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We study the notion of last multipliers as time-independent solutions of

the Liouville equation of transport in weighted (Riemannian) manifolds. On this

way, several results from previous papers are generalized in a larger framework.
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1. Introduction

In January 1838, Joseph Liouville (1809-1882) published a note ([9]) on the

time-dependence of the Jacobian of the ”transformation” exerted by the solution of

an ODE on its initial condition. In modern language if A = A(x) is the vector field

corresponding to the given ODE and m = m(t, x) is a smooth function (depending

also of the time t) then the main equation of the cited paper is:

dm

dt
+m · divA = 0 (LE)

called, by then, the Liouville equation. The notion of last multiplier was introduced

by Carl Gustav Jacob Jacobi (1804-1851) in ”Vorlesugen über Dynamik”, edited by

R. F. A. Clebsch in Berlin in 1866. So, sometimes is used under the name of Jacobi

(last) multiplier. Since then, this tool for understanding ODE was intensively stu-

died by mathematicians in the usual Euclidean space Rn, conform the bibliography

of [1]. In [2] we have obtained that, placed in a general oriented manifold, the last

multipliers are the autonomous solutions of (LE). Moreover, in the series of papers

[1]-[4] we consider these notions in some important frameworks as Riemannian, Pois-

son and Lie algebroids geometries. Let us remark that a Sturm-Liouville operator

was studied in Riemannian manifolds by Prof. dr. C. Udrişte and I. Ţevy in [15].

The aim of the present note is to discuss some results of this useful theory

extended to a new framework namely weighted manifolds. Our study is based on

the excellent book [7] where this concept is considered from the point of view of

geometrical analysis, more precisely the heat kernel is computed. Let us remark
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that a relationship between the heat equation and the general method of multipliers

is well-known; see the examples from [13, p. 364].

The content of the paper is as follows. The first section is a review of defini-

tion of last multipliers and previous important results. The next section starts the

new framework given by a weighted oriented manifold and presents the associated

Liouville equation and last multipliers. The last section is devoted to the weighted

Riemannian manifolds and assuming a Helmholtz type decomposition, some exam-

ples are given.

2. General facts about last multipliers

Let M be a real, smooth, n-dimensional manifold, C∞ (M) the algebra of

smooth real functions on M , X (M) the Lie algebra of vector fields and Λk (M) the

C∞ (M)-module of k-differential forms, 0 ≤ k ≤ n. Suppose that M is orientable

with the fixed volume form V ∈ Λn (M) and for a fixed A ∈ X (M) let us consider

the (n− 1)-form Ω = iAV ∈ Λn−1 (M).

Definition 2.1([5, p. 107], [11, p. 428]) The function m ∈ C∞ (M) is called

a last multiplier of A if mΩ is closed:

d (mΩ) := (dm) ∧ Ω+mdΩ = 0. (2.1)

Let LM(A) and FInt(A) be respectively the set of last multipliers and first integrals

for A.

In dimension 2 the notions of last multiplier and integrating factor are identical

and Sophus Lie gave a method to associate a last multiplier to every symmetry vector

field of A (Theorem 1.1 in [8, p. 752]). The Lie method is extended to any dimension

in [11].

Characterizations of LM(A) can be obtained in terms of Witten’s differential

[16] and Marsden’s differential [10] but we present here only the last since the former

appears in [2, p. 458]. If f ∈ C∞ (M) the Marsden deformation of the differential

is df : Λ∗ (M) → Λ∗+1 (M) defined by:

df (ω) =
1

f
d (fω) (2.2)

and whence m is a last multiplier if and only if Ω is dm-closed.

The following characterization of last multipliers will be useful:

Lemma 2.2([11, p. 428]) m ∈ C∞ (M) belongs to LM(A) if and only if:

A (m) +m · divA = 0 (2.3)

where divA is the divergence of A with respect to volume form V .

Remarks 2.3 (i) The equation (2.3) is the time-independent version of the

Liouville equation studied in [2] on manifolds. An important feature of equation

(2.3) is that it does not always admit solutions conform [6, p. 269].

(ii) A first result given by (2.3) is the case of solenoidal i.e. divergence-free

vector fields: LM(A) = FInt(A). The importance of this result is shown by the fact
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that three remarkable classes of solenoidal vector fields are provided by: Killing vec-

tor fields in Riemannian geometry, Hamiltonian vector fields in symplectic geometry

and Reeb vector fields in contact geometry (in particulary K-almost contact geom-

etry). Also, there are many equations of mathematical physics which are modeled

by a solenoidal vector field.

(iii) For the general case, namely A is not solenoidal, the ratio of two last

multipliers is a first integral and conversely, the product between a first integral and

a last multiplier is a last multiplier. Since FInt(A) is a subalgebra in C∞(M) it

results that LM(A) is a FInt(A)-module.

(iv) Recalling the formulae:

div (fX) = X (f) + fdivX (2.4)

it follows that m ∈ LM(A) if and only if the vector field mA is solenoidal i.e.

div (mA) = 0. Then LM(A) is a linear subspace in C∞ (M).

(v) To the vector field A we can associate an adjoint A∗, acting on functions

in the following manner, [14]:

A∗ (m) = −A (m)−mdivA.

Then, another simple characterization is: LM(A) = Fint(A∗). �
An important structure generated by a last multiplier is given by:

Proposition 2.4([2, p. 459]) Let m ∈ C∞ (M) be fixed. The set of vector

fields admitting m as last multiplier is a Lie subalgebra in X (M).

3. Last multipliers on weighted oriented manifolds

We extend the framework of previous section in the following manner:

Definition 3.1 i) A weighted oriented manifold is a triple (M,V,Υ) with

(M,V ) as above and Υ ∈ C∞
+ (M) i.e. Υ is a smooth and strictly positive function

on M .

ii) Following the expression (1.2) we define the weighted divergence of X ∈ X (M)

as:

divµX =
1

Υ
div(ΥX). (3.1)

iii) m ∈ C∞(M) is a Υ-weighted last multiplier for A if is a solution of the weighted

Liouville equation:

A(m) +mdivµA = 0. (3.2)

Let ΥLM(A) be the set of these functions and with a subscript ”+” we will denote

the subsets of strictly positive functions.

Remarks 3.2 i) The weighted Liouville equation can be read as follows: m

is an ”eigenvector” of A considered as derivation over the real algebra C∞(M) with

−divµA as ”eigenvalue”.

ii) If m ∈ C∞
+ (M) then (1.4) yields the following expression of (3.2):

A(ln(mΥ)) + divA = 0 (3.3)

which means that ΥLM+(A) = 1
ΥLM+(A). �
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For the general case, two situations when ΥLM(A) is completely determined

are provided by the following result:

Proposition 3.3 i) If Υ ∈ FI+(A) then: ΥLM(A) = LM(A).

ii) If A is divergence-free then: ΥLM(A) = 1
ΥFInt(A).

Proof The equation (3.2) has the form:

A(m) +
m

Υ
A(Υ) +mdivA = 0 (3.4)

and then both implications above are immediately. �
The next result is a natural extension of the Proposition 2.4:

Proposition 3.4 Let m ∈ C∞
+ (M) be fixed. Then the set of vector fields X

with m ∈ ΥLM+(X) is a Lie subalgebra in X (M).

Proof Obviously, the result can be obtained from Proposition 2.4 and the

Remark 3.2 but we prefer to present a direct proof based on the identity:

div [X,Y ] = X (divY )− Y (divX) . (3.5)

Let X, Y with the above property. Then:

[X,Y ](ln(mΥ))+div([X,Y ]) = X(Y (ln(mΥ)))−Y (X(ln(mΥ)))+X(divY )−Y (divX) = 0

which gives the conclusion. �

4. Last multipliers on weighted Riemannian manifolds

A more interesting framework is provided by [7, p. 67]:

Definition 4.1 A weighted manifold is a triple (M, g =<,>,Υ) with (M, g)

a Riemannian manifold.

On any weighted manifold there exists an induced volume form V = Vg. Let

ω ∈ Λ1 (M) be the g-dual of A and δ the co-derivative operator δ : Λ∗ (M) →
Λ∗−1 (M). Then:

divVgA = −δω, A (f) = g−1 (df, ω) . (4.1)

and the condition (3.3) means:

g−1 (d(ln(mΥ), ω) = δω. (4.2)

It follows that m ∈ ΥLM+(A) if and only if ω belongs to the kernel of the differential

operator: g−1 (d ln(mΥ), ·)− δ : Λ1 (M) → Λ0 = C∞ (M).

For the general case of m an important fact is given by the product rule for

divergence ([7, p. 69]):

divµ(fX) = g(∇f,X) + fdivµX (4.3)

where ∇f is the g-gradient of f and then the weighted Liouville equation (3.2) reads:

divµ(mA) = 0 (4.4)

which means that ΥLM(A) is a is a ”measure of how far away” is A from being

µ-divergence-free.
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An important tool in the Riemannian case is the weighted Laplacian ([7, p.

68]):

∆µ = divµ ◦ ∇. (4.5)

Now, assume that the vector field A admits a Helmholtz type decomposition:

A = X +∇u (4.6)

where X is a solenoidal vector field and u ∈ C∞ (M); for example if M is compact

such decompositions always exist. From ∇u (m) =< ∇u,∇m > it follows that (4.2)

becomes:

X(m)+ < ∇u,∇m > +m[X(ln Γ) + ∆µu] = 0. (4.7)

Example 4.1 u is a Υ-last multiplier of A = X +∇u if and only if:

X (u) = −u[X(lnΥ) + ∆µu]− ∥∇u∥2g. (4.8)

Suppose that M is a cylinder M = I × N with I ⊆ R and N a (n− 1)-manifold;

then for X = −1
2

∂
∂t ∈ X (I) which is divergence-free with respect to V = dt ∧ VN

with VN a volume form on N , the previous relation yields:

ut = 2

[
u(−1

2
(lnΥ)t +∆u) + ∥∇u∥2g

]
. (4.9)

By the product rule for the weighted Laplacian ([12, p. 55]):

< ∇f,∇g >=
1

2
(∆µ (fg)− f ·∆µg − g ·∆µf) (4.10)

the previous equation becomes:

ut = −u(lnΥ)t +∆µ

(
u2

)
(4.11)

In particular, if Υ ∈ C∞
+ (N) we get:

ut = ∆µ

(
u2

)
(4.12)

which is a weighted version of the nonlinear parabolic equation of porous medium

type.

Example 4.2 Returning to (4.6) suppose that X = 0. The condition (4.7)

reads:

m ·∆µu+ < ∇u,∇m >= 0 (4.13)

which is equivalent, via (4.10) to:

∆µ (um) +m ·∆µu = u ·∆µm. (4.14)

which yields:

Proposition 4.3 Let u,m ∈ C∞ (M) such that u ∈ ΥLM(∇m) and m ∈
ΥLM(∇u). Then u ·m is a Υ-harmonic function on M . u ∈ ΥLM(∇u) if and only

if u2 is a Υ-harmonic function on M .

Proof Adding to (4.14) a similar relation with u replaced by m gives the

conclusion. �
Example 4.4. The gradient of distance function with respect to a

2D rotationally symmetric metric
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Let M be a 2D manifold with local coordinates (t, θ) endowed with a rota-

tionally symmetric metric g = dt2 + φ2(t)dθ2 conform [12, p. 11]. Let the smooth

function u (t, θ) = t which appear as a distance function with respect to the given

metric. Then ∇u = ∂
∂t and ∆µu = 1

Υφ
∂Υφ
∂t ; the equation (3.13) is:

m · (Υφ)t
Υφ

+
∂m

∂t
= 0 (4.15)

with the solutions: m = cf(θ)
Υφ for c ∈ R. Therefore 1

φLM( ∂
∂t) = R · C∞([0, 2π]).
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