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WIND POWER FORECASTING ACCURACY ASSESSMENT 
FOR MULTIPLE TIMESCALES 

Cristian CRISTEA1, Mircea EREMIA2, Lucian TOMA3 

This paper presents a wind power forecasting error accuracy assessment 
over multiple lead times, as original contribution, for a six-month study period from 
December 2013 to May 2014. The study was performed on a 2 MW wind turbine 
generator located near Galaţi-Romania. The forecast is performed using a specific 
tool, which is based on a multi-layer neural network method and which receives 
data from the wind turbine generator SCADA system. The accuracy of the site-
specific forecast is determined by comparing the observed/measured power 
production of the wind turbine generator system with the corresponding power 
forecast. 

Keywords: wind power generation forecast, artificial neural networks 

1. Introduction 

Short-term prediction of wind power has attracted scientific interest since 
early ‘70s, when the wind power made its first mark as a large-scale resource. The 
first attempts were done with different types of time series analysis models, such 
as the Kalman filters [1]. Later, during ‘90s, the Prediktor model, which employs 
the results of Numerical Weather Prediction (NWP) in conjunction with the Risø 
wind flow model WAsP, was able to physically parameterize the wind flow in the 
wind farm and to predict the power output [2]. 

The ANEMOS project (2002-2006) brought advances in all fields of 
power forecasting, most notably in the definition of uncertainty, then the 
subsequent ANEMOS.plus (2008-2011) come with the decision support tools 
(storage scheduling, power system scheduling, trading, congestion management) 
which uses the probabilistic forecasts as input [3]. 

Weather conditions forecast systems were developed in last years 
especially to help the wind power plant owner to predict the wind power 
generation. The Integrated Forecast System (IFS) [4] maintained by the European 
Centre for Medium-Range Weather Forecasts (ECMWF) and the Global Forecast 
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System (GFS) [5] provided by the National Centre for Environmental Predictions 
(NCEP) were developed to provide global meteorological forecasts. 

Power forecasts are based on selected forecasted weather parameters in 
combination with site and turbine specific transfer functions. The weather forecast 
data are taken from a selection of global and regional numerical weather 
prediction models, and are employed in the power forecast system presented in 
this paper, customized for the wind generator system. The models external to the 
turbine are provided by the Integrated Forecast System [4] and the Global 
Forecast System [5]. Regional and wind turbine position specific weather 
forecasts are produced by National Center for Atmospheric Research (NCAR) 
using the WRF [6] and ETA [7] numerical wind prediction models. The regional 
data are collected from meteorological stations located around the wind turbine 
positions, e.g. from Galati and Vaslui counties. Local weather conditions data are 
measured by the weather stations attached to the wind turbine, i.e. the 
anemometer. 

Artificial neural networks are widely used for various forecasts. A three-
layer feed-forward artificial neural network trained by the Levenberg-Marquardt 
algorithm used for short-term wind power forecasting in Portugal is presented in 
[8]. In [9], a method based on three types of local recurrent neural networks, i.e. 
infinite impulse response multilayer perceptron, local activation feedback 
multilayer network, and diagonal recurrent neural network, to provide more 
accurate forecast for a wind farm located on the Crete island, in Greece, is 
presented. 

2. Forecast reliability 

The accuracy and predictability of weather forecasts varies with 
geographical location, season, weather patterns, time of day and in general it 
deteriorates with time. Furthermore, the uncertainty in the weather forecasts is the 
largest contributor to the power forecast errors [3]. These types of errors can be 
divided into two groups: level errors and phase errors. For example, consider a 
storm front passing over a wind farm. The level error misjudges the severity of the 
storm and the phase error shifts the timing of the storm. Both types of errors will 
contribute to the wind power forecast error. The aim for any NWP model is to 
predict the weather several hours to several days in advance. However, the ability 
of a model to forecast extremes (such as maximum wind gust) with the same 
frequency as they do occur in the atmosphere is crucial for any model. If the 
model has a tendency to over or under predicted certain weather elements, their 
probabilities will be biased. Ideally, the variability in the forecast over time and 
space should be equal to the observed variability, but typical forecast variability 
for a single wind farm can vary significantly. The variability is caused by many 
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meteorological phenomena at all scales, including development or movement of 
large-scale weather systems, thunderstorms, boundary layer processes, including 
vertical mixing and diurnal heating, complex terrain effects, and thermally forced 
flows. The NWP models used in Slobozia Conachi Power Forecast are state-of-
the-art and stable-performing weather models for which the forecast error 
increases with the length of the forecast period. 

3. The wind power forecast tool 

The wind power forecast presented in this paper was performed using a 
forecast tool attached to the Slobozia-Conachi (Galaţi) wind turbine generator 
SCADA system. The forecast model can identify complex connections between 
the forecasted weather and the historical power production data, and take current 
weather forecast parameters as input to produce forecasted power output for the 
wind turbine. The result is an online day ahead power forecast. A short-term 
forecast correction (intraday power forecast) is calculated by combining the day 
ahead forecast with near real-time production data using a customized and site-
specific model. 

The wind generation forecast tool is based on a multi-layer artificial neural 
network (ML-ANN). The architecture of the ANN is presented in Figure 1. The 
artificial neural network is trained using a back-propagation algorithm, which was 
developed by Rumelhart in 1986 [10]. The ANN consists of the input and output 
layers, and one hidden layer. The number of neurons in the hidden layer can be 
adjusted in terms of the ANN performance. The input variables are presented to 
the network as a vector. Each variable xk have different contribution to the output 
variables zj. The contribution of each variable is associated with the weights wki, 
then with the weights gij. These weights are iteratively adjusted using the gradient 
descent. 
 

Meteorological data 

Power generation data  

Power generation forecast

 
 

Fig. 1. The architecture of the multi-layer artificial neural network 
 

For the training and validation of the ANN, the inputs are: a) active power 
generation data, achieved from the wind turbine SCADA system; 
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b) meteorological data, i.e. wind speed, wind direction, temperature, and air 
density (calculated in terms of pressure and humidity), all achieved from the wind 
turbine meteorological station, which are collected also using the wind turbine 
SCADA system. When the ANN based tool is used for wind power generation 
forecast, meteorological data are taken from global and regional weather forecast 
systems. 

Since the power forecasts assume that the turbines are producing optimally 
at all times, the measured production data is filtered to ensure that the objective 
forecast is met. A filtering tool is employed to remove all instances when 
production was curtailed, turbines was switched off during start-up and shut-down 
periods, and when other signals indicated that the turbine was not operating 
optimally. 

A performance function, denoted by E, is used as a stopping criteria of the 
back-propagation algorithm, calculated in terms of the neural network output 
errors, ej. 

 ( )jE E e= ,   1,j p∀ =  (1) 

where p is the number of output neurons. 
The most used performance function in the multi-layer artificial neural 

network based wind power generation forecast is the mean square error (MSE), 
that is 

 2

1

1 N

j
j

MSE e
N =

= ∑  (2) 

where ej is the error between the forecasted power (zj), which is the neural 
network output, and the desired power (dj), which is the measured/observed power 
and collected from the SCADA system: 

 j j je d z= −  (3) 

The ANN training problem becomes an optimization problem aiming to 
minimize the error. In the training of the neural network, the matrix of weights W 
and G associated to the network are sought so that the performance function has a 
desired value [10]. 

4. Forecast error calculation 

Wind power generation forecast is critical for energy traders in order to 
appropriately define their market strategy. The accuracy of the wind power 
generation forecast performed in the presented application is evaluated using 
various type of errors provided in Table 1 [3]. Each error indicates particular 
characteristics of the forecast and are used in the day-ahead market strategy. 
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Table 1 
Statistical errors 

Parameter Description Formula 
Forecast 
error 

The forecast error (prediction error) for a 
forecast with origin at time t is defined as 
the difference between forecasted/ 
predicted power, Ppred, and observed power 
generation, Pgen, in percent of the wind 
farm capacity, Pcap. 

( )100( , ) ( ) - ( )pred gen
cap

k t P t  k P t  k
P

ε = + +

 
where k is lead time from the origin t. 

AFB The average forecast bias (AFB) is the 
average over all forecasts of the forecast 
error ( , )k tε . It provides an indication of the 
general tendency of the forecasts, i.e. if 
they tend to over- or underestimate the 
production. A positive AFB value would 
indicate that the forecasts overestimate the 
production, whereas a negative AFB value 
would indicate underestimation. The 
measure is in percent of wind farm 
capacity. 

1( ) ( , )
T t T

AFB k k t
∈

= ε∑  

where T is the set of forecast origins, 
and T denotes the number of 
forecasts in the set. 

MAE The mean absolute error (MAE) is the most 
commonly used metric to assess forecast 
accuracy. It is calculated by averaging the 
absolute value of the forecast errors over all 
forecasts. The measure is in percent of 
wind farm capacity. 

1( ) ( , )
T t T

MAE k k t
∈

= ε∑  

RMSE The root mean squared error (RMSE) is the 
square-root of the average of the square of 
the forecast errors. Compared to the MAE, 
the RMSE is more sensitive to large errors, 
and not as sensitive to small ones. By 
comparing the MAE and the RMSE, it is 
possible to gauge the variation in the size of 
the errors. A large RMSE compared to the 
MAE would indicate that there are some 
large errors in the set. A smaller RMSE 
would indicate that the set mostly consists 
of small errors. The measure is in percent 
of wind farm capacity. 

2( , )
( ) 

T
t T

k t
RMSE k ∈

ε
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Precision  
 

Is the percentage of the errors that are 
within x% of wind farm capacity. The 
measure is in percent of the amount of data. 

{ }
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PI The power index (PI) is the difference 
between predicted and observed power as a 
fraction of observed power. The closer this 
value is to zero, the better the prediction. 
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5. Numerical results 

The optimal configuration of the neural network, which will ensure 
acceptable errors, depends on the accurate input data and an appropriate 
experience of the human operator. The weather conditions can change 
significantly from one day to another, and thus the power forecast is more 
accurate if the time origin for the forecast calculation is closer to the time for 
which the forecast is performed. Also, better forecast is achieved by using the 
most recent weather forecasts. On the other hand, the human operator can improve 
the ANN architecture in terms of the information he has about the ANN 
performance on a longer time period. 

Table 2 presents the forecast errors obtained on a six-month period with a 
24 hours lead-time [11]. The larger amount of data is presented to the ANN in the 
learning stage, the smaller is the forecast error. Based on personal experience of 
the authors and literature review, it may be said that the wind power generation 
forecast can be used with enough confidence for the day ahead market trading 
strategy after at least 6 month learning period. 
 

Table 2  
Error statistics over all lead times for each month 

Period 
Power 

Generation 
[MWh] 

AFB 
[%] 

MAE 
[%] 

RMSE 
[%] 

PI 
[-] 

Prec. 
(± 5%) 

Prec. 
(± 10%) 

Prec. 
(± 15%) 

2013-12 466 5 20.3 30.6 0.7 35 48 57 
2014-01 676 -0.1 18.8 27.8 0.49 31 45 56 
2014-02 423 0.5 20.8 29 0.66 24 40 51 
2014-03 808 -1.5 18.6 26.6 0.4 29 44 56 
2014-04 574 -3.1 18.3 26.9 0.53 33 46 57 
2014-05 429 2.8 18.8 28.3 0.73 33 46 58 

All 562 0.6 19.6 28.3 0.56 31 45 56 
 

The sign of the AFB value in Table II indicates whether the power forecast 
tends to over- or under estimate the wind turbine power generation. It can be seen 
that in months with high wind speeds and good weather conditions (January, 
March and April) the forecast tends to underestimate the power generation, 
whereas in months with bad weather conditions (December, February), such as ice 
deposits and strong snow, or turbine sensor malfunction caused by wind gust 
(May), it tends to overestimate the wind turbine power generation. 

The difference between the forecasted power generation by the 
implemented power forecast system (with blue) and the measured power 
generation at the terminals of the wind generator system (with red) are shown 
together to provide a visual indication of the forecast accuracy.  



Wind power forecasting accuracy assessment for multiple timescales                399 
 

Figure 2 illustrates the results achieved for December 2013. In the first 
half of the month the power generation was under estimated, then after 13th of 
December, due to the cold weather and ice deposits the forecast overestimated the 
wind turbine energy generation.  
 

 
 

Fig. 2. Forecasted power vs. measured power production during December 2013 
 

The forecast for January 2014 (Fig. 3) was more accurate, the MAE value 
decreased to 18.8% from 20.3%, and the precision decreased to 0.49 from 0.7. 
This may reveal that the forecast system started to learn the behavior for winter 
conditions in the fist part of the month when the wind turbine generation is not 
over estimated, similar to December 2013. 
 

 
 

Fig. 3. Forecasted power vs. measured power production during January 2014 
 

February 2014 (Fig. 4) was characterized by extreme snow for a longer 
period, and the wind turbine energy forecast was affected. The RMSE value 
indicates that there are again large errors in the set, and the precision decreased to 
0.66%. At the end of the month the forecast accuracy was improved, and the 
reason may be the fact that no unpredictable or fast changing weather conditions 
occurred. 
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Fig. 4. Forecasted power vs. measured power production during February 2014. 
 

The forecast precision was increased in March 2014, and the RMSE value 
indicates that very few large errors exists in the set. The AFB value indicates that 
the forecast system has a better accuracy than in the previous month. 
 

 
 

Fig. 5. Forecasted power vs. measured power production during March 2014 
 

The trend observed in March continues in the April 2014 (Fig. 6) when the 
MAE value decreased to 18.3% and the accuracy of the forecast system was also 
improved. The forecast tend to underestimate the energy production. 
 

 
 

Fig. 6. Forecasted power vs. measured power production during April 2014 
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In the first half of May 2014 (Fig. 7) two exceptions were recorded, that is 
the wind turbine power generation was limited to 1.7 MW (as compared to the 2 
MW installed power) due to strong winds that induced mechanical vibrations in 
the tower. For this reason, large errors are again present in the set of forecasted 
powers, and the RMSE value has increased to 28.8%. In the rest of the time the 
forecast tool performed much better. 
 

 
 

Fig. 7. Forecasted power vs. measured power production during May 2014. 
 

Power forecast errors achieved for five successive time periods, with 
different lead times, are presented in Table 3. It can be seen that smaller errors are 
achieved if the forecast time origin is closer to the instant of the forecast 
calculation. Therefore, the smallest error is achieved for the 0-6 hours forecast 
period. When the forecast lead time is expanded larger errors are achieved, 
probably because of the less accurate weather forecast for a longer time period. 
 

Table 3  
Summary of the error statistics from December 2013 to May 2014 for different lead times 

Error Measure 0-6 hrs 6-24 hrs 24-36 hrs 36-60 hrs 0-60 hrs 
AFB 1.1 0.1 0.9 0.7 0.6 
MAE 17.2 18.3 19.9 20.8 19.3 
RMSE 25.6 26.8 28.9 30.2 28.2 
Power Index 0.54 0.52 0.57 0.61 0.56 
Precision (± 5% capacity) 34 31 30 29 31 
Precision (± 10% capacity) 48 45 44 43 45 
Precision (± 15% capacity) 59 57 55 54 56 

 
The plot of forecast errors against different lead times is illustrated in 

Figure 8. The MAE and RMSE have similar shapes, and both tend to increase as 
the lead time increases. The histogram of forecast errors (Fig. 9) shows the 
distribution of the calculated forecast errors with respect to the wind turbine 
capacity. The dispersion of errors shows that large forecast errors, from 30% to 
50%, are achieved in both over- and underestimation directions. 
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Fig. 8. Errors evolution against the forecast time period. 
 

 
 

Fig. 9. Histogram of forecast errors. 

6. Conclusions 

In this paper the results of evaluation of the wind power generation 
forecast, applied for a 2 MW wind turbine located in Romania, Galaţi County, 
were presented. The evaluation study was focused on the methodology for data 
use rather than on the forecast method characteristics. 

The generation forecast analysis was performed for a six month study 
period, from December 2013 to May 2014. The forecast was performed on a daily 
basis since forecast results were used to define the day-ahead market strategy. The 
forecast function is activated every 6 hours, and each time updated weather 
conditions are used. At each forecast function activation the forecast is performed 
for a 60 hours window, divided into various lead times, that is 0-6 hrs, 6-24 hrs, 
24-36 hrs, 36-60 hrs and 0-60 hrs, starting from same time origin identical with 
the forecast function activation time. 

For the 5 lead times defined, various errors were evaluated. The average 
forecast bias results shows a tendency to underestimate in month without large 
changes in the weather conditions, whereas when in month with extreme weather 
conditions which force the wind turbine automatic systems to limit the power 
generation the tendency is to overestimate. 
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The mean absolute error tends to decrease toward the end of the forecast 
study period, from 20.3% in December 2013 to 18.3% in April 2014, showing that 
ANN is learning. May 2014 can be seen as exception because of equipment 
malfunction. In normal conditions, the authors of this study would have expected 
to reach a MAE value below 18%. The wind power forecast can be used with 
sufficient accuracy for the day ahead trading after at least 6 months learning 
period [12]. 

Analysis of the MAE for the different lead times reveals that the forecast 
errors increase as the lead time increases. The smallest errors were achieved for 
the lead time of 0-6 hrs. Thus, for larger lead times the forecasts may give only a 
direction of the power generation.  

The larger errors can be explained by the fact that the forecast study was 
performed for one turbine only. In case of a wind power plant, consisting of many 
turbines, the individual errors (positive and negative) can be balanced so that the 
total error may be lower [13]. 

The forecast accuracy is very important for the wind turbine owner 
because the results are used to define the tendering strategy on the day-ahead 
market. The unbalances produced by a market participant are penalized because 
ancillary services are called by the power system operator. The penalties for 
underestimation are greater than the penalties for overestimation because the 
upward regulation services is more expensive than the downward regulation 
service. In order to increase the market efficiency, the intra-day market was 
created, allowing the participants to adjust their bids at least 2 hours before the 
real-time, which is acceptable for the wind turbines owners, taking also into 
account that hourly energy is traded instead of constant powers.  

The time period for which the forecast was performed was characterized 
by large and sudden changes, mainly during December 2013 and February 2014. 
Due to the climate changes, the weather conditions patterns are strongly shifted so 
that the same month in two successive years may look very different. January 
2014 was unexpectedly very calm in Galati, without any snow, and quite high 
positive temperatures. 
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