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CONDUCTIVE-TYPE BEHAVIORS IN THE DYNAMICS OF 
COMPLEX SYSTEMS THROUGH SCALE RELATIVITY 

THEORY 

Valentin-Stelian DRAGAN1, Maria-Alexandra PAUN2,3, Mihaela JARCAU4, 
Catalin DUMITRAS5, Constantin PLACINTA6, Vladimir-Alexandru PAUN7, 

Maricel AGOP 6,8, Viorel-Puiu PAUN8, 9, Iulian-Alin ROSU1 

Conductive-type dynamics in complex systems in the framework of Scale 
Relativity Theory are analyzed. Using the Madelung scenario in the description of 
complex system dynamics through continuous and nondifferentiable curves 
(fractal/multifractal curves), three types of conductivity are highlighted – 
differentiable conductivity, nondifferentiable conductivity, and global conductivity. 
These are reciprocally conditional, implying synchronous and nonsynchronous 
mechanisms in the conductive-type behaviors. 

Keywords: fractal object, scales space, scale relativity theory, multifractal curves, 
differentiable conductivity 

1. Introduction 

The main purpose of the presented model is to be an alternative to the 
classical models of complex system dynamics, which analyze the phenomenon only 
using differentiable mathematical procedures [1-3]. The starting point of our 
theoretical model is the Scale Relativity Theory that in the last years has been used 
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successfully in describing the dynamics of complex systems [4-13]. The hypothesis 
underlying this theory is that the entities of any complex system move on 
continuous and non-differential curves, named fractal/multifractal curves, i.e., three 
dimensional fractured/multifractal lines, whose non-linearity is dependent and 
proportional with the number of interactions within the system. In this context, the 
fractalization/multifractalization degree will be defined as a measure of system 
complexity and physical quantities, characterizing the system evolution, will be 
fractal/multifractal functions dependent both on spatio-temporal coordinates and 
resolution scales. Furthermore, the complex system will be considered as a medium 
without interaction between its components [14,15]. 

One will use these hypotheses in analyzing the studied complex system and 
its dynamics which lead to conductive-type behaviors. Such an approach resulted 
in an analysis through complex system dynamics in the Mandelung 
fractal/multifractal hydrodynamic scenario. 

2. Mathematical model 

To further understand the behaviors of the differentiable and 
nondifferentiable conductivity, a theoretical model has been developed. In the 
description of complex system dynamics through a hydrodynamic multifractal 
scenario (Mandelung scenario) [14,15], it is possible to find the involvement of the 
specific multifractal impulse conservation law: 

𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑙𝑙𝜕𝜕𝑙𝑙𝑣𝑣𝑖𝑖 = −𝜕𝜕𝑖𝑖𝑄𝑄, 𝑖𝑖 = 1,2,3 (1) 

and that of the conservation law of the multifractal states density: 

𝜕𝜕𝑡𝑡𝜌𝜌 + 𝜕𝜕𝑙𝑙(𝜌𝜌𝑣𝑣𝑙𝑙) = 0 (2) 

where: 

𝜕𝜕𝑡𝑡 =
𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜕𝜕𝑙𝑙 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

 (3a) 

 

𝑣𝑣𝑖𝑖 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖𝑠𝑠,𝑢𝑢𝑖𝑖 = 𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 ln 𝜌𝜌 (3b) 

 

𝜌𝜌 = 𝜓𝜓𝜓𝜓�,𝜓𝜓 = �𝜌𝜌𝑒𝑒𝑖𝑖𝑖𝑖 (3c) 

 

𝑄𝑄 = 2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2
𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝜌𝜌

�𝜌𝜌
=
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖

2
+ 𝜆𝜆(𝑑𝑑𝑑𝑑)�

2
𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑙𝑙𝑢𝑢𝑙𝑙 (3d) 
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In the above relations the given measures have the following physical 
meanings: 

- 𝑡𝑡 is nonmultifractal time, an affine parameter of movement curves of the 
entities found in the complex system; 

- 𝑥𝑥𝑙𝑙 is the multifractal spatial coordinate; 
- 𝑣𝑣𝑖𝑖 is the velocity field at a differentiable scale resolution; 
- 𝑢𝑢𝑖𝑖 is the velocity field at a nondifferentiable scale resolution; 
- 𝑑𝑑𝑑𝑑 is the scale resolution; 
- 𝜆𝜆 is a constant coefficient associated to the multifractal-nonmultifractal 

scale transition; 
- 𝜌𝜌 is the state density; 
- 𝜓𝜓 is the state function with the amplitude �𝜌𝜌 and phase 𝑠𝑠; 
- 𝑄𝑄 is the scalar specific multifractal potential which quantifies the 

multifractalization degree of the movement curves in the complex system; 
- 𝑓𝑓(𝛼𝛼) is the singularity spectrum of order 𝛼𝛼 = 𝛼𝛼(𝐷𝐷𝐹𝐹) where 𝐷𝐷𝐹𝐹 is the 

fractal dimension of movement curves of the complex system entities.  
This spectrum allows the identification of universality classes in the 

complex system dynamics [16], even when attractors have different aspects, and it 
also allows the identification of areas in which the dynamics can be characterized 
by a specific fractal dimension. 

Because of its nonlinearity, the Eqs. (1) and (2) admit analytical solutions 
only in special, particular cases. Such a case is dictated by one-dimensional 
dynamics of the complex system entities through the following: 

𝜕𝜕𝑡𝑡𝑣𝑣 + 𝑣𝑣𝜕𝜕𝑥𝑥𝑣𝑣 = 2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2
𝜕𝜕𝑥𝑥𝑥𝑥�𝜌𝜌

�𝜌𝜌
 (4a) 

 

𝜕𝜕𝑡𝑡𝜌𝜌 + 𝜕𝜕𝑥𝑥(𝜌𝜌𝜌𝜌) = 0 (4b) 

with the initial and boundary constraints: 

𝑣𝑣(𝑥𝑥, 𝑡𝑡 = 0) = 𝑣𝑣0,𝜌𝜌(𝑥𝑥, 𝑡𝑡 = 0) = 𝜌𝜌0𝑒𝑒
−�𝑥𝑥𝑎𝑎�

2

 (5a) 

 

𝑣𝑣(𝑥𝑥 = 𝑐𝑐𝑐𝑐, 𝑡𝑡) = 𝑣𝑣0, 𝜌𝜌(𝑥𝑥 = −∞, 𝑡𝑡) = 𝜌𝜌(𝑥𝑥 = +∞, 𝑡𝑡) = 0 (5b) 

 
The following solution is found: 
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𝑣𝑣 =

𝑣𝑣0𝑎𝑎2 + �𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1

𝑎𝑎 �

2

𝑥𝑥𝑥𝑥

𝑎𝑎2 + �𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1

𝑎𝑎 𝑡𝑡�

2  (6) 

 

𝜌𝜌 =
𝜋𝜋−

1
2

�𝑎𝑎2 + �𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1

𝑎𝑎 𝑡𝑡�

2

�

1
2
∙ 𝑒𝑒⎩

⎪
⎪
⎨

⎪
⎪
⎧

− (𝑥𝑥−𝑣𝑣0)2

𝑎𝑎2+�𝜆𝜆(𝑑𝑑𝑑𝑑)
� 2
𝑓𝑓(𝛼𝛼)�−1

𝑎𝑎 𝑡𝑡�

2

⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (7) 

This solution, through the nondimensional variables: 
𝑣𝑣
𝑣𝑣0

= 𝑣̅𝑣,𝜌𝜌√𝜋𝜋𝑎𝑎 =  𝜌𝜌� ,
𝑥𝑥
𝑣𝑣0𝜏𝜏

= 𝜉𝜉,
𝑡𝑡
𝜏𝜏

= 𝜂𝜂 (8) 

and through the nondimensional parameters: 

𝜃𝜃 =
𝜆𝜆(𝑑𝑑𝑑𝑑)�

2
𝑓𝑓(𝛼𝛼)�−1𝜏𝜏
𝑎𝑎2

, 𝜇𝜇 =
𝑣𝑣0𝜏𝜏
𝑎𝑎

 (9) 

can be rewritten as: 

𝑣̅𝑣 =
1 + 𝜃𝜃2𝜉𝜉𝜉𝜉
1 + 𝜃𝜃2𝜂𝜂2

 (10) 

 

𝜌̅𝜌 =
1

�1 + 𝜃𝜃2𝜂𝜂2
∙ 𝑒𝑒

�−𝜇𝜇2 (𝜉𝜉−𝜂𝜂)2
1+𝜃𝜃2𝜂𝜂2� (11) 

Through Eqs. (3), the solutions in Eqs. (6) and (7) allows us to construct the 
following set of variables: 

- The velocity field at a nondifferentiable scale: 
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𝑢𝑢 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1 ∙
(𝑥𝑥 − 𝑣𝑣0𝑡𝑡)

𝑎𝑎2 + �𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1

𝑎𝑎 𝑡𝑡�

2 
(12) 

- The specific multifractal force field: 

𝑓𝑓 = −𝜕𝜕𝑥𝑥𝑄𝑄 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2 ∙
(𝑥𝑥 − 𝑣𝑣0𝑡𝑡)

�𝑎𝑎2 + �𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1

𝑎𝑎 𝑡𝑡�

2

�

2 

(13) 

This set of variables employs the notations: 
𝑢𝑢

2𝑣𝑣0
= 𝑢𝑢� ,

𝑓𝑓𝑓𝑓
2𝑣𝑣0

= 𝑓𝑓 ̅ (14) 

Considering the equations (8) and (9) they become: 

𝑢𝑢� = 𝜃𝜃
𝜉𝜉 − 𝜂𝜂

1 + 𝜃𝜃2𝜂𝜂2
 (15) 

respectively: 

𝑓𝑓̅ = 𝜃𝜃2
𝜉𝜉 − 𝜂𝜂

(1 + 𝜃𝜃2𝜂𝜂2)2 (16) 

Then, let us assume the functionality, in nondimensional coordinates, of a 
relation of the form: 

𝚥𝚥̅ = 𝜎𝜎�𝑓𝑓 ̅ (17) 

where 𝚥𝚥 ̅is a mass current density, 𝑓𝑓 ̅is the nondimensional specific multifractal force 
field, and 𝜎𝜎� is a mass conductivity, which then allows us to define the following 
conductivity types: 

- Conductivity at differentiable scale resolutions: 

𝜎𝜎𝐷𝐷��� =
𝜌̅𝜌𝑣̅𝑣
𝑓𝑓

= �1 + 𝜃𝜃2𝜂𝜂2
1 + 𝜃𝜃2𝜉𝜉𝜉𝜉
𝜃𝜃2(𝜉𝜉 − 𝜂𝜂) 𝑒𝑒

�−𝜇𝜇2 (𝜉𝜉−𝜂𝜂)2
1+𝜃𝜃2𝜂𝜂2� (18) 

- Conductivity at nondifferentiable scale resolutions: 

𝜎𝜎𝐹𝐹��� =
𝜌̅𝜌𝑢𝑢�
𝑓𝑓

= �1 + 𝜃𝜃2𝜂𝜂2 �
𝜇𝜇
𝜃𝜃
�
2
𝑒𝑒
�−𝜇𝜇2 (𝜉𝜉−𝜂𝜂)2

1+𝜃𝜃2𝜂𝜂2� (19) 

- Conductivity at global scale resolutions: 
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𝜎𝜎� =
𝜌̅𝜌(𝑣̅𝑣 + 𝑖𝑖𝑢𝑢�)

𝑓𝑓
= 𝜎𝜎𝐷𝐷��� + 𝑖𝑖𝜎𝜎𝐹𝐹���

= �1 + 𝜃𝜃2𝜂𝜂2 �
1 + 𝜃𝜃2𝜉𝜉𝜉𝜉
𝜃𝜃2(𝜉𝜉 − 𝜂𝜂) + 𝑖𝑖 �

𝜇𝜇
𝜃𝜃
�
2
� 𝑒𝑒

�−𝜇𝜇2 (𝜉𝜉−𝜂𝜂)2
1+𝜃𝜃2𝜂𝜂2� 

(20) 

3. Results and discussion 

In this context, since the 𝜃𝜃 parameter is a measure of the multifractality 
degree, then  𝜀𝜀 = 1

𝜃𝜃
  will function as a measure of an ordering degree. Then the 

conductivity species in Eqs. (18-20) change as: 
- Conductivity at differentiable scale resolutions: 

𝜎𝜎𝐷𝐷��� = �𝜀𝜀2 + 𝜂𝜂2
𝜀𝜀2 + 𝜉𝜉𝜉𝜉
𝜀𝜀(𝜉𝜉 − 𝜂𝜂) 𝑒𝑒

�−(𝜇𝜇𝜇𝜇)2(𝜉𝜉−𝜂𝜂)2
𝜀𝜀2+𝜂𝜂2 � (21) 

- Conductivity at nondifferentiable scale resolutions: 

𝜎𝜎𝐹𝐹��� = �𝜀𝜀2 + 𝜂𝜂2𝜀𝜀𝜇𝜇2𝑒𝑒
�−(𝜇𝜇𝜇𝜇)2(𝜉𝜉−𝜂𝜂)2

𝜀𝜀2+𝜂𝜂2 � (22) 

- Conductivity at global scale resolutions: 

𝜎𝜎� = �𝜀𝜀2 + 𝜂𝜂2 �
𝜀𝜀2 + 𝜉𝜉𝜉𝜉
𝜀𝜀(𝜉𝜉 − 𝜂𝜂) + 𝑖𝑖𝑖𝑖𝜇𝜇2� 𝑒𝑒

�−(𝜇𝜇𝜇𝜇)2(𝜉𝜉−𝜂𝜂)2
𝜀𝜀2+𝜂𝜂2 � (23) 

We present in Figs. 1a-c the theoretical dependencies of  𝜎𝜎𝐹𝐹���(𝜀𝜀), 𝜎𝜎𝐷𝐷���(𝜀𝜀) and 
𝜎𝜎�(𝜀𝜀) for 𝜉𝜉, 𝜂𝜂 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐., and the restriction 𝜉𝜉 ≠ 𝜂𝜂. By presented selecting clear 
resolution scales for particular types of conductivity, it is possible to address both 
various interaction scales and fractalization/multifractalization degrees.  

Conduction in complex systems is performed through specific mechanisms 
dependent on scale resolution. As a consequence, we make the distinction between 
differentiable conduction 𝜎𝜎𝐷𝐷���, nondifferentiable conduction 𝜎𝜎𝐹𝐹��� and global 
conduction 𝜎𝜎�. Conduction mechanisms at the two types of scale resolutions are 
simultaneous and reciprocally conditional. Thus, the values of 𝜎𝜎𝐷𝐷���  and 𝜎𝜎𝐹𝐹��� increase 
along with the increase of the ordering degree (synchronous type conductions) and 
with the increase of the multifractalization degree 𝜎𝜎𝐷𝐷���  values increase and 𝜎𝜎𝐹𝐹��� values 
decrease (asynchronous type conductions). We also notice that higher degrees of 
fractalization/multifractalization are seen as a higher mismatch in long scale 
dynamics of the complex system. In the framework of the model, it reads as losses 
in the inflection point of the trajectory.  

The conductivity of the complex system in the fractal/multifractal 
interpretations is seen as a measure of the available entity of fractal/multifractal 
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fluid to be transferred in different points of the material [17, 18]. The flow of the 
current is well characterized by the fractal/multifractal hydrodynamic model, thus 
in each inflection point of the entity trajectories losses can appear and thus lead to 
a lower conductivity. It is also seen that there is an optimum where we can obtain a 
relatively higher conductivity, this point is an unstable one as the system is 
overcome by losses and the conductivity decreases again. with the decrease of the 
fractalization/multifractalization degree we observe an exponential-type increase in 
conductivity. 

 

a) 𝜎𝜎𝐹𝐹��� = �𝜀𝜀2 + 𝜂𝜂2𝜀𝜀𝜇𝜇2𝑒𝑒�−
(𝜇𝜇𝜇𝜇)2(𝜉𝜉−𝜂𝜂)2

𝜀𝜀2+𝜂𝜂2
� 

 

b)  𝜎𝜎𝐷𝐷��� = �𝜀𝜀2 + 𝜂𝜂2 𝜀𝜀2+𝜉𝜉𝜉𝜉
𝜀𝜀(𝜉𝜉−𝜂𝜂) 𝑒𝑒

�−(𝜇𝜇𝜇𝜇)2(𝜉𝜉−𝜂𝜂)2

𝜀𝜀2+𝜂𝜂2
� 
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c)      𝜎𝜎� = �𝜀𝜀2 + 𝜂𝜂2 � 𝜀𝜀
2+𝜉𝜉𝜉𝜉

𝜀𝜀(𝜉𝜉−𝜂𝜂) + 𝑖𝑖𝑖𝑖𝜇𝜇2� 𝑒𝑒�−
(𝜇𝜇𝜇𝜇)2(𝜉𝜉−𝜂𝜂)2

𝜀𝜀2+𝜂𝜂2
� 

 
Fig. 1. 3D representation of the three types of conductivities derived from the multifractal 

model. a) nondifferentiable conductivity; b) differentiable conductivity; c) global conductivity. 
 
In figure 1 all three types of derived conductivities from the multifractal 

model are presented. These are shown in the order in which they appear, the so-
called nondifferentiable conductivity, differentiable conductivity and global 
conductivity, respectively. 

As a justification of the present theory, we can cite reference papers in the 
field of plasma plume characterization and laser ablation studies [4, 7, 8]. The same 
results were obtained in the medical field, when investigating by fractal analysis the 
images obtained with CT (computed tomography) and MRI (magnetic resonance 
imaging), on the human brain and on the lungs [19-21]. The advantage of 
interpreting the pictures is to establish a pixel topology and, depending on the 
calculation of the fractal dimension and the lacunarity, to determine the diseases 
that affect these vital organs, as well as their temporal evolution. 

4. Conclusions 

The base conclusions of the present paper refer to the widely portrayed 
model and will be depicted underneath. 

Thus, in the framework of Scale Relativity Theory, the Mandelung scenario 
of complex system dynamics description is given. This scenario implies the 
fractal/multifractal hydrodynamic equation, i.e., the momentum conservation laws 
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and the density conservation law. In the 1-dimensional case, the solution of 
fractal/multifractal hydrodynamic equations, with initial and boundary specific 
conditions, are given in such an integrator context. Admitting a local Ohm-type 
conduction law, three conductivity types are highlighted, such as differentiable 
conduction, nondifferentiable conduction, and global conduction. These are 
reciprocally-conditioning such that synchronous and asynchronous dynamics can 
be explained. 

R E F E R E N C E S 

[1]. Y. Bar-Yam, S.R.  McKay, and W. Christian, Dynamics of Complex Systems (Studies in 
Nonlinearity), Computers in Physics, vol. 12, no. 4, 1998, pp. 335-336. 

[2]. M. Mitchell, Complexity: A guided tour, Oxford University Press, UK, 2009. 
[3]. R. Badii & A. Politi, Complexity: hierarchical structures and scaling in physics (No. 6), 

Cambridge University Press, UK, 1999.  
[4]. C. Focsa, S. Gurlui, P. Nica, M. Agop, and M. Ziskind, “Plume splitting and oscillatory behavior 

in transient plasmas generated by high-fluence laser ablation in vacuum”, Applied Surface 
Science, vol. 424, Special Issue Part 3, 2017, pp. 299-309.  

[5]. E.S. Bacaita, B.C. Ciobanu, M. Popa, M. Agop, and J. Desbrieres, “Phases in the temporal 
multiscale evolution of the drug release mechanism in IPN-type chitosan based hydrogels”, 
Physical Chemistry Chemical Physics, vol.16, no. 47, 2014, pp. 25896-25905.  

[6]. M. Agop, P. Nica, P.D. Ioannou, O. Malandraki, and I. Gavanas-Pahomi, “El Naschie's 
epsilon((infinity)) space-time, hydrodynamic model of scale relativity theory and some 
applications”, Chaos Solitons & Fractals, vol. 34, no. 5, 2007, pp. 1704-1723.  

[7]. S.A. Irimiciuc, P.E. Nica, M. Agop, and C. Focsa, “Target properties - Plasma dynamics 
relationship in laser ablation of metals: Common trends for fs, ps and ns irradiation regimes”, 
Applied Surface Science, vol. 506, Article Number 144926, 2020. 

[8]. M. Agop, P. Nica, O. Niculescu, and D.G. Dimitriu, “Experimental and Theoretical 
Investigations of the Negative Differential Resistance in a Discharge Plasma”, Journal of the 
Physical Society of Japan, vol. 81, no. 6, Article Number 064502, 2012. 

[9]. Z. Borsos, V.P. Paun, I.C. Botez, C.M. Stoica, P. Vizureanu, and M. Agop, “Structural 
Conductivity of Carbon Nanotubes”, Revista de Chimie, vol. 59, no. 10, 2008, pp. 1169-
1171. 

[10]. G. Iovan, S. Stoleriu, G. Pancu, et al., “Effect of Finishing Techniques on the Junction Between 
the Composite Restoration and the Dental Enamel”, Materiale Plastice, vol. 54, no. 2, 2017, 
pp. 375-379. 

[11]. G. Pancu, G. Iovan, A. Ghiorghe, et al., “The Assessment of Biological Parameters and 
Remineralisation Potential of Saliva in Pregnancy”, Revista de Chimie, vol. 66, no. 12, 2015, 
pp. 2051-2056. 

[12]. N. Tofan, S. Andrian, I. Nica, et al., “The Assessment of Erosive Potential of Some Acid 
Beverages on Indirect - Restorative Materials”, Revista de Chimie, vol. 67, no. 6, 2016, pp. 
1144-1149. 

[13]. G. Iovan, S. Stoleriu, I. Nica, S. Solomon, A. Munteanu, and S. Andrian, “Surface 
Characteristics of Restorative Composite Resins after Polishing with Profine Lamineer Tips”, 
Materiale Plastice, vol. 53, no. 4, 2016, pp. 755-758. 

[14]. L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity 
and Quantum Mechanics, Imperial College Press, London, UK, 2011. 

[15]. I. Merches, and M. Agop, Differentiability and Fractality in Dynamics of Physical Systems, 
World Scientific: Hackensack, NJ, USA, 2016. 



212                                         Maria-Alexandra Paun et al. 

[16]. M. A. Paun, M. R. N. Avanaki, G. Dobre et al., “Wavefront aberration correction in single 
mode fibre systems”, in Journal of Optoelectronics and Advanced Materials, vol. 11, no. 11, 
2009, pp. 1681-1685. 

[17]. N. Mazilu, and M. Agop, Skyrmions: A Great Finishing Touch to Classical Newtonian 
Philosophy, World Philosophy Series, Nova, New York, USA, 2012. 

[18]. N. Mazilu, M. Agop, and I. Merches, Scale Transitions as Foundations of Physics, World 
Scientific, Singapore, 2021.  

[19]. D. Bordescu, M.A. Paun, V.A. Paun, and V.P. Paun, “Fractal analysis of Neuroimagistic. 
Lacunarity degree, a precious indicator in the detection of Alzheimer’s disease”, in 
University POLITEHNICA of Bucharest Scientific Bulletin, Series A-Applied Mathematics 
and Physics, vol. 80, no. 4, 2018, pp. 309-320. 

[20]. P. Postolache, Z. Borsos, V.A. Paun, and V.P. Paun, “New Way in Fractal Analysis of 
Pulmonary Medical Images”, in University Politehnica of Bucharest Scientific Bulletin-
Series A-Applied Mathematics and Physics, vol. 80, no.1, 2018, pp. 313-322. 

[21]. M.V. Nichita, M.A. Paun, V.A. Paun, and V.P. Paun, “Fractal Analysis of Brain Glial Cells. 
Fractal Dimension and Lacunarity”, in University Politehnica of Bucharest Scientific 
Bulletin-Series A-Applied Mathematics and Physics, vol. 81, no. 1, 2019, pp. 273-284. 


