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APPROCHE INTELLIGENTE POUR LA COMMANDE EN 

POSITION DE LA MACHINE A RELUCTANCE VARIABLE  

Imed MAHMOUD1,3,*, Adel KHEDHER2,3 

SRMs are beginning to attract interest as a potential candidate for many 

applications due to their simple and robust construction, fault tolerant operation, 

insensitivity to high temperatures, extremely long constant power range and high-

speed operation. Unfortunately, the high distortion of the angular characteristics 

hinders the use of this actuator for positioning purposes. Such an idea requires the 

development of a control strategy to adequately adjust the excitation levels according 

to both the desired position and the magnitude of the coupled load.  By measuring the 

electromagnetic torque and phase currents, the neural network is able to estimate the 

rotor position, facilitating the elimination of the rotor position sensor. The training 

data set of the neural network consists of magnetization data for the SRM with the 

electromagnetic torque and current as inputs and the corresponding position as 

outputs in this set. With a sufficiently large training data set, the ANN network can be 

correlated for appropriate network architecture. This paper presents the design, 

implementation and operation of an ANN-based position estimator for an SRM. 

Les MRV commencent à susciter l'intérêt comme candidat potentiel pour de 

nombreuses applications en raison de leur construction simple et robuste, de leur 

fonctionnement tolérant aux pannes, de leur insensibilité aux températures élevées, 

de leur plage de puissance constante extrêmement longue et de leur fonctionnement 

à grande vitesse. Malheureusement, la forte distorsion des caractéristiques 

angulaires empêche l'utilisation de cet actionneur à des fins de positionnement. Une 

telle idée nécessite le développement d'une stratégie de contrôle pour ajuster de 

manière adéquate les niveaux d'excitation en fonction à la fois de la position désirée 

et de la magnitude de la charge couplée.  En mesurant le couple électromagnétique 

et les courants de phase, le réseau neuronal est capable d'estimer la position du rotor, 

ce qui facilite l'élimination du capteur de position du rotor. L'ensemble de données 

d'apprentissage du réseau neuronal se compose de données de magnétisation pour le 

MRV le couple électromagnétique et le courant étant les entrées et la position 

correspondante les sorties de cet ensemble. Avec un ensemble de données de 

formation suffisamment grand, le réseau ANN peut être corrélé pour une architecture 

de réseau appropriée. Cet article présente la conception, la mise en œuvre et le 

fonctionnement d'un estimateur de position basé sur un réseau ANN pour un MRV. 
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Mots clés: machine à reluctance variable, couple, position rotorique, élément finis, 

réseaux de neurones artificiels. 

1. Introduction 

Grâce à leurs multiples avantages qui leurs permettent d'être exploitées dans 

plusieurs domaines et s'imposent dans différentes applications [1,2], les machines 

à reluctance variable à double saillance (MRVDS) ont occupé, récemment, une 

place prépondérante dans le domaine de l'entraînement électrique à vitesse variable. 

En effet, ce type de machine se distingue, en comparaison avec les autres familles 

d'actionneurs, par leurs simplicités de construction mécanique qui leurs confèrent 

plusieurs avantages. Le rotor est constitué d'un simple empilage de tôle non coûteux 

ne contenant ni aimants, ni enroulements, ni cages ce qui les rends des machines 

robustes et moins onéreux que les autres actionneurs conventionnels. 

Pour aboutir à des caractéristiques plus précises que celles données par la 

modélisation analytique, les méthodes d'analyse numérique constituent un moyen 

d'efficacité potentielle et conduisent souvent à des résultats très proches de la 

réalité. Particulièrement, dans le domaine de l'étude des structures 

électromagnétiques, le recourt aux éléments finis permet une caractérisation précise 

des dispositifs électromagnétiques utilisant de matériaux de caractéristiques non 

linéaires et de géométrie complexe. Ces éléments finis sont à la base de logiciels 

puissants de calcul électromagnétique dits de conception assistée par ordinateur. 

Dans des récents travaux, ces méthodes sont souvent associées avec des techniques 

de modélisation non conventionnelles. Parmi ces techniques de modélisations, on 

distingue particulièrement les réseaux de neurones artificiels qui ont montré leurs 

puissances dans la modélisation des systèmes non linéaires [3, 4]. Par ailleurs, les 

travaux divulgués par la littérature récente proposent des contributions diverses 

orientées principalement vers l'amélioration des performances des (MRV) utilisées 

en mode d'entraînement et non de positionnement. Certes, la forte distorsion des 

caractéristiques angulaires handicape l'utilisation de cet actionneur pour des besoins 

de positionnement. Cette handicape est d'autant plus marqué que les exigences de 

positionnement en terme de précision sont plus sévères. La commande en position 

précise des machines électriques est un enjeu majeur pour de nombreuses 

applications industrielles. Les machines à réluctance variable (MRV) présentent un 

intérêt croissant en raison de leur simplicité de construction, de leur robustesse et 

de leur haute efficacité énergétique. Cependant, leur commande en position est 

difficile en raison de la non-linéarité et de la variation paramétrique de leur modèle 

dynamique. C'est dans cette optique que nos travaux de recherche, développés dans 

ce papier, sont situés. Ils consistent principalement à proposer des approches de 

commande pour l'exploitation de cet actionneur en positionnement. 

Les principales contributions sont les suivantes : 
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1. Un estimateur de position basé sur un ANN qui apprend la relation non 

linéaire entre le courant du stator et la position du rotor du SRM. Cet ANN (ANN1) 

est entraîné hors ligne à l'aide de données FEA et estime la position du rotor sur la 

base du courant fourni. 

2. Un contrôleur basé sur un ANN qui génère le courant statorique optimal 

nécessaire pour amener le rotor à la position souhaitée. Cet ANN (ANN2) est 

entraîné en ligne pendant le fonctionnement du moteur afin de minimiser l'erreur 

de position. 

3. Une approche de contrôle intégrée qui combine ANN1 et ANN2 pour 

obtenir un positionnement de haute précision du SRM. L'ANN1 estime la position 

actuelle en fonction du courant du stator, tandis que l'ANN2 génère la commande 

de courant suivante en fonction de l'erreur de position. 

Ce papier est divisé en deux parties distinctes.  Dans la première partie, une 

étude par éléments finis est réalisée pour caractériser le MRV afin de déterminer 

ses propriétés électromagnétiques. Cette étude électromagnétique est basée sur 

l'environnement CAO "Magnet 2D". La deuxième partie est consacrée au 

développement d'une approche de contrôle, utilisant à la fois la base de données 

générée par la méthode des éléments finis (FEM) et une cascade d'estimateurs basés 

sur des réseaux neuronaux artificiels, afin de corriger l'asymétrie de la machine par 

le contrôle et d'obtenir un positionnement précis de l'actionneur. 

 

2. Discrétisation par éléments finis de la MRVDS étudiée : 

caractéristiques électromagnétiques 

 

La MRVDS considérée dans la présente étude est de puissance nominale 

égalisant les 7.5 kW. La structure géométrique de cette machine est décrite dans le 

tableau 1. 
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Fig. 1- Définition des paramétres dimensionnels du prototype     
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Tableau. 1. 

Paramètres géométriques de la MRVDS 8/6 considérée 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moyennant l’interface graphique de l’environnement "Magnet 2D", nous avons 

procédé par la saisie de la structure de la machine à reluctance variable considérée. 

La Fig.2 présente la structure de la MRV considérée. A, A’, B, B’, C, C’, D et D’ 

représentent les bobines d’excitation qui sont enroulées autour des 8 pôles  

statoriques. Suivant chaque mode d’alimentation, ces bobines doivent être 

connectées entre eux pour former les phases qui vont être alimentées à travers le 

convertisseur statique. Dans notre cas, Nous avons considéré que chaque bobine est 

connectée en série avec la bobine qui lui est diamétralement opposée pour former 

une phase unique.  

 

Paramètres  Valeur 

Rayon de l’arbre R 18.3 mm 

Rayon intérieur du rotor 
int rR  36.4 mm 

Rayon extérieur du rotor 
extrR  58.2 mm 

Entrefer e 0.3   mm 

Rayon intérieur du stator 
int sR  87.9 mm 

Rayon extérieur du stator 
extsR  102  mm 

Longueur axiale L 170  mm 

Arc polaire statorique 
s  23.6° 

Arc polaire rotorique 
r  20.1° 

Nombre de pôles statoriques Ns 8 

Nombre de pôles rotoriques Nr 6 

Nombre de spires par pôle  70 
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Fig. 2- Prototype de la MRV 8/6 considérée 

La Fig.3 présente le maillage utilisé pour déterminer les caractéristiques 

électromagnétiques de la structure d’étude lorsque le rotor de celle-ci est en position 

d’alignement. On remarque bien qu’il ya des zones dans lesquelles le maillage est 

très dense par rapport aux autres. 

 

Fig. 3- Maillage de la  MRV 

Pour caractériser l’évolution du couple électromagnétique aussi bien en 

fonction de la position du rotor que du niveau d’excitation des enroulements de la 

machine considérée, nous avons déterminé dans la Fig.4, pour des incréments de 

rotation d’un degré et pour des niveaux d’excitation de 5A, 10A, 15A, 20A, 25A, 

30A, les caractéristiques angulaires de la machine étudiée.   

Les caractéristiques angulaires réelles déterminées par la méthode des 

éléments finis sont distordues et loin d’être sinusoïdales ce qui montre 

l’insuffisance de la méthode analytique reposant sur les hypothèses simplificatrices 

adoptées. Ainsi, dans la Fig.4 on distingue la présence de quelques oscillations aux 

niveaux de ces caractéristiques. Ces oscillations peuvent être à l'origine de la nature 
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du matériau ferromagnétique choisi ou de la densité du maillage appliquée à la 

discrétisation de la structure. 

La Fig.5 présente la variation de l’inductance d’une phase statorique en 

fonction de la position du rotor pour des incréments de rotation successifs de un 

degré et pour différents niveaux d’excitation. 

Les résultats illustrés dans la Fig.5, montre que l’inductance d’une phase 

statorique varie inversement au courant d’excitation au voisinage de la position 

d’alignement (30°), tandis qu’au voisinage de la position d’opposition (0°), 

l’influence du courant sur cette inductance est très limitée. Pour une position fixe, 

on remarque que d'autant plus que le niveau de saturation augmente, l’influence sur 

l’inductance est dégradée. Les différents résultats obtenus montrent que les 

caractéristiques angulaires de la machine à réluctance variable à double saillance 

sont fortement distordues et loin d’être sinusoïdales.   

Evidemment, l’évolution du flux magnétique dépend essentiellement du 

niveau de saturation du circuit magnétique, Fig.6. En effet, pour une position 

constante, par exemple celle de conjonction, on vérifie que d'autant plus que le 

courant d’excitation s'intensifie la variation du flux se limite. 

Ces réseaux de courbes donnés par la Fig.6, sont limités par deux 

caractéristiques extrêmes obtenues pour la position d’alignement (30°) et la position 

d’opposition (0°). En effet, pour une intensité donnée, le flux est maximal pour la 

position d’alignement des dents du mobile avec les dents statoriques et minimal 

pour la position d’opposition. La position alignée correspond à un état d’équilibre 

stable caractérisé par le fait que la partie mobile se maintient dans cette position 

lorsqu’elle est soumise à une perturbation. Par ailleurs, la position de quinconce 

correspond à un état d’équilibre instable, la partie mobile tend à quitter cette 

position dès qu’elle est soumise à une perturbation.  
 

 
Fig. 4-Caractéristiques angulaires de la MRVDS statorique en fonction des positions pour 

différents courants 
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Fig. 5-Caractéristique de l’inductance d’une phase statorique en fonction des positions pour 

différents courants 

 

 
Fig. 6-Caractéristiques du flux magnétique en fonction des courants pour différentes positions 

 

3. Approche neuronale pour la commande en position de la 

MRVDS 

 

Les résultats obtenus, montrent que les caractéristiques angulaires décrivant 

l'évolution du couple en fonction de la position rotorique de la machine à réluctance 

variable sont nettement affectées par des distorsions. Ces caractéristiques de 

couples électromagnétiques sont loin d’être sinusoïdales à cause des matériaux 

employés. De ce fait, l'exploitation de ce type d'actionneur dans des applications de 

positionnement ne peut être envisagée sans le développement d'approches de 

commande puissantes permettant d'ajuster adéquatement les excitations statoriques 

en tenant compte aussi bien de la charge à positionner que du niveau de la distorsion 
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qui affecte la caractéristique, [5-6-7]. Pour élaborer cette stratégie de commande et 

après avoir mené, par CAO, une caractérisation fine de la machine, nous avons fait 

recourt aux techniques de commande non conventionnelles dites intelligentes pour 

mettre au point une cascade de blocs de commande à base réseaux de neurones 

artificiels. 

Plusieurs travaux prouvent que les perceptrons multicouches sont les réseaux 

neuronaux les plus utilisés aujourd'hui, [6-7-9] ils sont capables de réaliser des 

associations non linéaires entre l'entrée et la sortie. L'architecture de ce type de 

réseau neuronal est illustrée à la Fig. 7. Chaque neurone possède une fonction 

d'activation, qui peut être sigmoïde, sigmoïde bipolaire, log-sigmoïde, etc. Les 

poids des connexions peuvent être déterminés par l'algorithme de rétropropagation 

au cours du processus d'apprentissage, puis utilisés pour calculer les sorties. 

 

 

Fig. 7. Architecture d'un réseau multicouche  

Le perceptron multicouche se structure comme suit: l’information entre par une 

couche d’entrée et sort par une couche de sortie. À la différence du perceptron 

simple, le perceptron multicouche dispose entre la couche en entrée et la couche en 

sortie une ou plusieurs couches cachées responsables de la sommation pondérée. 

Le nombre de couches correspond aux nombres de matrices de poids dont dispose 

le réseau neuronal. Un perceptron multicouche est donc mieux adapté pour traiter 

les types de fonctions non-linéaires. 

La rétro-propagation de l’erreur dans un réseau multicouche est un apprentissage 

supervisé. On présente l’entrée pour lequel on détermine la sortie. L’ensemble des 

poids synaptiques détermine le fonctionnement du réseau de neurones. On compare 

les sorties des neurones de la couche de sortie avec les valeurs modèles qui sont les 
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sorties désirées et on calcule l’erreur de chacun comme le montre clairement la 

Fig.8. 

 

 

Fig.8 Apprentissage d’un réseau multicouche avec détermination de l’erreur et rétro-

propagation 

 

La fonction la plus couramment utilisée que nous avons adoptée dans ce 

travail est la fonction d'erreur quadratique. Cette fonction est définie comme suit: 

 
2

1

1
( ) ( ) ( )

2

K

k k

k

E n d n y n
=

= −                                         (1) 

Pour tous les exemples, nous considérons l'erreur quadratique moyenne comme 

suit:
1

1
( )

N

moy

n

E E n
N =

=                                       (2) 

La réalisation de la phase d’apprentissage est fortement liée au choix pertinent 

et au nombre d’exemples qu’il faut mettre en disposition du réseau. Ces exemples 

doivent être suffisamment représentatifs de l’évolution de ces caractéristiques 

angulaires pour que la reconstitution puisse arriver à achever cette importante 

phase, [8-9-10-11]. Pour cet objectif, nous avons exploité une technique numérique 

d’interpolation disponible dans l’environnement Matlab ce qui nous a conduit à 

élaborer un programme informatisé reposant sur des bases d'interpolation cubique. 

Ce programme a permis, à partir de la portion stable des caractéristiques angulaires 

de la MRVDS considérée, définie avec des lignes solides dans Fig. 9, d'élaborer 

pour différents niveaux d'excitation et différentes charges, une base de données 

décrivant l'évolution du couple en fonction de la position rotorique pour tout le 

domaine de fonctionnement de la machine. La surface de réponse illustrée par la 

Fig.10 montre une représentation graphique de la base de données décrivant 
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l'évolution du couple en fonction de la position rotorique pour tout le domaine de 

fonctionnement de la machine. 

 

  
Fig.9 caractéristiques angulaire de la MRVDS considérée 

 

 

 
        

 

 

Fig.10 Surface de réponse illustrant la base de données d’apprentissage 
 

3.1.Conception et mise au point du réseau d’estimation de la position  

Dans le but d'estimer la position d'arrêt de la MRVDS considérée lorsque la 

charge accouplée et l'excitation statorique sont connues, nous avons procédé, en 

exploitant des fonctions prédéfinies dans l’environnement MATLAB, par la 
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le couple exercé par la charge et le courant d'excitation alors que sa sortie est la 

position angulaire du rotor. Ce réseau est composé d’une seule couche cachée 

renfermant 13 neurones et une couche de sortie composée d’un seul neurone. La 

fonction d’activation choisie pour les neurones de la couche cachée est celle de la 

tangente hyperbolique du sigmoïde, tandis que pour le neurone de la couche de 

sortie, l'activation est assurée par la fonction linéaire. L'architecture de ce réseau est 

portée par la Fig.11.  Par apprentissage réitéré et moyennant la base de données 

précédemment élaborée, nous avons fait de sorte que ce réseau soit capable 

d'estimer la position d'arrêt sur tout le domaine d'utilisation de la machine quelque 

soient le niveau de l'excitation statorique et l'ampleur du couple imposée par la 

charge accouplée, [12-13-14-15-16].. 

 

 
Fig.11 Architecture du RMC1 utilisé 

L’évolution de cette dernière en fonction du nombre d’itérations est 

consignée dans la Fig. 12. Les performances atteintes par ce réseau sont égale à 1.9 

10-4. 
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Fig.12-Performance du RMC1   

 

 
 

Fig.13-Evaluation de l'efficacité du RMC1 pour des réponses non apprises 
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avec les résultats attendus, Fig.13. Pour tous ces exemples, l'erreur n'a pas dépassé 

le 0.8 %.    

3.2.Conception et mise au point du réseau d'estimation du courant (RMC2) 

Pour conférer au rotor une position d'arrêt bien déterminée, il est nécessaire, 

pour une MRVDS de caractéristique angulaire donnée, de moduler  l'excitation 

statorique  suivant l'effort résistant imposé par la charge attelée. De ce fait vient 

l'idée de base de concevoir le second réseau neuronal multicouches RMC2 dont 

l'objectif est de déterminer l’amplitude du courant d'excitation nécessaire pour 

atteindre la position cible. Par conséquent, les entrées ou les attributs pour ce réseau, 

ne peuvent être que le couple de charge et la position de consigne alors que la sortie 

ou bien la classe n'est autre que le courant d'excitation. Le réseau conçu, dont 

l’architecture est portée par la Fig.14, est composé d’une seule couche cachée 

structurée autour de 14 neurones et une couche de sortie composée d’un seul 

neurone. Nous avons choisi la fonction tangente hyperbolique du sigmoïde comme 

pour l’activation de tous les neurones de cette couche cachée, tandis que l'activation 

du neurone de la couche de sortie est assurée par la fonction linéaire. 

 
Fig. 14. Architecture du second réseau neuronal multicouche  

D’une façon similaire au réseau d’estimation de la position RMC1 

précédemment conçu et afin de montrer que le réseau a bien appris les 

caractéristiques présentées dans la base d’apprentissage et que la performance 

atteinte est satisfaisante, nous avons présenté dans la même Fig. 16, pour différentes 

positions stables, l’évolution du couple en fonction des courants cibles et des 

courants calculés par le réseau RMC2. En effet, pour plusieurs positions 

considérées par successions de pas de 0.75° et délimitées par les bornes 15° et 30°, 

sont tracées les évolutions du couple, par des motifs triangulaires, en fonction des 

intensités cibles et par des motifs étoilés, en fonction des intensités estimées par le 

RMC2. Ces caractéristiques sont déterminées avec une variation graduelle du 
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courant de 1A. Les résultats trouvés prouvent une coïncidence satisfaisante dont 

l'erreur entre les valeurs des intensités cibles et des intensités calculées par le réseau 

RMC2 conçu ne dépasse pas les 0.16 %.   

La Fig. 15  montre l’évolution de cette dernière en fonction du nombre 

d’itérations et confirme que pour ce  réseau la performance atteinte est égale 4.9 10-

4.  

 

Fig.15. Performance du RMC2 

 

Fig.16- Comparaison des intensités cibles et des intensités calculées par le réseau RMC2 
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Ces résultats montrent que le RMC2 élaboré est capable d’estimer avec précision 

le niveau adéquat des excitations statoriques permettant ainsi, tout en prenant en 

considération la charge accouplée, de conférer au rotor la position cible.   

3.3.Validation par simulation de l’approche de commande proposée 

On se propose dans ce paragraphe de mener des essais de simulation 

numérique pour tester l’efficacité de l’approche de commande proposée. Pour cet 

objectif, nous avons utilisé le premier réseau RMC1 pour simuler le comportement 

de la machine à réluctance variable à travers ses caractéristiques angulaires et nous 

avons inséré le réseau RMC2 pour calibrer les excitations statoriques aussi bien en 

fonction de la position de consigne que de l’ampleur de la charge attelée, Fig.17. 
  
 

 

Fig.17- Synoptique général de l’utilisation de la MRVDS en positionneur par application de 

l’approche de commande proposée 

 

Les essais effectués consistent à charger à chaque fois la machine par une 

couple résistant bien déterminé et de faire varier successivement la consigne de 

positon. Le réseau neuronal RMC2 estime alors le niveau du courant statorique avec 

lequel il alimente la machine pour que son rotor s'immobilise à la position ciblée. 

Pour vérifier, par simulation cette position cible, nous avons représenté la machine 

par le réseau neuronal RMC1 qui décrit le comportement électromagnétique de 

celle-ci via ses caractéristiques angulaires.  
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Fig.18-Comparaison entre les positions de références et les positions atteintes 

 

Fig.19-Evolution des positions calculées en fonction des positions désirées 

Les résultats, Figs.18 et 19, mettent en relief l'efficacité de l'approche de 

commande proposée quant à l'utilisation des machines à reluctance variable à 

double saillance et montrent que la commande peut apporter des solutions efficaces 

pour atténuer considérablement les imperfections naturelles de la machine. 
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4. Conclusion: 

 

Le choix de MRV repose sur ses nombreux avantages, à savoir: excellentes 

performances dans des environnements extrêmes, structure simple du rotor, 

robustesse, sans bobines, ni aimants permanents, ni balais, ni étincelles sous les 

balais, capacité de surcharge élevée, faibles coûts de fabrication, réparation et 

maintenance et fonctionnement dans une large gamme de puissance.  

Dans ce papier, nous avons proposé une approche de commande pour 

l'exploitation de la machine à reluctance variable à double saillance en qualité 

d'actionneur de positionnement. Cette approche est basée sur les techniques de 

commande d’intelligence artificielle et particulièrement les réseaux de neurone 

artificiel. Les résultats obtenus témoignent du pouvoir potentiel que caractérise 

l'approche de commande proposée quant à l'exploitation des machines à réluctance 

variable dans le domaine de positionnement. 
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