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A WEIGHTED NADARAJAH AND HAGHIGHI
DISTRIBUTION

Muhammad Nauman Khan1∗, Abdus Saboor1, Gauss M. Cordeiro2, Mamoona Nazir1

, Rodrigo R. Pescim3

We propose and study a two-parameter weighted Nadarajah and
Haghighi distribution. The new distribution can be viewed as an alterna-
tive model to some of the classical two-parameter distributions such as the
Weibull, gamma, exponentiated half-logistic and exponentiated exponential
distributions. We explore some of its mathematical properties. The maxi-
mum likelihood estimation method is adopted to estimate the model param-
eters. A Monte Carlo simulation study is performed to assess the adequacy
of the estimates. We compare the fits of the proposed distribution and other
competitive models to three real data sets.
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1. Introduction

For a non-negative random variable X with probability density function
(pdf) f(x) and a non-negative weight function w(x) with finite non-zero ex-
pectation, the pdf of the weighted random variable Xw pioneered by Patil and
Rao [1], say fw(x), is given by

fw(x) =
w(x)f(x)

E[w(X)]
, (1)

where E[w(X)] is the expected value of w(X) and represents a normalizing
constant. For more details on the weighted distributions we refer the interested
reader to [2].

Nadarajah and Haghighi [3] defined the Nadarajah-Haghighi (NH) den-
sity given by

g(x) = αλ(1 + λx)α−1e1−(1+λx)α , x > 0, α, λ > 0. (2)
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The survival function corresponding to (2) is given by

Ḡ(x) = e1−(1+λx)α .

The NH distribution is an alternate model to the gamma, Weibull and expo-
nentiated exponential distributions and has been extended successfully in order
to provide more accurate statistical models and inferential procedures. For ex-
ample, the exponentiated NH distribution pioneered by [4] and Marshall-Olkin
NH distribution introduced by [5].

Due to the importance of the NH distribution and the concept of weighted
distributions, we define a weighted version of the NH distribution called the
weighted Nadarajah and Haghighi (WNH) distribution with a particular weight
function. The WNH distribution can be viewed as an alternate model to some
of the classical two-parameter distributions like Weibull, gamma, etc. and can
have wider applications in reliability, survival analysis, forestry and ecological
areas.

Definition: A random variableX is said to follow theWNH distribution,
if its pdf (for x > 0) has the form

f(x) =
2αλ(1 + λx)α−1e1−(1+λx)α

[1 + e1−(1+λx)α ]
2 , α, λ > 0, (3)

where α and λ are shape and scale parameters, respectively.
Then, the cumulative distribution function (cdf) of the WNH model is

given by

F (x) =
1− e1−(1+λx)α

1 + e1−(1+λx)α
. (4)

Henceforth, we denote a random variable X having the density function (3)
by X ∼ WNH(α, λ). The hazard rate function (hrf) of X is given by

h(x) =
αλ(1 + λx)α−1

1 + e1−(1+λx)α
. (5)

We motivate the WNH distribution by the following facts:

• The WNH density (3) is obtained by taking the NH density (2) for the

baseline in (1), the weight function as w(x) =
[
1 + e1−(1+λx)α

]−2
with

expectation 1/2.
• If X has the WNH density (3) and using the transformation Y = (1 +
λx)α − 1, the distribution of Y follows the standard half-logistic distri-

bution with cdf F (y) = 1−e−y

1+e−y .
• If X has the WNH density (3) and using the transformation Y = X +
λ−1, the distribution of Y follows the zero truncated weighted Weibull

distribution with cdf F (y) = 1−e1−(λ y)α

1+e1−(λ y)α .

The quantile functions (qfs) are in widespread use in general statistics to
obtain mathematical properties of a distribution and often find representations
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in terms of lookup tables for key percentiles. For simulating the WNH model,
let p ∼ U (0 , 1 ). Then, for p ∈ (0, 1), the qf of X becomes

Q(p) =
1

λ

[{
1− log

(
1− p

1 + p

)} 1
α

− 1

]
. (6)

So, if U is a uniform distribution in (0, 1), then X = Q(U) has density (3). In

particular, the median of X is M = λ−1
[
{1 + log (3)}1/α − 1

]
.

The plots in Figure 1 reveal that the pdf of X is positively skewed.
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Figure 1. Plots of the WNH density

The rest of this paper is organized as follows. In Section 2, we study some
statistical functions of the WNH distribution. In Section 3, we discuss the
maximum likelihood estimation procedure. A simulation study is performed
in Section 4. In Section 5, we present three applications to real data sets.
Finally, Section 6 offers some conclusions.

2. Statistical properties

In this section, we derive computable representations for some statistical
functions associated with the WNH distribution, whose pdf admits a simple
linear representation.

2.1. Linear representation

Let G(x) = 1− e1−(1+λx)α be the NH cdf. Then, we can write the WNH
cdf given by (4) as

F (x) = G(x)/[2−G(x)].
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By expanding the denominator in power series, we have

F (x) =
∞∑
i=1

ai G(x)i =
∞∑
i=1

ai Hi(x),

where ai = 2−i and Hi(x) = G(x)i (for i ≥ 1) is the cdf of the exponentiated
NH (ENH) distribution with power parameter “i”. By differentiating the last
equation, we can write the pdf of X as

f(x) =
∞∑
i=1

ai hi(x), (7)

where hi(x) = i G(x)i−1g(x) (for i ≥ 1) is the ENH density with power param-
eter i.

2.2. Moments

The rth ordinary moment of the WNH random variable, say µ′
r = E(Xr),

follows from (7) as

µ′
r =

∞∑
i=1

ai

∫ ∞

0

xr hi(x) dx.

Using the binomial theorem, we obtain (for x > 0)[
1− e1−(1+λx)α

]i−1

=
i−1∑
j=0

(−1)j
(
i− 1

j

)
ej[1−(1+λx)].

By noting that 0 < e1−(1+λx)α < 1, we can write

µ′
r = αλ

∞∑
i=1

i−1∑
j=0

(−1)j ej+1 ai

(
i− 1

j

)
Ar,j , (8)

where

Ar,j =

∫ ∞

0

xr (1 + λx)α−1 e−(j+1)(1+λx)αdx.

For r ∈ ℜ, and setting u = (j + 1)(1 + λx)α, we have

x =

{
λ−1

[(
u

j + 1

)1/α

− 1

]}
and then, after some algebra, we can write

Ar,j =
λ−r−1

α (j + 1)

∫ ∞

j+1

[(
u

j + 1

)1/α

− 1

]r

e−u du. (9)

The most general case of the binomial theorem is the identity

(x+ a)ν =
∞∑
k=0

(
ν

k

)
xk aν−k, (10)
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where
(
ν
k

)
is a binomial coefficient and ν is a real number. This power series

converges when ν ≥ 0 is an integer or |x/a| < 1. By using (10) in equation (9),
since

∣∣[u/(j + 1)]1/α
∣∣ < 1, it follows by interchanging the sum and the integral

Ar,j =
λ−r−1

α (j + 1)

∞∑
k=0

(−1)k
(
r

k

) ∫ ∞

j+1

(
u

j + 1

)(r−k)/α

e−u du.

Then, we can write from (8)

µ′
r =

1

λr

∞∑
i=1

i−1∑
j=0

∞∑
k=0

(−1)j+k ej+1 ai

(j + 1)
r+α−k

α

(
i− 1

j

)(
r

k

)
Γ

(
r + α− k

α
, j + 1

)
. (11)

Equation (11) is an extension of expression (9) given by [4].
Next, we define a lemma.

Lemma 2.1. The rth incomplete moment of X, say J(x; r, θ) =
∫ x

0
y rf(y) dy,

is given by

J(x; r, θ) = αλ
∞∑
i=1

i−1∑
j=0

(−1)j ej+1 ai

(
i− 1

j

)
×

∫ x

0

yr (1 + λ y)α−1 e−(j+1)(1+λ y)α dy, r = 1, 2, . . . ,

where θ = (λ, α). Then, we have

J(x; r, θ) =
1

λr

∞∑
i=1

i−1∑
j=0

∞∑
k=0

(−1)j+k ai e
j+1

(j + 1)
r+α−k

α

(
i− 1

j

)(
r

k

)
×
[
Γ

(
r + α− k

α
, j + 1

)
− Γ

(
r + α− k

α
, (j + 1) (1 + λ y)α

)]
.

Proof. The proof follows easily by changing variables in the integration. �

3. Maximum likelihood estimation

Given the observed values x1, · · · , xn from the WNH distribution, the
MLEs of the unknown parameters in θ = (α, λ)T can be determined by maxi-
mizing directly the log-likelihood function given by

ℓ(θ) = n [log(α) + log(λ) + log(2)] + (α− 1)
n∑

i=1

log(1 + λxi)

+
n∑

i=1

[1− (1 + λxi)
α]− 2

n∑
i=1

log
[
1 + e1−(1+λxi)

α]
.

The above log-likelihood can be maximized numerically by using the R (optim
function), SAS (PROC NLMIXED), Ox program (sub-routine MaxBFGS), Nmaxi-
mize command in Mathematica, among others.
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The adequacy of the fitted models to a data set can be verified using
some goodness-of-fit statistics. The MLEs can be evaluated using Nmaximize
command in Mathematica as well as the goodness-of-fit statistics including
the Anderson-Darling (A∗) and Cramér-von Mises (W ∗) statistics. These sta-
tistics can determine how closely a specific density fits the histogram of a given
data set. In general, the distribution with smallest values for these statistics
yields a better fit.

4. Simulation study

We perform a Monte Carlo simulation study to assess the finite sample
behavior of the MLEs of λ and α. The results are obtained from 2,000 Monte
Carlo replications and the simulations are carried out using the R software. In
each replication, a random sample of size n is drawn from theWNH(λ, α) distri-
bution and the parameters are estimated by the maximum likelihood method.
The WNH random variable X is generated using the inversion method. We
consider two setups with the following values for the parameters of the model:
λ = 1.5, and α = 2.0. The mean estimates of the model parameters and their
root mean squared errors (RMSEs) for the sample sizes n = 50, 100, 200 and
500 are given in Table 1. We note that the RMSEs of the estimates of λ and
α decrease toward zero when the sample size n increases, which reveals the
consistency of the MLEs. These estimates have small biases.

Table 1. Mean estimates and RMSEs of the MLEs of λ and α.

n Parameter Mean RMSE

α 1.5246 1.2224
50 λ 4.0768 4.9927

α 1.4997 0.8067
100 λ 2.8499 2.7316

α 1.4994 0.5628
200 λ 2.2810 1.0427

α 1.4993 0.3515
500 λ 2.0886 0.4145

5. Applications

In this section, we fit some well-known distributions and the WNH dis-
tribution to three data sets from different fields of scientific investigation, and
then select the best fitted model among them.

5.1. Data fitting

In the applications, the WNH model is compared with gamma, Weibull,
exponentiated exponential(EE) [6] and exponentiated half-logistic(EHL) [7]
distributions.
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Table 2. Descriptive Statistics

Data Set Mean Median Standard Deviation Kurtosis Skewness

D1 59.6 22 71.8848 1.6936 4.96666
D2 92.0744 54 107.916 2.13921 8.02311
D3 12.1594 9.6 11.631 1.57966 5.58786

The applications are to the “Air conditioning system 1”, “Air condition-
ing system 2” and “Telephone call” data sets. The data are described below.

i) Air conditioning system 1 data set (D1)
The first data set containing 30 observations represents the numbers of

failures for the air conditioning system of an air plane as reported in [8].
ii) Air conditioning system 2 data set (D2)
The second data set containing 188 observations represents the number

of successive failures for the air conditioning system of each member in a fleet
of 13 Boeing 720 jet airplanes as reported in [9].

iii) The telephone call data set (D3)
The third data set represents times between 35 consecutive telephone

calls (in seconds) as reported in [10].
Table 2 summarizes some descriptive statistics for the three data sets. It

can be noted from Table 2 that the three data sets are highly right skewed.
The MLEs for all fitted models and the goodness-of-fit statistics A∗ and W ∗

are reported in Table 3. Based on the figures in these tables, the WNH model
provides the best fit to the three data sets compared to the gamma, Weibull,
EE and EHL distributions. The estimates for the proposed model are very
precise.

6. Conclusions

In this paper, we propose a new two-parameter distribution, namely the
weighted Nadarajah and Haghighi (WNH) distribution. We study some of its
statistical functions. The estimation of the model parameters is performed
by the maximum likelihood method. We analyze three real data sets and the
WNH distribution provides an adequate fit to each data set. In conclusion,
the WNH distribution provides a rather flexible mechanism for fitting a wide
spectrum of positive real data sets with shape property of being right skewed.
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Table 3. MLEs of the parameters and goodness-of-fit statistics

For D1

Distributions Estimates A∗ W ∗

WNH(α, λ) 0.479957 0.112027 0.46092 0.08318
Gamma(k, θ) 0.811911 73.4070 0.65338 0.117212
Weibull(λ, k) 54.613446 0.853587 0.552232 0.097430
EE(α, λ) 0.809287 0.014542 0.672897 0.121041
EHL(σ, λ) 58.676392 0.650296 0.883707 0.156466

For D2

Distributions Estimates A∗ W ∗

WNH(α, λ) 0.541764 0.052968 0.561922 0.067041
Gamma(k, θ) 0.904733 101.769 1.31096 0.231627
Weibull(λ, k) 87.75651 0.910896 0.94684 0.144364
EE(α, λ) 0.910031 0.010199 1.39972 0.252818
EHL(σ, λ) 83.26937 0.724783 2.78309 0.52523

For D3

Distributions Estimates A∗ W ∗

WNH(α, λ) 0.756136 0.189029 0.197489 0.030507
Gamma(k, θ) 1.15775 10.5025 0.210751 0.035416
Weibull(λ, k) 12.53077 1.078352 0.20206 0.032676
EE(α, λ) 1.172184 0.090953 0.211606 0.035771
EHL(σ, λ) 9.337973 0.917498 0.296068 0.048410
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