

LAST MULTIPLIERS ON WEIGHTED MANIFOLDS AND THE WEIGHTED LIOUVILLE EQUATION

Mircea CRASMAREANU¹

We study the notion of last multipliers as time-independent solutions of the Liouville equation of transport in weighted (Riemannian) manifolds. On this way, several results from previous papers are generalized in a larger framework.

Keywords: (weighted) Liouville equation, weighted last multiplier, weighted (Riemannian) manifold.

MSC2010: 58A15; 58A30; 34A26; 34C40.

1. Introduction

In January 1838, Joseph Liouville (1809-1882) published a note ([9]) on the time-dependence of the Jacobian of the "transformation" exerted by the solution of an ODE on its initial condition. In modern language if $A = A(x)$ is the vector field corresponding to the given ODE and $m = m(t, x)$ is a smooth function (depending also of the time t) then the main equation of the cited paper is:

$$\frac{dm}{dt} + m \cdot \operatorname{div} A = 0 \quad (LE)$$

called, by then, the *Liouville equation*. The notion of *last multiplier* was introduced by Carl Gustav Jacob Jacobi (1804-1851) in "Vorlesungen über Dynamik", edited by R. F. A. Clebsch in Berlin in 1866. So, sometimes is used under the name of *Jacobi (last) multiplier*. Since then, this tool for understanding ODE was intensively studied by mathematicians in the usual Euclidean space \mathbb{R}^n , conform the bibliography of [1]. In [2] we have obtained that, placed in a general oriented manifold, the last multipliers are the autonomous solutions of (LE). Moreover, in the series of papers [1]-[4] we consider these notions in some important frameworks as Riemannian, Poisson and Lie algebroids geometries. Let us remark that a Sturm-Liouville operator was studied in Riemannian manifolds by Prof. dr. C. Udriște and I. Tevy in [15].

The aim of the present note is to discuss some results of this useful theory extended to a new framework namely *weighted manifolds*. Our study is based on the excellent book [7] where this concept is considered from the point of view of geometrical analysis, more precisely the heat kernel is computed. Let us remark

¹Associate Professor, Faculty of Mathematics, University "AL. I. CUZA" of Iași, Romania,
E-mail: mcrasm@uaic.ro <http://www.uaic.ro/~mcrasm>

that a relationship between the heat equation and the general method of multipliers is well-known; see the examples from [13, p. 364].

The content of the paper is as follows. The first section is a review of definition of last multipliers and previous important results. The next section starts the new framework given by a *weighted oriented manifold* and presents the associated Liouville equation and last multipliers. The last section is devoted to the weighted Riemannian manifolds and assuming a Helmholtz type decomposition, some examples are given.

2. General facts about last multipliers

Let M be a real, smooth, n -dimensional manifold, $C^\infty(M)$ the algebra of smooth real functions on M , $\mathcal{X}(M)$ the Lie algebra of vector fields and $\Lambda^k(M)$ the $C^\infty(M)$ -module of k -differential forms, $0 \leq k \leq n$. Suppose that M is orientable with the fixed volume form $V \in \Lambda^n(M)$ and for a fixed $A \in \mathcal{X}(M)$ let us consider the $(n-1)$ -form $\Omega = i_A V \in \Lambda^{n-1}(M)$.

Definition 2.1 ([5, p. 107], [11, p. 428]) The function $m \in C^\infty(M)$ is called a *last multiplier* of A if $m\Omega$ is closed:

$$d(m\Omega) := (dm) \wedge \Omega + md\Omega = 0. \quad (2.1)$$

Let $LM(A)$ and $FInt(A)$ be respectively the set of last multipliers and first integrals for A .

In dimension 2 the notions of last multiplier and integrating factor are identical and Sophus Lie gave a method to associate a last multiplier to every symmetry vector field of A (Theorem 1.1 in [8, p. 752]). The Lie method is extended to any dimension in [11].

Characterizations of $LM(A)$ can be obtained in terms of Witten's differential [16] and Marsden's differential [10] but we present here only the last since the former appears in [2, p. 458]. If $f \in C^\infty(M)$ the Marsden deformation of the differential is $d^f : \Lambda^*(M) \rightarrow \Lambda^{*+1}(M)$ defined by:

$$d^f(\omega) = \frac{1}{f} d(f\omega) \quad (2.2)$$

and whence m is a last multiplier if and only if Ω is d^m -closed.

The following characterization of last multipliers will be useful:

Lemma 2.2 ([11, p. 428]) $m \in C^\infty(M)$ belongs to $LM(A)$ if and only if:

$$A(m) + m \cdot \text{div}A = 0 \quad (2.3)$$

where $\text{div}A$ is the divergence of A with respect to volume form V .

Remarks 2.3 (i) The equation (2.3) is the time-independent version of the *Liouville equation* studied in [2] on manifolds. An important feature of equation (2.3) is that it does not always admit solutions conform [6, p. 269].

(ii) A first result given by (2.3) is the case of solenoidal i.e. divergence-free vector fields: $LM(A) = FInt(A)$. The importance of this result is shown by the fact

that three remarkable classes of solenoidal vector fields are provided by: Killing vector fields in Riemannian geometry, Hamiltonian vector fields in symplectic geometry and Reeb vector fields in contact geometry (in particular K -almost contact geometry). Also, there are many equations of mathematical physics which are modeled by a solenoidal vector field.

(iii) For the general case, namely A is not solenoidal, the ratio of two last multipliers is a first integral and conversely, the product between a first integral and a last multiplier is a last multiplier. Since $FInt(A)$ is a subalgebra in $C^\infty(M)$ it results that $LM(A)$ is a $FInt(A)$ -module.

(iv) Recalling the formulae:

$$\operatorname{div}(fX) = X(f) + f\operatorname{div}X \quad (2.4)$$

it follows that $m \in LM(A)$ if and only if the vector field mA is solenoidal i.e. $\operatorname{div}(mA) = 0$. Then $LM(A)$ is a linear subspace in $C^\infty(M)$.

(v) To the vector field A we can associate an *adjoint* A^* , acting on functions in the following manner, [14]:

$$A^*(m) = -A(m) - m\operatorname{div}A.$$

Then, another simple characterization is: $LM(A) = Fint(A^*)$. \square

An important structure generated by a last multiplier is given by:

Proposition 2.4 ([2, p. 459]) *Let $m \in C^\infty(M)$ be fixed. The set of vector fields admitting m as last multiplier is a Lie subalgebra in $\mathcal{X}(M)$.*

3. Last multipliers on weighted oriented manifolds

We extend the framework of previous section in the following manner:

Definition 3.1 i) A *weighted oriented manifold* is a triple (M, V, Υ) with (M, V) as above and $\Upsilon \in C_+^\infty(M)$ i.e. Υ is a smooth and strictly positive function on M .

ii) Following the expression (1.2) we define *the weighted divergence* of $X \in \mathcal{X}(M)$ as:

$$\operatorname{div}_\mu X = \frac{1}{\Upsilon} \operatorname{div}(\Upsilon X). \quad (3.1)$$

iii) $m \in C^\infty(M)$ is a Υ -weighted last multiplier for A if is a solution of *the weighted Liouville equation*:

$$A(m) + m\operatorname{div}_\mu A = 0. \quad (3.2)$$

Let $\Upsilon LM(A)$ be the set of these functions and with a subscript "+" we will denote the subsets of strictly positive functions.

Remarks 3.2 i) The weighted Liouville equation can be read as follows: m is an "eigenvector" of A considered as derivation over the real algebra $C^\infty(M)$ with $-\operatorname{div}_\mu A$ as "eigenvalue".

ii) If $m \in C_+^\infty(M)$ then (1.4) yields the following expression of (3.2):

$$A(\ln(m\Upsilon)) + \operatorname{div}A = 0 \quad (3.3)$$

which means that $\Upsilon LM_+(A) = \frac{1}{\Upsilon} LM_+(A)$. \square

For the general case, two situations when $\Upsilon LM(A)$ is completely determined are provided by the following result:

Proposition 3.3 i) *If $\Upsilon \in FI_+(A)$ then: $\Upsilon LM(A) = LM(A)$.*
ii) *If A is divergence-free then: $\Upsilon LM(A) = \frac{1}{\Upsilon} FInt(A)$.*

Proof The equation (3.2) has the form:

$$A(m) + \frac{m}{\Upsilon} A(\Upsilon) + mdivA = 0 \quad (3.4)$$

and then both implications above are immediately. \square

The next result is a natural extension of the Proposition 2.4:

Proposition 3.4 *Let $m \in C_+^\infty(M)$ be fixed. Then the set of vector fields X with $m \in \Upsilon LM_+(X)$ is a Lie subalgebra in $\mathcal{X}(M)$.*

Proof Obviously, the result can be obtained from Proposition 2.4 and the Remark 3.2 but we prefer to present a direct proof based on the identity:

$$div [X, Y] = X(divY) - Y(divX). \quad (3.5)$$

Let X, Y with the above property. Then:

$$[X, Y](\ln(m\Upsilon)) + div([X, Y]) = X(Y(\ln(m\Upsilon))) - Y(X(\ln(m\Upsilon))) + X(divY) - Y(divX) = 0$$

which gives the conclusion. \square

4. Last multipliers on weighted Riemannian manifolds

A more interesting framework is provided by [7, p. 67]:

Definition 4.1 A *weighted manifold* is a triple $(M, g = <, >, \Upsilon)$ with (M, g) a Riemannian manifold.

On any weighted manifold there exists an induced volume form $V = V_g$. Let $\omega \in \Lambda^1(M)$ be the g -dual of A and δ the co-derivative operator $\delta : \Lambda^*(M) \rightarrow \Lambda^{*-1}(M)$. Then:

$$div_{V_g} A = -\delta\omega, \quad A(f) = g^{-1}(df, \omega). \quad (4.1)$$

and the condition (3.3) means:

$$g^{-1}(d(\ln(m\Upsilon)), \omega) = \delta\omega. \quad (4.2)$$

It follows that $m \in \Upsilon LM_+(A)$ if and only if ω belongs to the kernel of the differential operator: $g^{-1}(d\ln(m\Upsilon), \cdot) - \delta : \Lambda^1(M) \rightarrow \Lambda^0 = C^\infty(M)$.

For the general case of m an important fact is given by the *product rule for divergence* ([7, p. 69]):

$$div_\mu(fX) = g(\nabla f, X) + fdiv_\mu X \quad (4.3)$$

where ∇f is the g -gradient of f and then the weighted Liouville equation (3.2) reads:

$$div_\mu(mA) = 0 \quad (4.4)$$

which means that $\Upsilon LM(A)$ is a "measure of how far away" is A from being μ -divergence-free.

An important tool in the Riemannian case is *the weighted Laplacian* ([7, p. 68]):

$$\Delta_\mu = \operatorname{div}_\mu \circ \nabla. \quad (4.5)$$

Now, assume that the vector field A admits a Helmholtz type decomposition:

$$A = X + \nabla u \quad (4.6)$$

where X is a solenoidal vector field and $u \in C^\infty(M)$; for example if M is compact such decompositions always exist. From $\nabla u(m) = \langle \nabla u, \nabla m \rangle$ it follows that (4.2) becomes:

$$X(m) + \langle \nabla u, \nabla m \rangle + m[X(\ln \Upsilon) + \Delta_\mu u] = 0. \quad (4.7)$$

Example 4.1 u is a Υ -last multiplier of $A = X + \nabla u$ if and only if:

$$X(u) = -u[X(\ln \Upsilon) + \Delta_\mu u] - \|\nabla u\|_g^2. \quad (4.8)$$

Suppose that M is a cylinder $M = I \times N$ with $I \subseteq \mathbb{R}$ and N a $(n-1)$ -manifold; then for $X = -\frac{1}{2}\frac{\partial}{\partial t} \in \mathcal{X}(I)$ which is divergence-free with respect to $V = dt \wedge V_N$ with V_N a volume form on N , the previous relation yields:

$$u_t = 2 \left[u \left(-\frac{1}{2}(\ln \Upsilon)_t + \Delta u \right) + \|\nabla u\|_g^2 \right]. \quad (4.9)$$

By the product rule for the weighted Laplacian ([12, p. 55]):

$$\langle \nabla f, \nabla g \rangle = \frac{1}{2} (\Delta_\mu(fg) - f \cdot \Delta_\mu g - g \cdot \Delta_\mu f) \quad (4.10)$$

the previous equation becomes:

$$u_t = -u(\ln \Upsilon)_t + \Delta_\mu(u^2) \quad (4.11)$$

In particular, if $\Upsilon \in C_+^\infty(N)$ we get:

$$u_t = \Delta_\mu(u^2) \quad (4.12)$$

which is a weighted version of the nonlinear parabolic equation of porous medium type.

Example 4.2 Returning to (4.6) suppose that $X = 0$. The condition (4.7) reads:

$$m \cdot \Delta_\mu u + \langle \nabla u, \nabla m \rangle = 0 \quad (4.13)$$

which is equivalent, via (4.10) to:

$$\Delta_\mu(um) + m \cdot \Delta_\mu u = u \cdot \Delta_\mu m. \quad (4.14)$$

which yields:

Proposition 4.3 *Let $u, m \in C^\infty(M)$ such that $u \in \Upsilon LM(\nabla m)$ and $m \in \Upsilon LM(\nabla u)$. Then $u \cdot m$ is a Υ -harmonic function on M . $u \in \Upsilon LM(\nabla u)$ if and only if u^2 is a Υ -harmonic function on M .*

Proof Adding to (4.14) a similar relation with u replaced by m gives the conclusion. \square

Example 4.4. The gradient of distance function with respect to a 2D rotationally symmetric metric

Let M be a 2D manifold with local coordinates (t, θ) endowed with a *rotationally symmetric* metric $g = dt^2 + \varphi^2(t)d\theta^2$ conform [12, p. 11]. Let the smooth function $u(t, \theta) = t$ which appear as a distance function with respect to the given metric. Then $\nabla u = \frac{\partial}{\partial t}$ and $\Delta_\mu u = \frac{1}{\Upsilon\varphi} \frac{\partial\Upsilon\varphi}{\partial t}$; the equation (3.13) is:

$$m \cdot \frac{(\Upsilon\varphi)_t}{\Upsilon\varphi} + \frac{\partial m}{\partial t} = 0 \quad (4.15)$$

with the solutions: $m = \frac{cf(\theta)}{\Upsilon\varphi}$ for $c \in \mathbb{R}$. Therefore $\frac{1}{\varphi} LM(\frac{\partial}{\partial t}) = \mathbb{R} \cdot C^\infty([0, 2\pi])$.

REFERENCES

- [1] *M. Crasmareanu*, Last multipliers theory on manifolds, *Tensor*, **66**(2005), no. 1, 18-25.
- [2] *M. Crasmareanu*, Last multipliers as autonomous solutions of the Liouville equation of transport, *Houston J. Math.*, **34**(2008), no. 2, 455-466.
- [3] *M. Crasmareanu*, Last multipliers for multivectors with applications to Poisson geometry, *Taiwanese J. Math.*, **13**(2009), no. 5, 1623-1636.
- [4] *M. Crasmareanu and C.-E. Hretcanu*, Last multipliers on Lie algebroids, *Proc. Indian Acad. Sci. Math. Sci.* **119**(2009), no. 3, 287-296.
- [5] *H. Flanders*, Differential forms with applications to the physical sciences, Academic Press, 1963.
- [6] *F. C. Gascón*, Divergence-free vectorfields and integration via quadrature, *Physics Letters A*, **225**(1996), 269-273.
- [7] *A. Grigor'yan*, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.
- [8] *S. Helgason*, Invariant differential equations on homogeneous manifolds, *Bull. AMS*, **83**(1977), no. 5, 751-774.
- [9] *J. Liouville*, Sur la Théorie de la Variation des constantes arbitraires, *J. Math. Pures Appl.*, **3**(1838), 342-349.
- [10] *J. E. Marsden*, Well-posedness of the equations of a nonhomogenous perfect fluid, *Comm. Partial Differential Equations*, **1**(1976), no. 3, 215-230.
- [11] *Z. Oziewicz and J. R. R. Zeni*, Ordinary differential equations: symmetries and last multiplier, in R. Alamowicz and B. Fauser(Eds.) "Clifford Algebras and their Applications in Mathematical Physics", vol. 1 (Algebra and Physics), *Progr. Phys.*, vol. 18, Birkhauser, 2000, 425-433.
- [12] *P. Petersen*, Riemannian geometry, GTM no. 171, Springer-Verlag, 1998.
- [13] *J. Rauch*, Review of "Partial differential equations" by L. C. Evans, in *Bull. AMS*, **37**(2000), no. 3, 363-367.
- [14] *M. E. Taylor*, Partial differential equations. Basic theory, *Texts in Applied Mathematics*, no. 23, Springer, N. Y., 1996.
- [15] *C. Udriște and I. Tevy*, Sturm-Liouville operator controlled by sectional curvature on Riemannian manifolds, *Balkan J. Geom. Appl.*, **17**(2012), no. 2, 129-140.
- [16] *E. Witten*, Supersymmetry and Morse theory, *J. Diff. Geom.*, **17**(1982), 661-692.