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Global Conductivity (a.u.)

22
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Fig. 1. 3D representation of the three types of conductivities derived from the multifractal
model. a) nondifferentiable conductivity; b) differentiable conductivity; c) global conductivity.

In figure 1 all three types of derived conductivities from the multifractal
model are presented. These are shown in the order in which they appear, the so-
called nondifferentiable conductivity, differentiable conductivity and global
conductivity, respectively.

As a justification of the present theory, we can cite reference papers in the
field of plasma plume characterization and laser ablation studies [4, 7, 8]. The same
results were obtained in the medical field, when investigating by fractal analysis the
images obtained with CT (computed tomography) and MRI (magnetic resonance
imaging), on the human brain and on the lungs [19-21]. The advantage of
interpreting the pictures is to establish a pixel topology and, depending on the
calculation of the fractal dimension and the lacunarity, to determine the diseases
that affect these vital organs, as well as their temporal evolution.

4. Conclusions

The base conclusions of the present paper refer to the widely portrayed
model and will be depicted underneath.

Thus, in the framework of Scale Relativity Theory, the Mandelung scenario
of complex system dynamics description is given. This scenario implies the
fractal/multifractal hydrodynamic equation, i.e., the momentum conservation laws
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and the density conservation law. In the 1-dimensional case, the solution of
fractal/multifractal hydrodynamic equations, with initial and boundary specific
conditions, are given in such an integrator context. Admitting a local Ohm-type
conduction law, three conductivity types are highlighted, such as differentiable
conduction, nondifferentiable conduction, and global conduction. These are
reciprocally-conditioning such that synchronous and asynchronous dynamics can
be explained.
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