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We point out new applications of earlier results on constrained extension of linear 

operators.  In section 2, similar results with respect to previous ones on the Riesz 

decomposition property, but now for arbitrary linear bounded operators are proved.  

Increasing continuous sublinear dominating operators play a central role in both sections 2 

and 3. In section 3, decomposition as differences of positive bounded linear operators is 

investigated. Under appropriate assumptions, one proves that the space of all 

bounded linear operators from  into  is an order complete Banach lattice. Finally, 

section 4 focuses on a constrained optimization problem. 
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1. Introduction 

Using Hahn – Banach type results in proving several other main theorems in 

functional analysis and their consequences is a well - known technique. Most of 

the works in the References of the present article contain more or less direct 

applications of Hahn-Banach principle, or proofs of extension - results similar to 

Hahn-Banach theorem. For terminology and results related to Sections 2 and 3 of 

the present work see [1] - [5].  Constrained extension type results for linear 

operators have been intensively applied in solving moment problems, especially 

in solving Markov moment problem and related problems (see [6], [10]-[15] and 

many other works). Uniqueness and construction of the solutions of Markov 

moment problems are partially solved in [7] and [11]. In [8], a necessary and 

sufficient condition for the existence of a linear extension of a linear operator, 

preserving two constraints is stated and partially proved. Some consequences are 

formulated in the same work, without proofs. Complete proofs of these results 

(and of many other related theorems) can be found in [9]. Applications to the 

abstract moment problem are stated in [10]. Further applications to the classical 

                                                           
1
 Prof., Dept.of Mathematics, University POLITEHNICA of Bucharest, Romania, e-mail: 

olteanuoctav@yahoo.ie 
2
 Associated Professor, Ecological University of Bucharest, Romania, email: 

janinamihaelamihaila@yahoo.it 



134                                      Octav Olteanu, Janina Mihaela Mihaila 

moment problem are proved in [6], [11] – [15]. The article [13] contains a 

polynomial approximation result valid on unbounded subsets, whose proof is 

using Hahn – Banach theorem. The first purpose of this paper is to prove similar 

results to those from [4] (respectively from [5]), but for spaces of bounded linear 

operators. Namely, one assumes that the target space  is an order complete 

(Dedekind complete) normed vector lattice. The domain space  is an arbitrary 

normed vector lattice. Thus, one obtains new statements for theorems 2.1, 3.1 [4] 

and respectively theorems 1, 2 [5] (see section 2). All the theorems in Section 2 

refer to applications of Hahn-Banach type results to the Riesz decomposition 

property in spaces of linear continuous operators. For similar previous results on 

this subject, see [3] - [5], [16] - [19]. It is possible that some of the extension 

results of section 2 to be partially known. In this case, the contribution of Section 

2 of the present paper is to give new simple proofs for such results, based on a 

general earlier result mentioned above [8], [9]. The second purpose of this work is 

to point out the possibility of decomposition of each element of an equicontinuous 

family of linear operators as a difference of positive linear operators, such that the 

corresponding families of the latter (positive) linear operators to be 

equicontinuous too (section 3). Uniform evaluation of the norms is studied too.  

Both Sections 2 and 3 are based on the idea of the existence of a dominating 

increasing sublinear continuous operator. In the end of section 3, under 

appropriate assumptions, one proves that the space  of all bounded linear 

operators from  into  is a Dedekind complete Banach lattice. A characteristic of 

the present work which is new is that of proving results valid for   Similar 

(but not identical) previous results are proved for the spaces  (the space of 

all linear regular operators from  into  , that is the space of those operators 

which can be written as a difference of two linear positive operators) and 

, the space of all operators which are differences of  linear continuous 

positive operators. Finally, the third purpose of this work is to solve constrained 

optimization problems in infinite dimensional spaces, related to special Markov 

moment problems [7] (Section 4). The background of the present work consists in 

some chapters from [16] – [19]. The rest of the article is organized as follows. 

Section 2 is devoted to Riesz decomposition property in spaces of bounded linear 

operators and related results. In Section 3, decomposition of linear bounded 

operators as differences of positive linear bounded operators is investigated. The 

equicontinuity of the resulting families of linear positive operators is investigated 

too. Under additional assumption on the target space  one proves that the space 

of all linear bounded operators  is an order complete Banach lattice. 

Section 4 focuses on a constrained optimization problem in infinite dimensional 

spaces. Section 5 concludes the paper. 
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2. On Riesz decomposition property for linear bounded operators 

We start this section by recalling some known results on the subject. A 

conjecture posed by A. W. Wickstead [3] found a positive answer (Theorem 3.1 

[4]). This theorem is a consequence of the following extension – type result.  

Theorem 2.1  (see [2], Th. 3.5 and [4], Th. 2.1). Let    and  be Banach lattices, 

such that  is separable and  has the countable interpolation property, and let 

 be a continuous sublinear operator. If  is a vector subspace of X and 

U  is a linear continuous operator satisfying  for all  

then there exists a linear extension  of  to all of  also satisfying  

for all  

Using Theorem 2.1, in [4] one proves the following main positive answer to the 

conjecture mentioned above. 

Theorem 2.2 (see [4], Th. 3.1). Let  be two Banach lattices such that  is 

separable and  has the countable interpolation property. Then the space of all 

continuous regular operators  has the Riesz decomposition property. 

For statements and proofs of the above theorems formulated in a more general 

setting see [5]. We recall our necessary and sufficient condition on the extension 

of a linear positive extension, which generalizes H. Bauer’s theorem ([19], 

Theorem V. 5.4; see also [8], [9], [10]). 

Theorem 2.3 (see [8], Th. 2 and [9], Th. III. 2). Let  be a preordered vector 

space of positive cone   an order complete vector lattice,  a convex 

operator,  a vector subspace, U  a linear operator. The following 

statements are equivalent: 

(a)  admits a linear positive extension   such that  

 

(b)  for all  such that  

Theorem 2.3 was published firstly in [8], without proof. Its detailed proof and 

related results can be found in [9] (see [9], p. 978 – 980).   In the sequel, we 

deduce some new results from this theorem.  

Corollary 2.1.  Let   be as in Theorem 2.3. Assume that  verifies the 

additional condition:  for all  such that  The 

following statements are equivalent: 

(a)  admits a linear positive extension   such that  

 

(b)  for all  
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Proof. The implication (a)⇒(b) is obvious. To prove the converse, we apply the 

implication (b)⇒(a) of Theorem 2.3. Namely, due to the assumption on  the 

following relations hold 

 for all  such that  

Thus, condition (b) from Theorem 2.3 is verified. Application of the latter 

theorem leads to the conclusion of the Corollary 2.1. The proof is finished.  □                                                             

Corollary 2.2. Corollary 2.1 is valid in the particular case when the following 

stronger condition on  holds:  for all  such that 

 

Example 2.1. Let  be as above. Assume that  is a vector lattice. Let  

be a positive linear operator. Then  defined by , is 

a sublinear operator which verifies the monotony condition from Corollary 2.2. 

Corollary 2.3. Let  be normed vector lattices, such that  is order complete, 

 a sublinear continuous operator satisfying the monotony condition from 

Corollary 2.2. Let  be as in the statements of corollaries 2.1, 2.2. The 

following statements are equivalent 

(a)  admits a linear bounded positive extension   such that  

 

(b)   for all . 

Observe that Corollary 2.3 follows directly from Corollary 2.2. The continuity of 

 is a consequence of continuity of  and of the relation   on  Also,   

completeness with respect to the corresponding norms seems to be not important. 

In the sequel, we prove the main result of this section. It shows that in the case 

when  are normed vector lattices, such that is order complete, the space 

 of all bounded linear operators from  into  has the Riesz 

decomposition property. Observe that contrary to Theorem 3.1 [4], the concerned 

operators from Theorem 2.4 are not assumed to be regular. The proof is based on 

Corollary 2.3 and also on the ideas of the proof of Theorem 3.1 [4], without 

repeating technical details which remain unchanged. In the sequel,  will be an 

arbitrary normed vector lattice. 

Theorem 2.4. Let  be normed vector lattices, such that  is order complete. 

Then the space  has the Riesz decomposition property. 

Proof. Let  be linear bounded positive operators from  into  such that 

 
We have to prove the existence of two linear operators  with the 

properties 
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Consider the normed vector lattices  with the canonical order and 

norm, and  Define  

 
Obviously,  is a sublinear operator. Moreover, it is an increasing operator, 

satisfying the monotony condition from corollary 2.2 (it is the sum of two such 

linear operators, defined in example 2.1). Since the lattice operations on  are 

continuous and  are bounded,  is continuous too. Consider the subspace  

of  defined by  and define  by 

  is a linear continuous operator and, as in the proof of 

Theorem 3.1 [4], one shows that 

 
Thus  on  Application of Corollary 2.3 leads to the existence of a linear 

positive (continuous) extension  of  to the whole space  such that 

 
Define 

 

 
By the proof of theorem 3.1 [4],  are the desired operators. Moreover, from 

the previous relations   one deduces easily that 

 (one uses the fact that the norms on  are 

solid: ). The proof is finished.                     □        

 

3. Decomposition of a bounded linear operator as a difference of two 

positive bounded linear operators 

In this section we characterize the property of decomposition of a linear 

operator dominated on the positive cone by an increasing continuous sublinear 

operator, as a difference of two linear positive continuous operators. Related 

results on equicontinuous families of operators are mentioned too.  

Theorem 3.1 (see [8], Th. 3 and [9], Th. III. 4). Let  be as in theorem 2.3, 

 a linear operator. The following statements are equivalent 

(a)  admits a decomposition , with  positive linear 

operators such that  

(b)  for all  such that  

Theorem 3.1 was stated for the first time in [8]. Its detailed proof can be found in 

[9], p. 982-983.  

Corollary 3.1. Let  be normed vector lattices, such that  is order complete, 

 a sublinear continuous increasing operator on the positive cone  

(  for all  such that  Assume additionally 



138                                      Octav Olteanu, Janina Mihaela Mihaila 

that Let  be an equicontinuous family of bounded 

linear operators from  into  The following statements are equivalent 

(a) there exist two equicontinuous families  of linear 

bounded positive operators such that  on  for 

all  

(b)  

Proof. We only have to prove that  since the converse is obvious. Let 

 be such that  

Then from (b) and the monotony property of  we derive: 

 Theorem 3.1 ensures the existence of positive 

linear operators  such that  on  Now 

 

 
Since the norms on  are solid, one deduces that  

 
The continuity of  and  at the origins of  respectively leads to the 

continuity of  at . Hence, there exists a radius  such that 

 for all  with  From the relations written two lines 

above, we infer that  for all  such that  and for all 

 Thus, the family  is equicontinuous. Since  was assumed to 

be equicontinuous and  it follows that  is 

equicontinuous too. This concludes the proof.                                  □            

Corollary 3.2. Let   be as in corollary 3.1, and   a 

(bounded) positive linear operator applying  into   The following statements 

are equivalent 

(a) there exist two equicontinuous families  of linear 

bounded positive operators such that  

 (in particular ); 

(b)   

Proof. One applies corollary 3.1 to  defined by  It is easy 

to see that  verifies all conditions from the statement of corollary 3.1, and  

on the positive cone  . The conclusion follows.                                  □               
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Remark 3.1. The set of all sublinear operators  which are monotone on 

 in the sense specified in corollary 3.1, and have the property 

, is closed with respect to the addition and “sup” – 

operations. 

A question which appears naturally is the following one: which are concrete 

sublinear operators verifying the two conditions mentioned in corollary 3.1 and 

how such examples can be applied? A partial answer was given in [9], theorem 

III. 5, p. 983. Now we prove a similar result, adapted to the case of normed vector 

lattices setting. In this particular case, an evaluation of a common upper bound for 

 is deduced.  

Corollary 3.3. Let  be normed vector lattices, such that  is order complete, 

it has an order unit  and its unit ball is the order interval  Let  

be an equicontinuous family of bounded linear operators from  into  There 

exist two equicontinuous families  of linear bounded positive 

operators such that 

  

where  is sufficiently small such that  In 

particular,   

Proof.  For  hence  that is 

 
Apply Corollary 3.1 to ,  Since the norm on  is solid and 

symmetric, it is clear that the sublinear operator  has the two properties 

mentioned in the statement of corollary 3.1. Application of the latter corollary 

shows that   Replacing  by  one obtains 

  Now the relations  

follow from the fact that the norm of  is solid too. This concludes the proof. □        

Corollary 3.4. Under the hypothesis and with the notations from Corollary 3.3, if 

 then   

Example 3.1. Let 

 
Then it easy to see that  One obtains 
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It is easy to see that  So this 

example shows that the case  may occur, while in 

general,  

For two normed vector lattices  recall that one denotes by  the space 

of all linear regular operators from  into  (that is the space of those operators 

which can be written as a difference of two linear positive operators). By  

one denotes the space of all operators which are differences of linear continuous 

positive operators. 

Theorem 3.2. Let  be Banach lattices, such that  is order complete, has an 

order unit  and its unit ball is equal to the order interval  Then we 

have  and the space  is an order complete 

Banach lattice with respect to the operatorial norm. 

Proof. Relation  follows from Corollary 3.3 (or from 

Corollary 3.4). The converse inclusion - relation is obvious, so that the equality  

 is proved. On the other hand, Proposition 1.3.5 [17] claims 

that every positive linear operator applying a Banach lattice  into a normed 

vector lattice  is continuous. Hence  Thus, 

 Application of Theorem 1 from [16], p. 162 – 

163, proves that  is an order complete vector lattice. Hence  has 

the same property with respect to the usual order relation. It is also a Banach 

space with respect to the usual operatorial norm, since  is a Banach space, hence 

it is complete as a metric space. It remains to prove that  is a Banach 

lattice, that is: 

 
This assertion is equivalent to the fact that the unit ball of the space  

(which will be denoted by ), is a solid subset: 

 Since  also using the 

assumptions on  as well as the formula for computing  in the space 

 proved in [16], Proposition 3, p. 164, we derive that 

 
(we have used the fact that the norm on  is solid, and also the relation 

). The norm on  being also solid, one deduces: 

 
that is  Thus  is solid, and so is the norm on  This concludes the 

proof.     □ 

Corollary 3.5. Let  be as in Theorem 3.2. Then  is Archimedean and 

has the Riesz decomposition property. 
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4. A Markov moment problem and related optimization 
 

This Section starts by recalling briefly one of the earlier extension type 

results [10] and, on the other hand, by formulating one main problem due to 

Douglas Todd Norris’ PhD Thesis, entitled “Optimal Solutions to the L_infinity  

Moment Problem with Lattice Bounds” [7], directed by Professor Emeritus 

Robert Kent Goodrich. The latter work suggested us the results of this section. 

One proves a result in a general setting, motivated by a similar problem to that 

considered in [7] (theorem 4.2 from below). A constrained related optimization 

problem in infinite dimensional spaces is solved too. The next result refers to the 

abstract moment problem [10], and is based on constrained extension theorems for 

linear operators [8], [9]. It will be applied in the sequel. 

Theorem 4.1. Let X
~

 be a preordered vector space with its positive cone X
~

, Y 

an order complete vector lattice, Xx Jjj
~

}{   , Yy Jjj }{  given families, 

),
~

(, 21 YXLUU   two linear operators. The following statements are equivalent: 

(a) there exists a linear operator ),
~

( YXLU   such that 

JjyxUXxxUxUxU jj   ,)(,
~

),()()( 21 ; 

(b) for any finite subset JJ 0  and any RJjj   0
}{ , we have: 

)()(
~

,, 1122

0

2112

0

 UUyXx jj

Jj

jj

Jj
















 






. 

In particular, using the latter theorem, one obtains a necessary and sufficient 

condition for the existence of a feasible solution (see theorem 4.2 from below). 

Under such condition, the existence of an optimal feasible solution follows too. 

On the other hand, the uniqueness and the construction of the optimal solution 

seems to be not obtained easily by such general methods. Therefore, we focus 

mainly on the existence problem. For other aspects of such problems on an 

optimal solution (uniqueness or non – uniqueness, construction of a unique 

solution, etc.), see [7]. In the latter work, one considers the following primal 

problem (P) 









 


   0,,,2,1,),(:||||inf njbdXLv jj
X

  
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where ,  are in )(XL , n
jj 1}{   is a subset of )(1 XL  and 

nT
nbbbb R ),,,( 21  . The function   is unknown, and in general it is not 

determined by a finite number of moments. The next theorem generalizes some of 

the above existence – type results for a feasible solution. Here is a measure 

space endowed with a  finite positive measure  and  is the algebra of 

all measurable subsets of  

Theorem 4.2. Let ),1[ p  and q be the conjugate of p. Let Jjj  }{   be an 

arbitrary family of functions in )(XLp
 , where the measure   is   – finite, and 

Jjjb }{  a family of real numbers. Assume that )(, XLq
   are such that 

0 . The following statements are equivalent: 

(a) there exists )(XLq
   such that jj

X
bd  , 0 ; 

(b) for any finite subset JJ 0  and any ,  the following 

implication holds 

  ddbXL
XX

jj

Jj

p
jj

Jj

12

0

2112

0

))((,,  







Moreover, the set of all feasible solutions   (satisfying the conditions (a)) is 

weakly compact with respect the dual pair ),( qp LL  and the inferior 

qjj
X

q
q JjbdXLv ||||0,,),(:||||inf:   









   

is attained at an optimal feasible solution 0  at least. 

Proof. Since the implication (a)   (b) is obvious, the next step consists in 

proving that (b)   (a). Define the real valued linear positive (continuous) forms 

21,UU  on )(:
~

XLX p
 , by 

XdUdU
XX

~
,:)(,:)( 21    . 

Then condition (b) of the present theorem coincides with condition (b) of theorem 

4.1. A straightforward application of the latter theorem, leads to the existence of a 

linear form U on X
~

, such that the interpolation conditions jj bU )( , Jj  

are verified and 

  XdUd
XX

~
,)(   . 
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In particular, the linear form  is positive on )(
~

XLX p
 , and this space is a 

Banach lattice (in particular, X
~

 is a complete metric topological vector space and 

an ordered vector space, whose positive cone X
~

 is closed and generating). It is 

known that on such spaces, any linear positive functional is continuous (cf. [19], 

ch. V, sect. 5). The conclusion is that  can be represented by means of a 

nonnegative element )(XLq
  . From the previous relations, we derive 

  Xddd
XXX

~
,   . 

Writing these relations for B  , where B  is an arbitrary measurable set of 

positive measure )(B , one deduces 

0)(,,0)(,0)(   BSBdd
BB

 . 

Then a standard measure theory argument shows that   a.e. This finishes 

the proof of (b)   (a). To prove the last assertion of the theorem, observe that the 

set of all feasible solutions is weakly compact by Alaoglu’s theorem (it is a 

weakly closed subset of the closed ball centered at the origin, of radius q||||  ). On 

the other hand, the norm of any normed linear space is lower weakly semi - 

continuous. The conclusion is that the norm q||||   is weakly lower semi-

continuous on the weakly (convex) and compact set described at point (a), so that 

it attains its minimum at a function 0  of this set. Hence, there exists at least one 

optimal feasible solution. This concludes the proof.                                    □    

Remark 4.1. If the set  is total in the space )(XLp
 , then the set of all 

feasible solutions is a singleton, so that there exists a unique solution. 

 

5. Conclusions 

 

We have proved new results or gave modified statements and proofs for theorems 

similar to previous ones, by means of earlier theorems on extension and 

decomposition of linear operators. It is possible that further related applications 

can be found particularizing the theorems proved above to concrete spaces. An 

optimization problem related to Markov moment problem is discussed as well. 
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