

SOME PROPERTIES OF APPROXIMATELY DUAL CONTINUOUS g -FRAMES IN HILBERT SPACES

Azam YOUSEFZADEHEYNI¹, Mohammad Reza ABDOLLAHPOUR²

In this paper, we introduce the notion of approximately dual continuous g -frames in Hilbert spaces and investigate some of their properties. Furthermore, we study relations between approximately dual continuous g -frames and dual continuous g -frames, and between approximately dual continuous g -frames and g -duals. Also, we introduce the concepts of Γ -approximate dual continuous g -frames and $(\Gamma, \|\Gamma\|)$ -approximate dual continuous g -frames, where $\Gamma \in B(H)$. Finally, we discuss Q -duals and Q -approximate dual continuous g -frame, where $Q \in B(\tilde{K})$.

Keywords: continuous g -frame, approximately dual continuous g -frame, dual continuous g -frame, g -dual, Q -dual.

MSC(2010): primary: 42C15; secondary: 47A05, 42C40.

1 Introduction

The concept of frame for a Hilbert space was introduced by Duffin and Schaeffer [8] in 1952. They used frames as tools in the study of nonharmonic Fourier analysis. In 2006, the g -frame as a generalization of frame was introduced and investigated by Sun [19]. The notion of continuous frames was introduced by Kaiser in [12] and independently by Ali, Antoine and Cazeau [3]. Gabardo and Han in [9] defined the concept of dual frames for the continuous frames. In 2008, the notion of continuous g -frame was introduced by Abdollahpour and Faroughi [1]. Approximately dual frames were defined by Christensen and Laugesen in [5].

Throughout this paper, H is a complex Hilbert space, (Ω, μ) is a measure space with positive measure μ and $\{K_w\}_{w \in \Omega}$ is a family of Hilbert spaces. We denote the space of all bounded linear operators from H into K_w by $B(H, K_w)$ and we denote $B(H, H)$ by $B(H)$.

Definition 1.1. *Let $F \in \prod_{w \in \Omega} K_w$. We say that F is strongly measurable, if F as a mapping of Ω to $\bigoplus_{w \in \Omega} K_w$ is measurable, where*

¹ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran, E-mail: azamyousefzadeh@gmail.com; azam_yousefzadeh@yahoo.com

² Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran, E-mail: mrabdollahpour@yahoo.com; m.abdollah@uma.ac.ir

$$\prod_{w \in \Omega} K_w = \{f: \Omega \rightarrow \bigcup_{w \in \Omega} K_w : f(w) \in K_w\}.$$

Definition 1.2. We say that $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ is a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$ if

- (1) for each $f \in H$, $\{\Lambda_w f\}_{w \in \Omega}$ is strongly measurable,
- (2) there are two constants $0 < A_\Lambda \leq B_\Lambda < \infty$ such that

$$A_\Lambda \|f\|^2 \leq \int_{\Omega} \|\Lambda_w f\|^2 d\mu(w) \leq B_\Lambda \|f\|^2, \quad f \in H. \quad (1.1)$$

We call A_Λ and B_Λ the lower and upper continuous g -frame bounds, respectively. Λ is called an A_Λ -tight continuous g -frame if $A_\Lambda = B_\Lambda$ and a Parseval continuous g -frame if $A_\Lambda = B_\Lambda = 1$. If the right hand inequality in (1.1) holds for all $f \in H$, we say that Λ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ with the bound B_Λ .

Proposition 1.3. [1] Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$. Then, there exists a unique positive and invertible operator $S_\Lambda : H \rightarrow H$ such that for each $f, g \in H$,

$$\langle S_\Lambda f, g \rangle = \int_{\Omega} \langle \Lambda_w^* \Lambda_w f, g \rangle d\mu(w),$$

and $A_\Lambda I_H \leq S_\Lambda \leq B_\Lambda I_H$, where I_H is the identity operator on H .

The operator S_Λ is called the continuous g -frame operator of Λ . Also, we have

$$\langle f, g \rangle = \int_{\Omega} \langle S_\Lambda^{-1} f, \Lambda_w^* \Lambda_w g \rangle d\mu(w) = \int_{\Omega} \langle f, \Lambda_w^* \Lambda_w S_\Lambda^{-1} g \rangle d\mu(w), \quad f, g \in H. \quad (1.2)$$

Let the space

$$\widehat{K} = \{F \in \prod_{w \in \Omega} K_w : F \text{ is strongly measurable, } \int_{\Omega} \|F(w)\|^2 d\mu(w) < \infty\}.$$

Obviously, \widehat{K} is a Hilbert space with pointwise operations and the inner product given by

$$\langle F, G \rangle = \int_{\Omega} \langle F(w), G(w) \rangle d\mu(w), \quad F, G \in \widehat{K}.$$

Proposition 1.4. [1] Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$. Then, the mapping $T_\Lambda : \widehat{K} \rightarrow H$ defined by

$$\langle T_\Lambda F, g \rangle = \int_{\Omega} \langle \Lambda_w^* F(w), g \rangle d\mu(w), \quad F \in \widehat{K}, g \in H,$$

is a linear and bounded operator with $\|T_\Lambda\| \leq \sqrt{B_\Lambda}$. Moreover, for any $g \in H$ and $w \in \Omega$,

$$T_\Lambda^*(g)(w) = \Lambda_w g.$$

The operators T_Λ and T_Λ^* in Proposition 1.4 are called the synthesis and

analysis operators of Λ , respectively.

Definition 1.5. If $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are two continuous g-Bessel families for H with respect to $\{K_w\}_{w \in \Omega}$, such that

$$\langle f, g \rangle = \int_{\Omega} \langle \Theta_w f, \Lambda_w g \rangle d\mu(w), \quad f, g \in H,$$

then Θ is called a dual continuous g-frame of Λ .

Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g-frame for H with respect to $\{K_w\}_{w \in \Omega}$. Then $\tilde{\Lambda} = \{\Lambda_w S_{\Lambda}^{-1} \in B(H, K_w) : w \in \Omega\}$ is a continuous g-frame for H with respect to $\{K_w\}_{w \in \Omega}$ and by (1.2), $\tilde{\Lambda}$ is a dual continuous g-frame of Λ . We call $\tilde{\Lambda}$ the canonical dual of Λ . Also, if $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ is a continuous g-frame for H with respect to $\{K_w\}_{w \in \Omega}$, then $\Lambda S_{\Lambda}^{-\frac{1}{2}} = \{\Lambda_w S_{\Lambda}^{-\frac{1}{2}} \in B(H, K_w) : w \in \Omega\}$ is a Parseval continuous g-frame for H with respect to $\{K_w\}_{w \in \Omega}$.

Theorem 1.6. [6] For $T, U \in B(H)$ the following conditions are equivalent:

- (1) $\text{Range}(T) \subset \text{Range}(U)$,
- (2) $TT^* \leq \lambda^2 UU^*$ for some $\lambda \geq 0$,
- (3) there exists $K \in B(H)$ such that $T = UK$.

2 Approximately dual continuous g-frames

In this section we introduce the notion of approximately dual continuous g-frames in Hilbert spaces and we extend some results of [5], [11], [13], [14], [15], [16] and [18] to the continuous g-frames.

Definition 2.1. Suppose that $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are continuous g-Bessel families for H with respect to $\{K_w\}_{w \in \Omega}$. We say that Λ and Θ are approximately dual continuous g-frames for H , if

$$\|I_H - T_{\Lambda}T_{\Theta}^*\| < 1 \quad \text{or} \quad \|I_H - T_{\Theta}T_{\Lambda}^*\| < 1.$$

In this case, we call Θ (resp. Λ) an approximate dual continuous g-frame of Λ (resp. Θ).

Theorem 2.2. If $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are approximately dual continuous g-frames for H , then both Λ and Θ are continuous g-frames for H with respect to $\{K_w\}_{w \in \Omega}$ with lower bounds $B_{\Lambda}^{-1}(1 - \|I_H - T_{\Lambda}T_{\Theta}^*\|)^2$ and $B_{\Theta}^{-1}(1 - \|I_H - T_{\Theta}T_{\Lambda}^*\|)^2$, respectively.

Proof. Since $\|I_H - T_\Lambda T_\Theta^*\| < 1$, by [4, Theorem A.5.3], the operator $T_\Lambda T_\Theta^*$ is an invertible operator on H and

$$\|(T_\Lambda T_\Theta^*)^{-1}\| \leq \frac{1}{1 - \|I_H - T_\Lambda T_\Theta^*\|}.$$

For all $f \in H$, we have

$$\|f\| = \|(T_\Lambda T_\Theta^*)^{-1}(T_\Lambda T_\Theta^*)f\| \leq \frac{\sqrt{B_\Lambda}}{1 - \|I_H - T_\Lambda T_\Theta^*\|} \left(\int_\Omega \|\Theta_w f\|^2 d\mu(w) \right)^{\frac{1}{2}},$$

hence Θ is a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$ with the lower bound $B_\Lambda^{-1}(1 - \|I_H - T_\Lambda T_\Theta^*\|)^2$. Similarly, Λ is a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$. \square

We mention that the sum of two continuous g -frames is not necessarily a continuous g -frame. Here, we show that the sum of two approximately dual continuous g -frames is a continuous g -frame.

Theorem 2.3. *If $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are approximately dual continuous g -frames for H , then $\Lambda + \Theta = \{\Lambda_w + \Theta_w \in B(H, K_w) : w \in \Omega\}$ is a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$.*

Proof. It is clear that $\Lambda + \Theta$ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ with the bound $2B_\Lambda + 2B_\Theta$. On the other hand, if

$$\|I_H - T_\Theta T_\Lambda^*\| < 1 \quad \text{or} \quad \|I_H - T_\Lambda T_\Theta^*\| < 1,$$

then

$$\|2I_H - (T_\Theta T_\Lambda^* + T_\Lambda T_\Theta^*)\| < 2. \quad (2.1)$$

The operator $T_\Theta T_\Lambda^* + T_\Lambda T_\Theta^*$ is a self-adjoint operator, thus by [17, Lemma 2.2.2] and (2.1), the operator $T_\Theta T_\Lambda^* + T_\Lambda T_\Theta^*$ is a positive operator. We have

$$\begin{aligned} \int_\Omega \|\Lambda_w + \Theta_w\| f \|^2 d\mu(w) &= \int_\Omega \langle (\Lambda_w + \Theta_w) f, (\Lambda_w + \Theta_w) f \rangle d\mu(w) \\ &= \int_\Omega \|\Lambda_w f\|^2 d\mu(w) + \langle (T_\Theta T_\Lambda^* + T_\Lambda T_\Theta^*) f, f \rangle \\ &\quad + \int_\Omega \|\Theta_w f\|^2 d\mu(w) \\ &\geq \int_\Omega \|\Lambda_w f\|^2 d\mu(w) + \int_\Omega \|\Theta_w f\|^2 d\mu(w) \\ &\geq (A_\Lambda + A_\Theta) \|f\|^2, \quad f \in H, \end{aligned}$$

so the lower bound condition holds. \square

Theorem 2.4. *Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$. Then, Λ and Θ are approximately dual continuous g -frames for H if and only if there exists $D \in B(H)$ such that $T_\Lambda T_\Theta^* = S_\Lambda^{\frac{1}{2}} D$ and $\|$*

$$\|I_H - S_\Lambda^2 D\| < 1.$$

Proof. First, suppose that Λ and Θ are approximately dual continuous g -frames for H . For each $f \in H$,

$$\|T_\Theta T_\Lambda^* f\| = \sup_{\|g\|=1} |\langle T_\Theta T_\Lambda^* f, g \rangle| \leq \sqrt{B_\Theta} \left(\int_\Omega \|\Lambda_w f\|^2 d\mu(w) \right)^{\frac{1}{2}}.$$

Therefore

$$\langle (T_\Lambda T_\Theta^*)(T_\Lambda T_\Theta^*)^* f, f \rangle \leq B_\Theta \langle S_\Lambda f, f \rangle, \quad f \in H.$$

So,

$$(T_\Lambda T_\Theta^*)(T_\Lambda T_\Theta^*)^* \leq B_\Theta S_\Lambda^2 S_\Lambda^2. \quad (2.2)$$

By (2.2) and Theorem 1.6, there exists $D \in B(H)$ such that $T_\Lambda T_\Theta^* = S_\Lambda^2 D$. Conversely, since

$$\|I_H - T_\Lambda T_\Theta^*\| = \|I_H - S_\Lambda^2 D\| < 1,$$

Λ and Θ are approximately dual continuous g -frames for H .

□

Theorem 2.5. *Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$. Then, Λ and Θ are approximately dual continuous g -frames for H if and only if $\Theta = \Lambda S_\Lambda^{-\frac{1}{2}} D + \Gamma$, where $D \in B(H)$ is such that $\|I_H - S_\Lambda^2 D\| < 1$ and $\Gamma = \{\Gamma_w \in B(H, K_w) : w \in \Omega\}$ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ such that $T_\Lambda T_\Gamma^* = 0$.*

Proof. First, we consider $\Theta = \Lambda S_\Lambda^{-\frac{1}{2}} D + \Gamma$, $D \in B(H)$, $\|I_H - S_\Lambda^2 D\| < 1$ and Γ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ such that $T_\Lambda T_\Gamma^* = 0$. Then

$$T_\Theta^* f = T_\Lambda^* (S_\Lambda^{-\frac{1}{2}} D f) + T_\Gamma^* f, \quad f \in H,$$

and

$$T_\Lambda T_\Theta^* f = T_\Lambda T_\Lambda^* (S_\Lambda^{-\frac{1}{2}} D f) + T_\Lambda T_\Gamma^* f = S_\Lambda^2 D f, \quad f \in H.$$

Thus $T_\Lambda T_\Theta^* = S_\Lambda^2 D$, and hence

$$\|I_H - T_\Lambda T_\Theta^*\| = \|I_H - S_\Lambda^2 D\| < 1,$$

that is, Λ and Θ are approximately dual continuous g -frames for H .

Conversely, let Λ and Θ be approximately dual continuous g -frames for H . By Theorem 2.4, there exists $D \in B(H)$ such that $T_\Lambda T_\Theta^* = S_\Lambda^2 D$ and $\|I_H - S_\Lambda^2 D\| < 1$. Put $\Gamma = \Theta - \Lambda S_\Lambda^{-\frac{1}{2}} D$. Γ is a continuous g -Bessel family for H with respect to

$\{K_w\}_{w \in \Omega}$, since

$$\int_{\Omega} \| \Gamma_w f \|^2 d\mu(w) \leq 2(B_{\Theta} + \| D \|^2) \| f \|^2, \quad f \in H.$$

For any $f \in H$, we have

$$T_{\Gamma}^* f = T_{\Theta}^* f - T_{\Lambda}^* S_{\Lambda}^{-\frac{1}{2}} D f.$$

Therefore

$$T_{\Lambda} T_{\Gamma}^* f = T_{\Lambda} T_{\Theta}^* f - T_{\Lambda} T_{\Lambda}^* S_{\Lambda}^{-\frac{1}{2}} D f = 0, \quad f \in H,$$

$$\text{and} \quad \text{so,} \quad T_{\Lambda} T_{\Gamma}^* = 0. \quad \text{Moreover,} \quad \Theta = \Lambda S_{\Lambda}^{-\frac{1}{2}} D + \Gamma. \quad \square$$

Corollary 2.6. Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$. Then Λ and Θ are approximately dual continuous g -frames for H if and only if

$$\Theta = \Lambda S_{\Lambda}^{-\frac{1}{2}} D + \Gamma,$$

where $D \in B(H)$ for which $\| S_{\Lambda}^{-\frac{1}{2}} - D \| < \frac{1}{\sqrt{B_{\Lambda}}}$ and $\Gamma = \{\Gamma_w \in B(H, K_w) : w \in \Omega\}$ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ such that $T_{\Lambda} T_{\Gamma}^* = 0$.

Theorem 2.7. Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be a g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$. Then Λ and Θ are approximately dual continuous g -frames for H if and only if

$$\Theta = \Lambda S_{\Lambda}^{-\frac{1}{2}} D - \Lambda + \Gamma S_{\Lambda},$$

where $D \in B(H)$ for which $\| I_H - S_{\Lambda}^2 D \| < 1$ and $\Gamma = \{\Gamma_w \in B(H, K_w) : w \in \Omega\}$ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ such that Γ is a dual continuous g -frame of Λ .

Proof. First, we consider $\Theta = \Lambda S_{\Lambda}^{-\frac{1}{2}} D - \Lambda + \Gamma S_{\Lambda}$, $D \in B(H)$, $\| I_H - S_{\Lambda}^2 D \| < 1$ and Γ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ such that Γ is a dual continuous g -frame of Λ . We have

$$T_{\Theta}^* f = T_{\Lambda}^* S_{\Lambda}^{-\frac{1}{2}} D f - T_{\Lambda}^* f + T_{\Gamma}^* S_{\Lambda} f, \quad f \in H.$$

Then for each $f \in H$,

$$T_{\Lambda} T_{\Theta}^* f = T_{\Lambda} T_{\Lambda}^* S_{\Lambda}^{-\frac{1}{2}} D f - T_{\Lambda} T_{\Lambda}^* f + T_{\Lambda} T_{\Gamma}^* S_{\Lambda} f = S_{\Lambda}^2 D f.$$

So, $T_\Lambda T_\Theta^* = S_\Lambda^{\frac{1}{2}} D$. Therefore, by Theorem 2.4, Λ and Θ are approximately dual continuous g -frames for H .

Conversely, let Λ and Θ be approximately dual continuous g -frames for H . By Theorem 2.4, there exists $D \in B(H)$ such that $T_\Lambda T_\Theta^* = S_\Lambda^{\frac{1}{2}} D$ and $\|I_H - S_\Lambda^{\frac{1}{2}} D\| < 1$. Put

$$\Gamma = \Theta S_\Lambda^{-1} - \Lambda S_\Lambda^{-\frac{1}{2}} D S_\Lambda^{-1} + \Lambda S_\Lambda^{-1}.$$

Γ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$, since

$$\int_{\Omega} \|\Gamma_w f\|^2 d\mu(w) \leq 3(B_\Theta + \|D\|^2 + B_\Lambda) \|S_\Lambda^{-1}\|^2 \|f\|^2, \quad f \in H.$$

We have

$$T_\Gamma^* f = T_\Theta^* S_\Lambda^{-1} f - T_\Lambda^* S_\Lambda^{-\frac{1}{2}} D S_\Lambda^{-1} f + T_\Lambda^* S_\Lambda^{-1} f, \quad f \in H,$$

then

$$T_\Lambda T_\Gamma^* f = S_\Lambda^{\frac{1}{2}} D S_\Lambda^{-1} f - S_\Lambda^{\frac{1}{2}} D S_\Lambda^{-1} f + I_H f = f, \quad f \in H.$$

Thus $T_\Lambda T_\Gamma^* = I_H$. That is, Γ is a dual continuous g -frame of Λ . Furthermore,

$$\Theta = \Lambda S_\Lambda^{-\frac{1}{2}} D - \Lambda + \Gamma S_\Lambda.$$

□

Theorem 2.8. Suppose that $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ is an approximate dual continuous g -frame of $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$.

(1) If U is an isometric operator on H , then $\Lambda U = \{\Lambda_w U \in B(H, K_w) : w \in \Omega\}$ is an

approximate dual continuous g -frame of $\Theta U = \{\Theta_w U \in B(H, K_w) : w \in \Omega\}$.

(2) If U is a co-isometric operator on H , then $\Lambda U^* = \{\Lambda_w U^* \in B(H, K_w) : w \in \Omega\}$ is an

approximate dual continuous g -frame of $\Theta U^* = \{\Theta_w U^* \in B(H, K_w) : w \in \Omega\}$.

Proof. The proof is easy and we omit it.

□

Proposition 2.9. Assume that $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are approximately dual continuous g -frames for H . For fixed $N \in \mathbb{N}$, consider the corresponding partial sum,

$$\Gamma_w^{(N)} = \Theta_w + \sum_{n=1}^N \Theta_w (I_H - T_\Lambda T_\Theta^*)^n.$$

Then $\Gamma^{(N)} = \{\Gamma_w^{(N)} \in B(H, K_w) : w \in \Omega\}$ is an approximate dual continuous g -frame of Λ and

$$\|I_H - L_N T_\Lambda^*\| \leq \|I_H - T_\Theta T_\Lambda^*\|^{N+1} < 1,$$

where L_N is the synthesis operator of $\Gamma^{(N)}$.

Proof. $\Gamma^{(N)}$ is a continuous g -Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$, since

$$\int_{\Omega} \|\Gamma_w^{(N)} f\|^2 d\mu(w) \leq (N+1)B_{\Theta} \sum_{n=0}^N (1 + \sqrt{B_{\Lambda} B_{\Theta}})^{2n} \|f\|^2, \quad f \in H.$$

Moreover,

$$\langle L_N T_{\Lambda}^* f, g \rangle = \langle T_{\Lambda}^* f, L_N g \rangle = \langle \sum_{n=0}^N (I_H - T_{\Theta} T_{\Lambda}^*)^n T_{\Theta} T_{\Lambda}^* f, g \rangle, \quad f, g \in H.$$

So,

$$\begin{aligned} L_N T_{\Lambda}^* f &= \sum_{n=0}^N (I_H - T_{\Theta} T_{\Lambda}^*)^n T_{\Theta} T_{\Lambda}^* f \\ &= \sum_{n=0}^N (I_H - T_{\Theta} T_{\Lambda}^*)^n (I_H - (I_H - T_{\Theta} T_{\Lambda}^*)) f \\ &= f - (I_H - T_{\Theta} T_{\Lambda}^*)^{N+1} f, \quad f \in H. \end{aligned}$$

Therefore,

$$\|I_H - L_N T_{\Lambda}^*\| = \|(I_H - T_{\Theta} T_{\Lambda}^*)^{N+1}\| \leq \|I_H - T_{\Theta} T_{\Lambda}^*\|^{N+1} < 1. \quad \square$$

Proposition 2.10. Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$. Then Λ and $\frac{2}{A_{\Lambda} + B_{\Lambda}}\Lambda = \{\frac{2}{A_{\Lambda} + B_{\Lambda}}\Lambda_w \in B(H, K_w) : w \in \Omega\}$ are approximately dual continuous g -frames for H .

Proof. By assumption, we have $A_{\Lambda} I_H \leq S_{\Lambda} \leq B_{\Lambda} I_H$. Therefore,

$$-\frac{B_{\Lambda} - A_{\Lambda}}{A_{\Lambda} + B_{\Lambda}} I_H \leq I_H - \frac{2}{A_{\Lambda} + B_{\Lambda}} S_{\Lambda} \leq \frac{B_{\Lambda} - A_{\Lambda}}{A_{\Lambda} + B_{\Lambda}} I_H,$$

which implies

$$\|I_H - \frac{2}{A_{\Lambda} + B_{\Lambda}} S_{\Lambda}\| = \sup_{\|f\|=1} |\langle (I_H - \frac{2}{A_{\Lambda} + B_{\Lambda}} S_{\Lambda}) f, f \rangle| \leq \frac{B_{\Lambda} - A_{\Lambda}}{A_{\Lambda} + B_{\Lambda}} < 1.$$

It means that Λ and $\frac{2}{A_{\Lambda} + B_{\Lambda}}\Lambda$ are approximately dual continuous g -frames for H .

□

Proposition 2.11. Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$. Then Λ and $B_{\Lambda}^{-1}\Lambda = \{B_{\Lambda}^{-1}\Lambda_w \in B(H, K_w) : w \in \Omega\}$ are approximately dual continuous g -frames for H .

Proof. We have $A_{\Lambda} I_H \leq S_{\Lambda} \leq B_{\Lambda} I_H$. Therefore,

$$0 \leq I_H - B_{\Lambda}^{-1} S_{\Lambda} \leq \frac{B_{\Lambda} - A_{\Lambda}}{B_{\Lambda}} I_H.$$

Hence

$$\|I_H - B_{\Lambda}^{-1} S_{\Lambda}\| = \sup_{\|f\|=1} |\langle (I_H - B_{\Lambda}^{-1} S_{\Lambda}) f, f \rangle| \leq \frac{B_{\Lambda} - A_{\Lambda}}{B_{\Lambda}} < 1,$$

and so Λ and $B_{\Lambda}^{-1}\Lambda$ are approximately dual continuous g -frames for H .

□

In [7], Dehghan and Hasankhani Fard defined the concept of g -duals of a frame in the Hilbert space. Recently, Abdollahpour and Khedmati in [2] extended this concept to the continuous g -frames, as follows:

Definition 2.12. Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be two continuous g-Bessel families for H with respect to $\{K_w\}_{w \in \Omega}$. The family Θ is called a g-dual of Λ , whenever $T_\Theta T_\Lambda^*$ is an invertible operator.

Proposition 2.13. If the continuous g-Bessel families $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and

$\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are approximately dual continuous g-frames for H , then Λ and Θ are g-duals.

Proof. It is easy and we remove it.

□

The following examples show that the converse of the statement in Proposition 2.13 is not true.

Example 2.14. Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be dual continuous g-frames for H . Then 3Λ is a g-dual of Θ . But 3Λ and Θ are not approximately dual continuous g-frames for H .

In fact

$$\langle T_{3\Lambda} T_\Theta^* f, g \rangle = \int_{\Omega} \langle 3\Lambda_w^* \Theta_w f, g \rangle d\mu(w) = 3 \langle T_\Lambda T_\Theta^* f, g \rangle = \langle 3f, g \rangle, \quad f, g \in H.$$

So $T_{3\Lambda} T_\Theta^* = 3T_\Lambda T_\Theta^* = 3I_H$, therefore $T_{3\Lambda} T_\Theta^*$ is an invertible operator. But

$$\|f - T_{3\Lambda} T_\Theta^* f\| = 2\|f\|, \quad f \in H.$$

Thus, 3Λ and Θ are not approximately dual continuous g-frames for H .

Example 2.15. Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g-frame for H with respect to $\{K_w\}_{w \in \Omega}$. Then,

- (1) Every dual continuous g-frame of Λ is an approximate dual continuous g-frame of Λ .
- (2) If Λ is a Parseval continuous g-frame for H with respect to $\{K_w\}_{w \in \Omega}$, then Λ is an approximate dual continuous g-frame of itself.
- (3) Suppose that $\Theta_i = \{\Theta_w^i \in B(H, K_w) : w \in \Omega\}$ is a continuous g-Bessel family for H with respect to $\{K_w\}_{w \in \Omega}$ and Λ is a dual continuous g-frame of Θ_i for $i \in \mathbb{I}$, where \mathbb{I} is a finite set of natural numbers. Suppose that $\{c_i\}_{i \in \mathbb{I}}$ is a sequence of complex numbers such that $\sum_{i \in \mathbb{I}} c_i \neq 0$. It was proved in [2], that Λ and $\Gamma = \{\Gamma_w = \sum_{i \in \mathbb{I}} c_i \Theta_w^i \in B(H, K_w) : w \in \Omega\}$ are g-duals and $T_\Lambda T_\Gamma^* f = \sum_{i \in \mathbb{I}} c_i f$ for any $f \in H$. Here we show that Λ and Γ are not approximately dual continuous g-frames for H . In fact,

$$\|f - T_\Lambda T_\Gamma^* f\| = \|f - \sum_{i \in \mathbb{I}} c_i f\| \leq (1 + \sum_{i \in \mathbb{I}} |c_i|) \|f\|, \quad f \in H.$$

The following proposition gives a sufficient condition for approximately dual continuous g -frames to be dual continuous g -frames.

Proposition 2.16. *Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be two continuous g -Bessel families for H with respect to $\{K_w\}_{w \in \Omega}$. Then Λ and Θ are approximately dual continuous g -frames for H if and only if there exists an invertible operator U on H with $\|I_H - U\| < 1$ such that Λ and $\Theta U^{-1} = \{\Theta_w U^{-1} \in B(H, K_w) : w \in \Omega\}$ are dual continuous g -frames.*

Proof. Since Λ and Θ are approximately dual continuous g -frames for H , we have

$\|I_H - T_\Lambda T_\Theta^*\| < 1$, and hence the operator $T_\Lambda T_\Theta^*$ is an invertible operator on H . It is sufficient to put $U = T_\Lambda T_\Theta^*$. For each $f, g \in H$, we have

$$\langle f, g \rangle = \langle (T_\Lambda T_\Theta^*)(T_\Lambda T_\Theta^*)^{-1} f, g \rangle = \int_{\Omega} \langle \Theta_w U^{-1} f, \Lambda_w g \rangle d\mu(w),$$

hence Λ and ΘU^{-1} are dual continuous g -frames.

For the converse, suppose that there exists an invertible operator U on H with $\|I_H - U\| < 1$ such that Λ and ΘU^{-1} are dual continuous g -frames. So,

$$\|I_H - T_\Lambda T_\Theta^*\| = \|I_H - (T_\Lambda T_\Theta^* U^{-1})U\| = \|I_H - U\| < 1,$$

therefore, Λ and Θ are approximately dual continuous g -frames for H .

□

In [15], Mirzaee Azandaryani introduced the notion of Γ -approximate dual g -frames and $(\Gamma, \|\Gamma\|)$ -approximate dual g -frames, where $\Gamma \in B(H)$. In the following, we generalize these concepts to the continuous g -frames.

Definition 2.17. *Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ be two continuous g -Bessel families for H with respect to $\{K_w\}_{w \in \Omega}$ and $\Gamma \in B(H)$. Then*

- (1) Θ is called a Γ -approximate dual continuous g -frame of Λ , if $\|\Gamma - T_\Lambda T_\Theta^*\| < 1$.
- (2) Θ is called a $(\Gamma, \|\Gamma\|)$ -approximate dual continuous g -frame of Λ , if $\|\Gamma - T_\Lambda T_\Theta^*\| < \|\Gamma\|$,
where $\|\Gamma\| < 1$.

Proposition 2.18. *Let $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ be a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$. Let $\Gamma \in B(H)$ be a positive operator. Then*

- (1) If Λ is a $\|\Gamma\|$ -tight continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$ and $\|\Gamma\| < 1$,

then Λ is a $(\Gamma, \|\Gamma\|)$ -approximate dual continuous g -frame of itself.

- (2) If Λ is an A_Λ -tight continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$ and $\|$

$\Gamma \|\Lambda \|\leq A_\Lambda < 1$, then Λ is a Γ -approximate dual continuous g -frame of itself.

Proof. The proof is similar to the proof of [15, Proposition 4.2], so we remove it here. \square

3 Q -approximate dual continuous g -frames

In 2014, the concept of Q -duals for fusion frames were defined by Heineken and et al. [10]. Also, Q -duals and Q -approximate duals for g -frames were introduced by Mirzaee Azandaryani [15]. Here, we generalize these notions to the continuous g -frames as follows:

Definition 3.1. Suppose that $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are two continuous g -Bessel families for H with respect to $\{K_w\}_{w \in \Omega}$.

(1) If there exists an operator $Q \in B(\widehat{K})$ such that $T_\Lambda Q T_\Theta^* = I_H$, we say that Λ is a Q -dual of Θ .

(2) If there exists an operator $Q \in B(\widehat{K})$ such that $\|I_H - T_\Lambda Q T_\Theta^*\| < 1$, we say that Λ is a

Q -approximate dual continuous g -frame of Θ .

Clearly, if $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ is an approximate dual continuous g -frame (resp. dual continuous g -frame) of $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$, then Λ is a Q -approximate dual continuous g -frame (resp. Q -dual) of Θ , by considering $Q = I_R$.

Theorem 3.2. Suppose that $\Lambda = \{\Lambda_w \in B(H, K_w) : w \in \Omega\}$ and $\Theta = \{\Theta_w \in B(H, K_w) : w \in \Omega\}$ are two continuous g -Bessel families for H with respect to $\{K_w\}_{w \in \Omega}$. If Λ is a Q -approximate dual continuous g -frame of Θ , then

(1) Θ is a Q^* -approximate dual continuous g -frame of Λ .

(2) Λ and Θ are continuous g -frames for H with respect to $\{K_w\}_{w \in \Omega}$.

Proof. (1) By assumption, there exists $Q \in B(\widehat{K})$ such that $\|I_H - T_\Lambda Q T_\Theta^*\| < 1$, thus

$$\|I_H - T_\Theta Q^* T_\Lambda^*\| = \|(I_H - T_\Lambda Q T_\Theta^*)^*\| = \|I_H - T_\Lambda Q T_\Theta^*\| < 1,$$

and so, Θ is a Q^* -approximate dual continuous g -frame of Λ .

(2) By (1) and [4, Theorem A.5.3], the operator $T_\Theta Q^* T_\Lambda^*$ is an invertible operator on H and

$$\|(T_\Theta Q^* T_\Lambda^*)^{-1}\| \leq \frac{1}{1 - \|I_H - T_\Theta Q^* T_\Lambda^*\|}.$$

For each $f \in H$,

$$\|f\| = \|(T_\Theta Q^* T_\Lambda^*)^{-1}(T_\Theta Q^* T_\Lambda^*)f\| \leq \|(T_\Theta Q^* T_\Lambda^*)^{-1}\| \|T_\Theta Q^* T_\Lambda^* f\|$$

$$\leq \frac{\|Q\| \sqrt{B_\Theta}}{1 - \|I_H - T_\Theta Q^* T_\Lambda^*\|} \left(\int_{\Omega} \|\Lambda_w f\|^2 d\mu(w) \right)^{\frac{1}{2}},$$

so

$$\|Q\|^{-2} B_\Theta^{-1} (1 - \|I_H - T_\Theta Q^* T_\Lambda^*\|)^2 \|f\|^2 \leq \int_{\Omega} \|\Lambda_w f\|^2 d\mu(w), \quad f \in H.$$

Hence Λ is a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$. Similarly, Θ is a continuous g -frame for H with respect to $\{K_w\}_{w \in \Omega}$ with the lower bound

$$\|Q\|^{-2} B_\Lambda^{-1} (1 - \|I_H - T_\Lambda Q^* T_\Theta^*\|)^2.$$

□

REFERENCES

- [1] *M.R. Abdollahpour and M.H. Faroughi*, Continuous g-frames in Hilbert spaces, *Southeast Asian Bull. Math.*, vol. **32**, no. 1, 2008, pp. 1-19.
- [2] *M.R. Abdollahpour and Y. Khedmati*, G-duals of continuous g-frames and their perturbations, *Results Math.*, vol. **73**, no. 4, 2018, 152.
- [3] *S.T. Ali, J.P. Antoine and J.P. Cazeau*, Continuous frames in Hilbert spaces, *Ann. Physics*, vol. **222**, no. 1, 1993, pp.1-37.
- [4] *O. Christensen*, An Introduction to Frames and Riesz Bases, Birkhäuser Boston, 2003.
- [5] *O. Christensen and R.S. Laugesen*, Approximately dual frame in Hilbert spaces and applications to Gabor frames, *Sampl. Theory Signal Image Process.*, vol. **9**, 2011, pp. 77-90.
- [6] *R.G. Douglas*, On majorization, factorization and range inclusion of operators on Hilbert spaces, *Proc. Amer. Math. Soc.*, vol. **17**, no. 2, 1966, pp. 413-415.
- [7] *M.A. Dehghan and M.A. Hasankhani Fard*, G-dual frames in Hilbert spaces, *U.P.B. Sci. Bull., Series A*, vol. **75**, no. 1, 2013, pp.129-140.
- [8] *R.J. Duffin and A.C. Schaeffer*, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.*, vol. **72**, no. 2, 1952, pp. 341-366.
- [9] *J.P. Gabardo and D. Han*, Frames associated with measurable spaces, *Adv. Comp. Math.*, vol. **18**, no. 2, 2003, pp. 127-147.
- [10] *S.B. Heineken, P.M. Morillas, A.M. Benavente and M.I. Zakowicz*, Dual fusion frames, *Arch. Math.*, vol. **103**, 2014, pp. 355-365.
- [11] *H. Javanshiri*, Some properties of generalized and approximately dual frames in Hilbert spaces, *Results Math.*, vol. **70**, no. 3, 2016, pp. 475-485.
- [12] *G. Kaiser*, A Friendly Guide to Wavelets, Birkhäuser Boston, 1995.
- [13] *A. Khosravi and M. Mirzaee Azandaryani*, Approximate duality of g-frames in Hilbert spaces, *Acta Math. Sci. Ser. B Engl. Ed.*, vol. **34**, no. 3, 2014, pp. 639-652.
- [14] *Y. Ling Fu and W. Zhang*, Characterization and stability of approximately dual of g-frames in Hilbert spaces, *J. Inequal. Appl.*, vol. **192**, 2018, 13.
- [15] *M. Mirzaee Azandaryani*, On the approximate duality of g-frames and fusion frames, *U.P.B. Sci. Bull., Series A*, vol. **79**, no. 2, 2017, pp. 83-94.
- [16] *M. Mirzaee Azandaryani and A. Khosravi*, Duals and approximate duals of g-frames in Hilbert spaces, *J. Linear and Topol. Algebra*, vol. **04**, no. 04, 2015, pp. 259-262.
- [17] *G.J. Murphy*, C*-Algebras and Operator Theory, Academic Press, San Diego, California, 1990.
- [18] *A. Rahimi, Z. Darvishi and B. Daraby*, Dual pair and approximate dual for continuous frames in Hilbert spaces, *Math. Rep.*, vol. **21**, no. 2, 2019, pp. 173-191.
- [19] *W. Sun*, G-frames and g-Riesz bases, *J. Math. Anal. Appl.*, vol. **322**, no. 1, 2006, pp. 437-452.