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LAST MULTIPLIERS ON WEIGHTED MANIFOLDS AND THE
WEIGHTED LIOUVILLE EQUATION
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We study the notion of last multipliers as time-independent solutions of
the Liouville equation of transport in weighted (Riemannian) manifolds. On this
way, several results from previous papers are generalized in a larger framework.
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1. Introduction

In January 1838, Joseph Liouville (1809-1882) published a note ([9]) on the
time-dependence of the Jacobian of the ”transformation” exerted by the solution of
an ODE on its initial condition. In modern language if A = A(x) is the vector field
corresponding to the given ODE and m = m(t,z) is a smooth function (depending
also of the time t) then the main equation of the cited paper is:

d
d—T+m~divA:0 (LE)

called, by then, the Liouville equation. The notion of last multiplier was introduced
by Carl Gustav Jacob Jacobi (1804-1851) in ” Vorlesugen iiber Dynamik”, edited by
R. F. A. Clebsch in Berlin in 1866. So, sometimes is used under the name of Jacobi
(last) multiplier. Since then, this tool for understanding ODE was intensively stu-
died by mathematicians in the usual Euclidean space R™, conform the bibliography
of [1]. In [2] we have obtained that, placed in a general oriented manifold, the last
multipliers are the autonomous solutions of (LE). Moreover, in the series of papers
[1]-[4] we consider these notions in some important frameworks as Riemannian, Pois-
son and Lie algebroids geometries. Let us remark that a Sturm-Liouville operator
was studied in Riemannian manifolds by Prof. dr. C. Udrigte and I. Tevy in [15].
The aim of the present note is to discuss some results of this useful theory
extended to a new framework namely weighted manifolds. Our study is based on
the excellent book [7] where this concept is considered from the point of view of
geometrical analysis, more precisely the heat kernel is computed. Let us remark
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that a relationship between the heat equation and the general method of multipliers
is well-known; see the examples from [13, p. 364].

The content of the paper is as follows. The first section is a review of defini-
tion of last multipliers and previous important results. The next section starts the
new framework given by a weighted oriented manifold and presents the associated
Liouville equation and last multipliers. The last section is devoted to the weighted
Riemannian manifolds and assuming a Helmholtz type decomposition, some exam-
ples are given.

2. General facts about last multipliers

Let M be a real, smooth, n-dimensional manifold, C* (M) the algebra of
smooth real functions on M, X (M) the Lie algebra of vector fields and A¥ (M) the
C° (M)-module of k-differential forms, 0 < k& < n. Suppose that M is orientable
with the fixed volume form V € A™ (M) and for a fixed A € X(M) let us consider
the (n — 1)-form Q =i,V € A1 (M).

Definition 2.1([5, p. 107], [11, p. 428]) The function m € C*> (M) is called
a last multiplier of A if mS) is closed:

d(mS) := (dm) A Q+mdQ = 0. (2.1)

Let LM (A) and FInt(A) be respectively the set of last multipliers and first integrals
for A.

In dimension 2 the notions of last multiplier and integrating factor are identical
and Sophus Lie gave a method to associate a last multiplier to every symmetry vector
field of A (Theorem 1.1 in [8, p. 752]). The Lie method is extended to any dimension
in [11].

Characterizations of LM (A) can be obtained in terms of Witten’s differential
[16] and Marsden’s differential [10] but we present here only the last since the former
appears in [2, p. 458]. If f € C*° (M) the Marsden deformation of the differential
is d/ : A* (M) — A*T1 (M) defined by:

1
d’ (w) = ?d(fw) (2.2)
and whence m is a last multiplier if and only if € is d"*-closed.
The following characterization of last multipliers will be useful:
Lemma 2.2([11, p. 428]) m € C*° (M) belongs to LM (A) if and only if:

A(m)+m-divA=0 (2.3)

where divA is the divergence of A with respect to volume form V.

Remarks 2.3 (i) The equation (2.3) is the time-independent version of the
Liouville equation studied in [2] on manifolds. An important feature of equation
(2.3) is that it does not always admit solutions conform [6, p. 269].

(ii) A first result given by (2.3) is the case of solenoidal i.e. divergence-free
vector fields: LM (A) = FInt(A). The importance of this result is shown by the fact
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that three remarkable classes of solenoidal vector fields are provided by: Killing vec-
tor fields in Riemannian geometry, Hamiltonian vector fields in symplectic geometry
and Reeb vector fields in contact geometry (in particulary K-almost contact geom-
etry). Also, there are many equations of mathematical physics which are modeled
by a solenoidal vector field.

(iii) For the general case, namely A is not solenoidal, the ratio of two last
multipliers is a first integral and conversely, the product between a first integral and
a last multiplier is a last multiplier. Since FInt(A) is a subalgebra in C*°(M) it
results that LM (A) is a FInt(A)-module.

(iv) Recalling the formulae:

div (fX)=X(f)+ fdivX (2.4)
it follows that m € LM (A) if and only if the vector field mA is solenoidal i.e.
div (mA) = 0. Then LM(A) is a linear subspace in C* (M).
(v) To the vector field A we can associate an adjoint A*, acting on functions
in the following manner, [14]:

A* (m) = —A(m) — mdivA.

Then, another simple characterization is: LM (A) = Fint(A*). O
An important structure generated by a last multiplier is given by:
Proposition 2.4([2, p. 459]) Let m € C* (M) be fized. The set of vector
fields admitting m as last multiplier is a Lie subalgebra in X (M).

3. Last multipliers on weighted oriented manifolds

We extend the framework of previous section in the following manner:
Definition 3.1 i) A weighted oriented manifold is a triple (M,V,T) with
(M,V) as above and T € C{°(M) i.e. T is a smooth and strictly positive function
on M.
ii) Following the expression (1.2) we define the weighted divergence of X € X (M)
as:
div, X — %dz’v(TX). (3.1)

iii) m € C*°(M) is a T-weighted last multiplier for A if is a solution of the weighted
Liouville equation:

A(m) + mdiv, A = 0. (3.2)
Let YLM (A) be the set of these functions and with a subscript ”+” we will denote
the subsets of strictly positive functions.

Remarks 3.2 i) The weighted Liouville equation can be read as follows: m
is an ”eigenvector” of A considered as derivation over the real algebra C°°(M) with
—div, A as ”eigenvalue”.

ii) If m € C3°(M) then (1.4) yields the following expression of (3.2):

A(In(m7Y)) + divA =0 (3.3)
which means that YLM, (A) = + LM, (A). O
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For the general case, two situations when YTLM (A) is completely determined
are provided by the following result:

Proposition 3.3 1) If T € FI,(A) then: YLM(A) = LM(A).
ii) If A is divergence-free then: YTLM(A) = 5 FInt(A).

Proof The equation (3.2) has the form:

A(m) + %A(T) + mdivA =0 (3.4)

and then both implications above are immediately. [

The next result is a natural extension of the Proposition 2.4:

Proposition 3.4 Let m € C(M) be fized. Then the set of vector fields X
with m € YLM,(X) is a Lie subalgebra in X (M).

Proof Obviously, the result can be obtained from Proposition 2.4 and the
Remark 3.2 but we prefer to present a direct proof based on the identity:

div[X,Y] = X (divY) = Y (divX). (3.5)
Let X, Y with the above property. Then:
(X, Y](In(mY))+div([X,Y]) = X(Y(In(mY)))-Y (X (In(m7Y)))+X (divY)-Y (divX) = 0

which gives the conclusion. [

4. Last multipliers on weighted Riemannian manifolds

A more interesting framework is provided by [7, p. 67]:

Definition 4.1 A weighted manifold is a triple (M, g =<,>,T) with (M, g)
a Riemannian manifold.

On any weighted manifold there exists an induced volume form V = V. Let
w € A'(M) be the g-dual of A and § the co-derivative operator § : A* (M) —
A*~1(M). Then:

divy,A = —0w, A(f)=g " (df,w). (4.1)
and the condition (3.3) means:
g (d(n(mY),w) = dw. (4.2)

It follows that m € YTLM, (A) if and only if w belongs to the kernel of the differential
operator: g~ (dIn(mY),) — & : AL (M) — A = C> (M).

For the general case of m an important fact is given by the product rule for
divergence ([7, p. 69]):

div,(fX)=9(Vf, X)+ fdiv, X (4.3)
where V f is the g-gradient of f and then the weighted Liouville equation (3.2) reads:
div,(mA) =0 (4.4)

which means that YLM(A) is a is a "measure of how far away” is A from being
p-divergence-free.
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An important tool in the Riemannian case is the weighted Laplacian ([7, p.

68)):
A, =div, oV, (4.5)
Now, assume that the vector field A admits a Helmholtz type decomposition:
A=X+Vu (4.6)

where X is a solenoidal vector field and u € C* (M); for example if M is compact
such decompositions always exist. From Vu (m) =< Vu, Vm > it follows that (4.2)
becomes:

X(m)+ < Vu,Vm > +m[X (InT') + A,u] = 0. (4.7)
Example 4.1 u is a T-last multiplier of A = X + Vu if and only if:
X (u) = —u[X(InT) + Ayu] — || Vul2. (4.8)

Suppose that M is a cylinder M = I x N with I C R and N a (n — 1)-manifold;
then for X = —%% € X (I) which is divergence-free with respect to V- = dt A Viy
with Viy a volume form on N, the previous relation yields:

1
up = 2 u(—i(ln 1) + Au) + ||Vu\|§ . (4.9)
By the product rule for the weighted Laplacian ([12, p. 55]):
1
<V Vg >=5 (8u(fg) = - Dug—g-Auf) (4.10)
the previous equation becomes:
u=—u(IlnY) + A, (u2) (4.11)
In particular, if T € C°(N) we get:
w = A, (u?) (4.12)

which is a weighted version of the nonlinear parabolic equation of porous medium
type.
Example 4.2 Returning to (4.6) suppose that X = 0. The condition (4.7)
reads:
m - Ayut+ < Vu,Vm >=0 (4.13)

which is equivalent, via (4.10) to:
Ay (um) +m - Ay =u-Aym. (4.14)

which yields:

Proposition 4.3 Let u,m € C* (M) such that w € YLM(Vm) and m €
YLM(Vu). Then u-m is a Y-harmonic function on M. u € YLM (Vu) if and only
if u? is a Y-harmonic function on M.

Proof Adding to (4.14) a similar relation with u replaced by m gives the
conclusion. [

Example 4.4. The gradient of distance function with respect to a
2D rotationally symmetric metric
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Let M be a 2D manifold with local coordinates (¢,6) endowed with a rota-
tionally symmetric metric g = dt®> + p?(t)df? conform [12, p. 11]. Let the smooth
function w (¢,0) = t which appear as a distance function with respect to the given

metric. Then Vu = % and Aju = T%Oag—t‘p; the equation (3.13) is:
(Te):  Om
. — =0 4.15
T + ot (4.15)

with the solutions: m = % for ¢ € R. Therefore éLM(%) =R-C>([0,27]).
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