
U.P.B. Sci. Bull., Series C, Vol. 80, Iss. 1, 2018 ISSN 2286-3540

ENTERPRISE FILE-SHARING SYSTEM WITH

LIGHTWEIGHT ATTRIBUTE-BASED ACCESS CONTROL

Zhi XIONG1, Ting GUO2*, Changsheng ZHU3, Weihong CAI4, Lingru CAI5

Attribute-based access control (ABAC) bases on attributes to define access

rules and relies on them to make authorization decisions. The existing ABAC

schemes have two deficiencies: low efficiency in rule execution and high difficulty in

rule writing. We propose a lightweight ABAC scheme. It uses Python logical

expression to describe access rule and uses the eval function to execute rule. We

also design some mechanisms to simplify rule writing. Test results show that our

rule can overcome the above two deficiencies. Based on the ABAC scheme and

Samba, we build an enterprise file-sharing system and present its access control

effect.

Keywords: attribute-based access control; file-sharing; lightweight; access rule

1. Introduction

An enterprise has a large quantity of documents, material, software and

other files that need to be shared between its employees. It is inconvenient to

share these files through Email or removable storage devices, so it is necessary to

build an enterprise file-sharing system. An enterprise usually has many employees

and therefore the system has many users. Consequently, for security reasons, the

system must control access to file resources. Furthermore, the system must be

easy to use. Specifically, it would be preferable if users can access the shared files

online and can use the system without installing additional client software and

without an advanced level of expertise.

Currently, mainstream file-sharing methods for an enterprise are: FTP,

NFS, Samba [1], and cloud storage. However, FTP is not convenient, because

users must first download files from file server then read them, and first modify

files then upload them to file server. NFS and Samba can solve the problem, and

they allow users to access files online. Thereinto, NFS client needs to be

1 Department of Computer Science, Shantou University, Shantou, Guangdong, China, e-mail:

zxiong@stu.edu.cn
2* Department of Computer Science, Shantou University, Shantou, Guangdong, China,

Corresponding author, e-mail: yb_yb163@163.com
3 Research Division, Shantou University, Shantou, Guangdong, China, e-mail: cszhu@stu.edu.cn
4 Department of Computer Science, Shantou University, Shantou, Guangdong, China, e-mail:

whcai@stu.edu.cn
5 Department of Computer Science, Shantou University, Shantou, Guangdong, China, e-mail:

lrcai@stu.edu.cn

mailto:zxiong@stu.edu.cn
mailto:yb_yb163@163.com
mailto:cszhu@stu.edu.cn
mailto:whcai@stu.edu.cn

16 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

Unix/Linux, but Samba client can be Windows. Especially, Windows users can

access the shared files in Samba through network neighborhood but need not to

install any client software. So, Samba is more suitable for an enterprise to share

files. Besides, many Internet operators provide enterprise cloud storage service,

also known as enterprise network disk. Despite the low cost of using enterprise

cloud storage, it has potential risk of data breaches because critical enterprise data

is placed on the operator's servers.

In the aspect of access control, Samba only supplies very simple control

scheme and lacks flexibility. Some products of enterprise cloud storage provide

basic access control function, but their control schemes mainly all adopt DAC

(Discretionary Access Control) or RBAC (Role-Based Access Control) model.

However, the two models cannot cope with the sharp increase of users and

resources and cannot supply fine-grained access control. ABAC (Attribute-Based

Access Control) [2] is a distinct access control model because it controls access to

resource by evaluating access rules against the attributes of the entities (such as

subject, resource and environment). Especially, if identity, role and resource

security level are also abstracted as entity attributes, ABAC model is able to

enforce traditional IBAC (Identity-Based Access Control), RBAC and MAC

(Mandatory Access Control) models, respectively. Because of this flexibility,

ABAC provides an ideal access control scheme for open network environment. If

applying ABAC to an enterprise file-sharing system, the access rules must meet

the following requirements: (i) every user operation needs access decision, so rule

parsing and execution cost must be small; (ii) the rules may be written by normal

users, so they must be easy and convenient to write; (iii) to achieve fine-grained

access control, the rules must have strong expressivity; and (iv) adding or deleting

user attributes (user attributes may be defined by administrator) should not need to

change system code, so rule description should be loosely coupled with system

code. Aimed at these requirements, we propose a lightweight ABAC scheme.

Based on the ABAC scheme and combined with Samba and other open-source

software, we build an enterprise file-sharing system. The system is not only safe,

but also easy to use. The rest of this paper is organized as follows. The related

works are introduced in Section 2. Section 3 gives system design. In Section 4, we

propose the lightweight ABAC scheme. Section 5 introduces system

implementation. Examples and tests are given in Section 6. Finally, we conclude

in Section 7.

2. Related Works

In ABAC, the description, expressivity and execution efficiency of access

rules are three key issues. XACML (eXtensible Access Control Markup

Language) is an attribute-based access control policy language and processing

model [3]. Many researches [4, 5, 6, 7] about ABAC all focus on XACML.

Enterprise file-sharing system with lightweight attribute-based access control 17

XACML uses XML (eXtensible Markup Language) to describe requests and

rules. However, it is very costly to generate and parse XML. In XACML, a rule

may trigger a set of rules, and these rules may give contradictory decisions, so

combining algorithm is used to arrive at a final access decision, and many works

[8, 9] study on it. This also introduces overhead. Furthermore, XACML uses

complex XML tags to describe rules, so it is hard for normal users to write rules.

Attribute-based encryption [10] is a type of public-key encryption in

which the secret key of a user and the ciphertext are dependent on attributes. In

such a system, the decryption of a ciphertext is possible only if the set of attributes

of the user key matches the attributes of the ciphertext [10]. So, attribute-based

encryption can be deemed as a kind of ABAC scheme. However, the expressivity

of its rule is very weak, because the rule just can express an entity with or without

some attributes but cannot compare an attribute with a number or string. Rule

engine [11] is a software system that executes some business rules in a practical

runtime environment. It enables enterprise policies and operational decisions to be

defined, tested, executed and maintained independently from application code

[11]. With the aid of rule engine, we can describe access control rules [12, 13].

However, rule engine is not designed specifically for access control, but it is a

very complicated system and its running overhead is excessive.

Some works [14, 15] themselves define the form of access rules, and

realize the parsing and execution of access rules. It is a significant amount of

work. They do not evaluate the execution efficiency of their schemes. ABAC is a

powerful access control model, but suffers from a few drawbacks, such as lower

decision efficiency and rule explosion [16]. Many works [5, 16, 17] introduce role

to ABAC and propose attribute- and role-based access control to solve these

problems. In this paper, we propose a lightweight ABAC scheme which

overcomes the two deficiencies of the existing ABAC schemes: low efficiency in

rule execution and high difficulty in rule writing. Moreover, its rule has strong

expressivity. Test results demonstrate the feasibility of our scheme.

3. System Architecture Design

The architecture of our system is given in Fig. 1. Specifically,

(i) Enterprise files are stored in MooseFS [18], which is a distributed file system.

User attributes and access rules are stored in MongoDB [19].

(ii) File-sharing system uses Linux server. We create a directory “/mnt/mfs” in the

server, and mount MooseFS to the directory by FUSE (Filesystem in

USErspace). In Samba, we share the directory.

(iii) Windows users can access the shared directory through

network neighborhood, and Linux users can access the shared directory

through smbmount. Users can manage user attributes and access rules by web

browsers.

18 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

(iv) File access, as well as attribute and rule management, must get permission

from access controller. The access controller makes decision according to

access rules.

Windows

Web
Browser

User Attributes

Access Rules

Users

Linux

Share
/mnt/mfs

Attribute and Rule
Management

Server

MongoDB

MooseFS

Managing
Server

Data
Server

Data
Server

...
/mnt/mfs

Samba

Mount
MooseFS to
/mnt/mfs

Directory FUSE

Web Server

Access Controler

File-Sharing System
Fig. 1. Architecture of enterprise file-sharing system

4. Lightweight ABAC Scheme

4.1. Entity and Entity Attribute

In our scheme, access rule allows the use of three entities: subject,

resource and environment. Subject denotes user. Resource is the file or directory

being accessed, and each resource corresponds to a unique path. Environment

denotes the context of the access, such as user IP address and access time.

Different types of enterprises need different user attributes, so our system

allow the enterprise to self-define subject attributes. The system has an

administrator user (admin), who has the highest permission level. Subject

attributes are defined by the administrator, and he is also responsible for

maintaining the attribute values of every user account. Resource attributes and

environment attributes are defined by the system. Resource attributes include

owner and security level. Environment attributes include user IP address, access

date and access time.

4.2. Permission Types

Access rules are made by the administrator or normal users. Excessive

permissions will make rule-making complex and prone to error, so we just define

three permissions: read, write and manage. Table 1 gives the corresponding

operations of each permission. The write permission for a directory is

meaningless, but we allow a file/directory inherits the permission from its parent

directory (see Section 4.6), so the write permission for a directory is still useful.

4.3. Rule Description

Each permission of each resource corresponds to an access rule. We use a

logical expression to describe an access rule. A rule may consist of subject,

Enterprise file-sharing system with lightweight attribute-based access control 19

resources and environment attributes, arithmetic, logical, relational and set

operators, numeric and string constants, and so on. The execution result of a rule

is a boolean value, and True denotes permission while False denotes denial.

Table 1

The corresponding operations of each permission

Resource Read Write Manage

Directory
List the files and directories

within the directory
\ Rename or delete the file/directory.

Modify the attributes or access

rules of the file/directory. File Read the file Write the file

In an access rule, an entity (namely subject, resource or environment) is

denoted by a dictionary variable, and an entity attribute is denoted by an item in

the dictionary. The key of item corresponds to attribute name, and the value of

item corresponds to attribute value. The reason why we use dictionary but not

class (the rule engine Drools uses class, see Section 6.1) to denote entity is that

the structure of a dictionary needs not to be defined in advance, but a class needs.

This way, we can add or delete some entity attributes without touching any system

code. We also provide that the subject, resource and environment are represented

by the variable S, R and E, respectively. For example,

(S['Username']==R['Owner']) or (E['UserIP']=='192.168.1.111')

and

(S['Title'] in ['Professor', 'Associate Professor']) and (R['SecurityLevel']<=2)

are two legitimate access rules.

4.4. Common Functions

In access rules, we can use the built-in functions of the programming

language, e.g., round and min. In order to further enhance rule’s expressivity, the

system also defines some common functions, and allow users to use these

functions in the rules. For example, RegExpMatch and WeekDay are two

functions defined by the system, RegExpMatch is regular expression matching

function, and WeekDay is used to get the day of the week. Then,

(RegExpMatch(E['UserIP'], '^192\.168\.1\.')) and (WeekDay(E['Date'])==5)

is a valid rule.

4.5. Rule Call

The intention of rule call is to facilitate the reuse and writing of rules. We

can store some frequently-used rules as callee rules, and call (namely contain)

them in the access rules of resource. This is somewhat similar to procedure call.

Each callee rule has a name, and we provide that a callee rule is called by using

“{#RuleName#}”. For example, there are two callee rules:

OwnerAceess: S['Username']==R['Owner'],

StaitcIP: RegExpMatch(E['UserIP'], '^192\.168\.1\.[1-9][0-9]$'),

javascript:void(0);

20 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

then

{#OwnerAceess#} and {#StaitcIP#}

is a valid rule.

As mentioned in Section 2, many works introduce role to ABAC so as to

overcome the disadvantages of ABAC. The function of role is easy to implement

through rule call. For example, the callee rule “CSStaff:

S['Department']=='Computer'” can be used to denote the role of “the staff in

computer science department”, and we can contain “{#CSStaff#}” in a rule to

authorize the role of “the staff in computer science department”.

4.6. Rule Inheritance and Reference

Enterprise files are usually organized into a tree-like hierarchical structure.

Moreover, we have the following considerations: (i) The permissions of a

resource (directory or file), most of the time, inherit the permissions from its

parent resource (directory); (ii) If one has read permission to a resource, he

usually has to have read permission to its parent resource; (iii) If one has write

permission to a resource, he usually also has write permission to its sub resources;

(iv) If one has write permission to a resource, he usually has to have read

permission to the resource; (v) Manage permission is similar to write permission.

Hence, the system defines three fields for each permission: inherit,

reference (read permission does not need this field) and rule. Field inherit and

reference hold values of the boolean type, and field rule holds a value of the string

type. For each permission of a resource, the relationship between the

combination of its field values and its final access rule is given in Table 2.
Table 2

The final access rule of each permission

Permission
Field

Final access rule
Inherit Reference Rule

Read

True \ Empty
The final access rule of read permission of its

parent resource (by default)

True \ Not empty
(The final access rule of read permission of its

parent resource) and (the value of rule)

False \ Empty True

False \ Not empty The value of rule

Write

and

Manage

True Empty
The final access rule of write/manage permission

of its parent resource (by default)

True Not empty

(The final access rule of write/manage

permission of its parent resource) or (the value

of rule)

False True The final access rule of read permission of itself

False False Empty True

False False Not empty The value of rule

Enterprise file-sharing system with lightweight attribute-based access control 21

The inheritance and reference mechanisms of access rules enable the rules

of the parent resource to be reused by the sub resources and enable the rule of read

permission to be reused by write and manage permission. It can not only

significantly reduce the storage space of rules, but also greatly reduce the

workload of rule-writing. In addition, for a permission, the case of “the value of

field inherit is True and the value of field rule is empty” is viewed as the default

case, under which we need not store its access rule. Because the case occurs

frequently, it can save a large amount of storage space.

By the way, each user operation just corresponds to a final access rule, that

is, each user operation just triggers one rule. So, unlike XACML, we do not need

combining algorithm to deal with rule conflict.

5. System Implementation

5.1. Rule Description Language and Rule Execution

We use Python logical expression to describe access rule. Due to the

flexibility and powerful expressivity of the Python language, its logical expression

can easily describe complicated access control rule. Moreover, as long as one

masters the basic syntax of Python, he can write access rules.

The eval function is used to execute an access rule. Since the rules are

written by users, we must prevent them to execute malicious code in the rules, for

example using “__import__ ("os").system(command)” to delete or modify system

files. Therefore, we do not allow “__import__” to appear in rules. Further, we

limit the variables and functions that can be used in the rules. The

eval(expression[, globals[, locals]]) function takes two extra arguments to allow

us to do this. In our scheme, the permissible variables are S, R and E, and the

permissible functions are Python built-in functions and the common functions

supplied by the system, such as RegExpMatch and WeekDay.

5.2. Storage of Entity Attributes and Access Rules

Environment attributes need not be stored, and they are dynamically

generated. Subject attributes and resource attributes are stored in MongoDB,

which is an open-source document database. In MongoDB, a collection is similar

to a table in relational databases, and a record in collection is a document which is

a data structure composed of field and value pairs.

Resource attributes and access rules are stored together in the same

collection, and a resource may correspond to a document in the collection. For

example, the document for the root of the shared directory is:

{

Path: “/”, Owner: “admin”, SecurityLevel: 3,

Rules: {

read: {inherit: False, rule: “S['Username']=='admin')”},

22 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

write: {inherit: False, reference: True},

manage: {inherit: False, reference: True},

}

}

5.3. Access Controller

Samba is written in the C language and access rules are Python logical

expression, so we need a cross-language service development framework to

implement access controller. The Apache Thrift [20] is such a software

framework, and it supports many languages, including C, PHP and Python. By

using Thrift, we only need to define service interface in a .thrift file, then compile

the file to source code by Thrift compiler. The generated code can be used to

easily build RPC (Remote Procedure Call) clients and servers that communicate

seamlessly and efficiently across programming languages. So we use Thrift

framework to develop access controller.

In the service interface of the access controller, we just need to define one

service method that returns a boolean value. The service interface is as follows:

service AccessControl {

bool CheckPermission(1: string username, 2: string userip,

3: string resourcepath, 4: string permission)

}

The CheckPermission method checks permission by calling the recursive method

Decision(resourcepath, permission, S, E). The two methods are written in Python.

5.4. Permission Check in Samba

In our system, the version of Samba is 4.4.9. In the

NTSTATUS smbd_check_access_rights(struct connection_struct *conn, const

struct smb_filename *smb_fname, bool use_privs, uint32_t access_mask)

function of smbd/open.c file, we add some code to check permission. Specifically,

we call the CheckPermission method in the AccessControl service interface via

Thrift. It’s worth mentioning that we can distinguish user operation according to

access_mask and some rights bits, such as SEC_FILE_READ_DATA,

SEC_FILE_WRITE_DATA, SEC_DIR_LIST, and SEC_STD_DELETE. If the

returned value is False, the smbd_check_access_rights function returns

NT_STATUS_ACCESS_DENIED denying this access. In addition, our permission

check does not affect the permission check done by Samba itself.

6. Examples and Tests

In this section, we first, combined with practical examples, compare our

ABAC scheme with two popular ABAC schemes, namely XACML and rule

engine, then we present the access control effect of our system. Note that,

Enterprise file-sharing system with lightweight attribute-based access control 23

attribute-based encryption is also a kind of ABAC scheme, but its expressivity of

rule is very weak (see Section 2), so we do not compare our scheme with it.

6.1. Rule Writing

Suppose we want to describe the rule: user’s username equals resource’s

owner and user’s IP address matches a regular expression.

In our scheme, the rule can be described as follows:

(S[‘Username’]==R[‘Owner’]) and

(RegExpMatch(E['UserIP'], '^192\.168\.1\.[1-9][0-9]$'))

In XACML, the main code of the policy file that describes the rule is as

follows. It can be seen that the rule-writing in XACML is very difficult.

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">

<SubjectAttributeDesignator AttributeId="Username"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">

<ResourceAttributeDesignator AttributeId="Owner"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

… For the limitation of space, this part is omitted.

</Apply>

</Apply>

Drools [21] is an open-source rule engine in Java. If describing the rule in

Drools, the main code of the rule file is as follows. We can see that it is easy to

describe rules in Drools. However, Drools uses class to denote entity. The

structure of a class needs to be defined in advance, so when we add or delete some

entity attributes, we have to change system code.

when

$S:Subject()

$R:Resource(owner == $S.username)

$E:Environment(userIP matches "^192.168.1.[1-9][0-9]$")

then

drools.getWorkingMemory().setGlobal("Result", new Boolean(true));

The three schemes all not only allow us to use various types of variables,

various types of operators, regular expression, etc., in the rules, but also allow us

to self-define functions, so the expressivity of their rules is very strong. However,

the rule-writing in our scheme is more concise and clear.

https://www.baidu.com/link?url=B_wUiyjFJ_3FYbzf1DSthrzNWjzwrQhxjsrhFcURigLBxX3tJ3Hj-sWc4xo6QMMOuQxPdmwC1Hwul08-uShHfq&wd=&eqid=a464521000004c2a0000000658c7f6e3

24 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

6.2. Rule Execution Efficiency

We also use the three schemes to describe the following rule: user’s

position is manager and resource’s security level is no more than 2. This rule is

denoted as Rule 2, and the rule in Section 6.1 is denoted as Rule 1. We test the

execution time of the two rules in the three schemes on a PC, which runs

Windows 7 64bit with Intel Core i5-3470S CPU and 4G memory. The

implementation of XACML we used is Sunxacml [22], which is open-source and

written in the Java language. The version of Sunxacml, Drools and Java is 2.0,

6.5.0. Finally, and 1.7.0_80, respectively. In our system, the version of Python is

3.6.0. Table 3 gives the test results. When we test the rule execution time in

Sunxacml and Drools, the rules are stored in files. However, the time of reading

rule file is just about 1ms, so it can be ignored.
Table 3

Rule execution time

Rule
Execution time (ms)

Sunxacml Drools Our scheme

Rule 1 417 1531 0.03

Rule 2 413 1492 0.02

The rule execution in Sunxacml and Drools is costly, because they need to

parse complex rule. In contrast, our scheme needs not parse complex rule (it is

very easy to handle rule call), but executes the rule directly, so the execution cost

is very small. Specially, Drools is not designed specifically for access control, but

is a powerful hybrid reasoning system, so it is very complicated and costly.

6.3. Access Control Effect

We test the access control effect of our system on a Windows 7 client.

First of all, it is important to note that we can access the shared files through

network neighborhood on Windows systems but need not to install any

client software. Fig. 2 to 4 give the test results.

Fig. 2. Login Fig. 3. Have no permission to write a file

Enterprise file-sharing system with lightweight attribute-based access control 25

Fig. 4. Have no permission to read a file/directory

Fig. 2 is the login dialog box shown by the OS (Operating System). The

login validation is done by Samba, but not our system. If we have no permission

to write a file, when we have modified the file and try to save it, the OS will

pop up a “Save as” dialog box. If we try to overwrite the original file forcibly, the

OS will refuse us to write the file and give the dialog box as Fig. 3 shows. If we

have no permission to read a file or directory, but try to read it, the OS will deny

our operation and pop up the dialog box as Fig. 4 shows.

For the limitation of space, we do not present more test screenshots.

To sum up, our system can enforce access control for the read, write, delete,

rename, and so on operations of files and directories

7. Conclusions

In this paper, aimed at the requirements of enterprise file-sharing system,

we propose a lightweight ABAC scheme. It uses Python logical expressions to

describe access rules, and directly uses the eval function to execute rules.

Common function mechanism is used to enhance rule’s expressivity. We also

design some mechanisms to simplify and facilitate the writing of rules, including

rule call, inheritance and reference. Based on the ABAC scheme, Samba and other

open-source software, we build an enterprise file-sharing system. We give the

implementation method of access controller and permission check. The test results

show that, in our scheme, the access rule not only has strong expressivity and

small execution cost, but also is more concise and easy to write. The test results

also show that our system can exactly enforce access control according to access

rules. In conclusion, our system is not only safe, but also easy to use.

R E F E R E N C E S

[1] The Samba Team. Samba. https://www.samba.org/.

[2] V.C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller and K. Scarfone. Guide to

Attribute Based Access Control (ABAC) Definition and Considerations. NIST Special

Publication 800-162, NIST, 2014.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf.

[3] R. Cover. Extensible Access Control Markup Language (XACML), 12 December 2009,

http://xml.coverpages.org/xacml.html.

[4] S.M. Park and S.M. Chung. Privacy-Preserving Attribute-Based Access Control for Grid

https://www.samba.org/

26 Zhi Xiong, Ting Guo, Changsheng Zhu, Weihong Cai, Lingru Cai

Computing. International Journal of Grid and Utility Computing, 2014, vol. 5, no. 4, pp. 286-

296.

[5] X. Jin, R. Sandhu and R. Krishnan. RABAC: Role-Centric Attribute-Based Access Control.

In Proceedings of International Conference on Mathematical Methods, Models, and

Architectures for Computer Network Security, 2012, Lecture Notes in Computer Science,

vol. 7531, pp. 84-96.

[6] M. Hüffmeyer and U. Schreier. Formal Comparison of an Attribute Based Access Control

Language for RESTful Services with XACML. In Proceedings of the 21st ACM on

Symposium on Access Control Models and Technologies, 2016, pp. 171-178.

[7] I. Ray, T.C. Ong, I. Ray and M.G. Kahn. Applying Attribute Based Access Control for

Privacy Preserving Health Data Disclosure. In Procceedings of 3rd IEEE EMBS International

Conference on Biomedical and Health Informatics, 2016, pp. 1-4.

[8] D. Xu, N. Shen and Y. Zhang. Detecting Incorrect Uses of Combining Algorithms in XACML

3.0 Policies. International Journal of Software Engineering and Knowledge Engineering,

2015, vol. 25, no. 09n10, pp. 1551-1571.

[9] J. Crampton and C. Williams. On Completeness in Languages for Attribute-Based Aaccess

Control. In Proceedings of ACM Symposium on Access Control Models and Technologies,

2016, pp. 149-160.

[10] V. Goyal, O. Pandey, A. Sahai and B. Waters. Attribute-Based Encryption for Fine-Grained

Access Control of Encrypted Data. In Proceedings of ACM Conference on Computer and

Communications Security, 2006, pp. 89-98.

[11] Wikipedia. Business Rules Engine. https://en.wikipedia.org/wiki/Business_rules_engine.

[12] M. Yu, X. Ding, X. Wang and Y. Gong. The Design of Intelligent Access Control Systems

Based on Jess. In Proceedings of International Conference on Advances in Computer

Science, Environment, Ecoinformatics, and Education, 2011, pp. 57-62.

[13] Z. Xiong, J. Xu, G. Wang, J. Li and W. Cai. UCON Application Model Based on Role and

Rule-Engine. Computer Engineering and Design, 2013, vol. 34, no. 3, pp. 831-836.

[14] L. Zhang, X. Wang, W. Dou and D. Liu. Acess Control Method Based on Fuzzy ECA Rules

for Pervasive Computing Environments. Computer Science, 2013, vol. 40, no. 2, pp. 78-83.

[15] J. Zhong and S. Hou. Attribute-Based Universal Access Control Framework in Open

Network Environment. Journal of Computer Applications, 2010, vol. 30, no. 10, pp. 2362-

2365, 2640.

[16] H. Xiong, X. Chen, X. Fei and H. Gui. Attribute and RBAC-Based Hybrid Access Control

Model. Application Research of Computers, 2016, vol. 33, no. 7, pp. 2162-2169.

[17] V. Varadharajan, A. Amid and S. Rai. Policy Based Role Centric Attribute Based Access

Control Model Policy RC-ABAC. In Proceedings of International Conference on Computing

and Network Communications, 2015, pp. 427-432.

[18] Core Technology, Inc. MooseFS. https://moosefs.com/.

[19] MongoDB, Inc. MongoDB. http://www.mongodb.org/.

[20] Apache Software Foundation. Apache Thrift. http://thrift.apache.org/.

[21] Red Hat, Inc. Drools. https://www.drools.org/.

[22] SourceForge. Sun's XACML Implementation. http://sunxacml.sourceforge.net/.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Indrajit%20Ray.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Michael%20G.%20Kahn.QT.&newsearch=true
https://en.wikipedia.org/wiki/Business_rules_engine
http://www.apache.org/
http://thrift.apache.org/
http://sunxacml.sourceforge.net/

