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A COMPARISON BETWEEN TWO APPROACHES USED FOR 

DETERMINISTIC MODELLING OF METABOLIC 

PROCESSES AND OF GENETIC REGULATORY CIRCUITS 

IN LIVING CELLS 

Gheorghe MARIA*1, Cristina MARIA2, Carmen TOCIU3 

The paper is pointing-out, by referring simple examples reviewed by Maria 

[1-2], the conceptual differences between two modelling approaches used for 

developing deterministic dynamic models of metabolic biochemical processes in 

living cells. The reviewed examples concern the modelling framework of cell 

metabolic pathways by using continuous variable ordinary differential (ODE) 

dynamic models based on the process mechanism. Two approaches are discussed: I) 

the default Constant Volume Whole-Cell (CVWC) classical ODE models, that 

ignore the cell volume exponential increase during the cell growth, and ii) the 

holistic variable-volume whole-cell (VVWC) models which explicitly account for the 

cell-volume growth, with preserving the cell isotonicity. To support the superiority 

of the VVWC approach, the reader is referred to additional examples on the 

deterministic modelling of the gene expression regulatory modules (GERM), and of 

genetic regulatory circuits (GRC) in living cells given by [2], with using the same 

biochemical engineering principles, and rules of the nonlinear system control 

theory.  
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1. Introduction 

Living cells are organized, self-replicating, evolvable, self-adjustable, and 

responsive biological systems to environmental stimuli able to convert raw 

materials (substrates/nutrients) from the environment into additional copies of 

themselves.  

The structural and functional cell organization, including components and 

reactions, is extremely complex, comprising involving O(103-4) components, 

O(103-4) transcription factors (TF-s), activators, inhibitors, and at least one order 

of magnitude higher number of (bio)chemical reactions, all ensuring a fast 

adaptation of the cell to the changing environment [1-2]. Relationships between 

structure, function and regulation in complex cellular networks are better 

understood at a low (component) level rather than at the highest-level [5]. 

Cell regulatory and adaptive properties are based on homeostatic 

mechanisms, which maintain quasi-constant (QSS) the key-species concentrations 

and metabolites’ output levels, by adjusting the synthesis rates, by switching 

between alternative substrates, or development pathways. Cell regulatory 

mechanisms include allosteric enzymatic interactions and feedback in gene 

transcription networks, metabolic pathways, signal transduction and other species 

interactions (Crampin and Schnell [9]). In particular, protein synthesis 

homeostatic regulation includes a multi-cascade control of the gene expression 

with negative feedback loops and allosteric adjustment of the enzymatic activity 

(Maria [1]). 

Cells have a very complex but hierarchic organization (structural, functional, and 

temporal, Fig. 1-left):  

i) the structural hierarchy includes all cell components from simple 

molecules (nutrients, saccharides, fatty acids, aminoacids, simple metabolites), 

macromolecules or complex molecules (lipids, proteins, nucleotides, 

peptidoglycans, coenzymes, fragments of proteins, nucleosides, nucleic acids, 

intermediates), and continuing with well-organized nano-structures (membranes, 

ribosomes, genome, operons, energy harnessing apparatus, replisome, 

partitioning apparatus, Z-ring, etc. Lodish [10]). To ensure self-replication of 

such a complex structure through enzymatic metabolic reactions using nutrients 

(Nut), metabolites (Met), and substrates (glucose/fructose, N-source, dissolved 

oxygen, and micro-elements), all the cell components should be associated with 

specific functions, following a functional hierarchy. 
 

ii) functional hierarchy is in accordance to the species structure; e.g. sources 

of energy (ATP, ADP, AMP), reaction intermediates, TF-s. Lodish [10] 

provided examples of biological systems that have evolved in a modular fashion 

and, in different contexts, perform the same basic functions. Each module, 

grouping several cell components and reactions, generates an identifiable 
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function (e.g. regulation of a certain reaction, of enzymes’ activity, gene 

expression over a GERM, etc.). More complex functions, such as regulatory 

networks, synthesis networks, or metabolic cycles can be built-up using the 

building blocks rules of the Synthetic Biology (Heinemann and Panke [11]). This 

is why, the modular GRC dynamic models, of an adequate mathematical 

representation, seem to be the most comprehensive mean for a rational design of 

GRC with desired behaviour (Sotiropoulos and Kaznessis [12]). Such a building 

blocks cell structure is computationally very tractable when developing cell 

reduced dynamic models for various metabolic sub-processes, such as: 

regulatory functions of GERMs and of GRCs, enzymatic reaction kinetics, 

energy balance for ATP/ADP/AMP renewable systems, electron donor systems 

for NADH, NADPH, FADH, FADH2 renewable components, or functions 

related to the metabolism regulation (regulatory components / reactions of 

metabolic cycles, gene transcription and translation); genome replication, 

GERM (protein synthesis, storage of the genetic information, etc.), functions for 

cell cycle regulation (nucleotide replication and partitioning, cell division). 

When modelling GRCs, it is to consider the limited number of interacting 

GERMs, one gene interacting with no more than 23-25 [13].  
 

iii) the wide-separation of time constants of the metabolic reactions in the cell 

systems is called time hierarchy. Reactions are separated in slow and fast 

according to their time constant. In fact, only fast and slow reactions are of 

interest, while the very slow processes are neglected or treated as parameters 

(such as the external nutrient or metabolite evolution). Aggregate pools 

(combining fast reactions) are used in building-up cell dynamic models in a way 

that intermediates are produced in a minimum quantity and consumed only by 

irreversible reactions. The stationary or dynamic perturbations are treated by 

maintaining the cell components homeostasis (steady-states), with minimizing 

the recovering or transition times after each perturbation [2]. 
 

A central part of such cell models concerns self-regulation of metabolic 

processes belonging to the central carbon metabolism (CCM), via GRC-s. So, 

one application of such dynamic deterministic cell models is the study of GRC-s, 

for predicting ways by which biological systems respond to signals, or 

environmental perturbations. The emergent field of such efforts is the so-called 

‘gene circuit engineering’ and, a large number of examples have been reported 

with in-silico re-creation of GRC-s conferring new properties to the mutant cells 

(i.e. desired ‘motifs’ in response to external stimuli) [2,11]. Simulation of gene 

expression, and of GRC makes possible in-silico design of GMO that possess 

desired properties. By inserting GRC-s into organisms, one may create a large 

variety of mini-functions / tasks in response to external stimuli.  
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Fig. 1.  (up) The hierarchical organization of living cells [1]. (down) The library of GERM for a 

generic protein P synthesis. G (DNA)= gene encoding P. Horizontal arrows indicate reactions; the 

vertical arrows indicate catalytic actions; M= mRNA; PP= effectors [1,3]. 
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“With the aid of recombinant DNA technology, it has become possible to 

introduce specific changes in the cellular genome. This enables the directed 

improvement of certain properties of microorganisms, such as the productivity, 

which is referred to as Metabolic Engineering (Bailey [14], Nielsen [15], 

Stephanopoulos [7]). This is potentially a great improvement compared to earlier 

random mutagenesis techniques but requires that the targets for modification are 

known. The complexity of pathway interaction and allosteric regulation limits the 

success of intuition-based approaches, which often only take an isolated part of 

the complete system into account. Mathematical models are required to evaluate 

the effects of changed enzyme levels or properties on the system as a whole, using 

metabolic control analysis or a dynamic sensitivity analysis” (Visser [17]). In this 

context, GRC dynamic models are powerful tools in developing re-design 

strategies of modifying genome and gene expression seeking for new properties of 

the mutant cells in response to external stimuli (Maria [2]). Examples of such 

GRC modulated functions include: 

- toggle-switch, i.e. mutual repression control in two gene expression modules, 

and creation of decision-making branch points between on/off states according 

to the presence of certain inducers [22]; 

- hysteretic GRC behaviour, that is a bio-device able to behave in a history-

dependent fashion, in accordance to the presence of a certain inducer in the 

environment [32]; 

- GRC oscillator producing regular fluctuations in network elements and reporter 

proteins, and making the GRC to evolve among two or several QSS [18]; 

- specific treatment of external signals by controlled expression such as amplitude 

filters, noise filters or signal / stimuli amplifiers [21]; 

- GRC signalling circuits and cell-cell communicators, acting as ‘programmable’ 

memory units. 
             

The development of dynamic models on a deterministic basis to 

adequately simulate in detail the cell metabolism self-regulation, cell growth, and 

replication for such an astronomical cell metabolism complexity is practical 

impossible due to lack of structured information and computational limitations. A 

review of some trials is presented by Styczynski and Stephanopoulos [6].  

 In spite of such tremendous modelling difficulties, development of 

reduced dynamic models to adequately reproduce such complex synthesis related 

to the central carbon metabolism (CCM) (Visser [17], Styczynski and 

Stephanopoulos [6], Maria [18]), but also to the genetic regulatory system (Maria 

[2]) tightly controlling the metabolic processes reported significant progresses 

over the last decades in spite of the lack of structured experimental kinetic 

information. Being rather based on sparse information from various sources, and 

unconventional identification / lumping algorithms [2-3], such structured 

deterministic kinetic models have been proved to be extremely useful for in-silico 
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design of novel GRC-s conferring new properties/functions to the mutant cells 

(GMO), that is desired ‘motifs’ in response to the external stimuli [2]. 

            _______________________ 

 

Fig. 2. Covers of the Maria e-book [1] (left), and of the e-book [2] (right) published with Juniper 

publ., Newbury Park, California 91320 (USA), 2017. 
 

 In fact, all the rules and algorithms used by the deterministic modelling of 

CCM and GRC, discussed in the works of Maria [1-3] belong to the new 

emergent field of Systems Biology. Systems Biology defined as “the science of 

discovering, modelling, understanding and ultimately engineering at the molecular 

level the dynamic relationships between the biological molecules that define 

living organisms” (Leroy Hood, Inst. Systems Biology, Seattle) [4] is one of the 

modern tools which uses advanced mathematical simulation models for in-silico 

design of micro-organisms that possess specific and desired functions and 

characteristics. 

To model such a complex metabolic regulatory mechanism at a molecular 

level, two main approaches have been developed over decades: structure-oriented 

analysis, and dynamic (kinetic) models (Stelling [5]). A review of mathematical 

model types used to describe metabolic processes is presented by Maria [3], 

Styczynski and Stephanopoulos [6], and Stephanopoulos [7]. From the 

mathematical point of view, various structured (mechanism-based) dynamic 

models have been proposed to simulate the metabolic processes and their 

regulation, accounting for continuous, discrete, and/or stochastic variables, in a 

modular construction, ‘circuit-like’ network, or compartmented simulation 

platforms (Crampin and Schnell [9], Maria [3], Bower and Bolouri [20]). Each 

model type presents advantages but also limitations. Each theory presenting 

strengths and shortcomings in providing an integrated predictive description of the 

cellular regulatory network.  
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1) Structure-oriented analyses or topological models ignore some mechanistic 

details and the process kinetics and use the only network topology to 

quantitatively characterize to what extent the metabolic reactions determine the 

fluxes and metabolic concentrations (Heinrich and Schuster [8]). The so-called 

‘metabolic control analysis’ (MCA) is focus on using various types of sensitivity 

coefficients (the so-called ‘response coefficients’), which are quantitative 

measures of how much a perturbation (an influential variable) affects the cell-

system states [ e.g. reaction rates, metabolic fluxes (stationary reaction rates), 

species concentrations] around the cell steady-state (QSS). The systemic response 

of fluxes or concentrations to perturbation parameters (i.e. the ‘control 

coefficients’), or of reaction rates to perturbations (i.e. the ‘elasticity coefficients’) 

have to fulfil the ‘summation theorems’, which reflect the network structural 

properties, and the ‘connectivity theorems’ related to the properties of single 

enzymes vs. the system behaviour. Originally, MCA has been introduced to 

quantify the rate limitation in complex enzymatic systems. MCA have been 

followed by a large number of improvements, mainly dealing with the control 
analysis of the stationary states, by pointing-out the role of particular reactions 

and cell components in determining certain metabolic behaviour. MCA methods 

are able to efficiently characterize the metabolic network robustness and 

functionality, linked with the cell phenotype and gene regulation. MCA allows a 

rapid evaluation of the system response to perturbations (especially of the 

enzymatic activity), possibilities of control and self-regulation for the whole path 

or some subunits. Functional subunits are metabolic subsystems, called ‘modules’, 

such as amino acid or protein synthesis, protein degradation, mitochondria 

metabolic path, etc. (Kholodenko[19]). By ignoring the cell process dynamics and 

using only a linearized representation of the cell system, the MCA reported a 

limited utilisation for in-silico GMO design on a math model basis [3]. 

2) The classical approach to develop deterministic dynamic models is based on 

a hypothetical reaction mechanism, kinetic equations, and known stoichiometry. 

This route meets difficulties when the analysis is expanded to large-scale 

metabolic networks, because the necessary mechanistic details and standard 

kinetic data to derive the rate constants are difficult to be obtained. However, 

advances in genomics, transcriptomics, proteomics, and metabolomics, lead to a 

continuous expansion of bioinformatic databases, while advanced numerical 

techniques, non-conventional estimation procedures, and massive software 

platforms reported progresses in formulating such reliable cell models. Valuable 

structured dynamic models, based on cell biochemical mechanisms, have been 

developed for simulating various (sub)systems (Maria [1-2]). Conventional 

dynamic models, based on ordinary differential (ODE) species mass balance, with 

a mechanistic (deterministic) description of reactions tacking place among 

individual species (proteins, mRNA, intermediates, etc.) have been proved to be a 
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convenient route to analyse continuous metabolic / regulatory processes and 

perturbations. When systems are too large or poorly understood, coarser and more 

phenomenological kinetic models may be postulated (e.g. protein complexes, 

metabolite channelling, etc.). In dynamic deterministic models, usually only 

essential reactions and components are retained, the model complexity depending 

on the measurable variables and available information. To reduce the structure of 

such a model, an important problem to be considered is the distinction between 

the qualitative and quantitative process knowledge, stability and instability of 

involved species, the dominant fast and slow modes of process dynamics, reaction 

time constants, macroscopic and microscopic observable elements of the state 

vector. Model reduction rules are presented by Maria [1-2, 28-29]). Such kinetic 

models can be useful to analyse the regulatory cell-functions, both for stationary 

and dynamic perturbations, to model cell cycles and oscillatory metabolic paths 

(Maria [18]), and to reflect the species interconnectivity or perturbation effects on 

cell growth (Maria [2]). Mixtures of ODE kinetic models with discrete states (i.e. 

‘continuous logical’ models), and of continuous ODE kinetics with stochastic 

terms can lead to promising mixed models able to simulate both deterministic and 

non-deterministic cell processes (Bower and Bolouri [20]). Representation of 

metabolic process kinetics is made usually by using rate expressions of extended 

Michaelis-Menten or Hill type (Maria [1,18,22]). To model in detail the cell 

process complexity with deterministic ODE models is a challenging and difficult 

task. The large number of inner cell species, complex regulatory chains, cell 

signalling, motility, organelle transport, gene transcription, morphogenesis and 

cellular differentiation cannot easily be accommodated into existing computer 

frameworks. Inherently, any model represents a simplification of the real 

phenomenon, while relevant model parameters are estimated based on the how 

close the model behaviour is to the real cell behaviour. A large number of 

software packages have been elaborated allowing the kinetic performance of 

enzyme pathways to be represented and evaluated quantitatively (Maria [3], 

Hucka [23]). Oriented and unified programming languages have been developed 

(SBML, JWS, see Maria [1]) to include the bio-system organization and 

complexity in integrated platforms for cellular system simulation (E-Cell, V-Cell, 

M-Cell, A-Cell, see Maria [1,3]). Models from this category, among other 

advantages, can perfectly represent the cell response to continuous perturbations, 

and their structure and size can be easily adapted according to the available –

omics information. Such integrated simulation platforms tend to use a large 

variety of biological databanks including enzymes, proteins and genes 

characteristics together with metabolic reactions (CRGM-database [24]; NIH-

database [25], EcoCyc [26], KEGG [27]). 

3) In the Boolean approach, variables can take only discrete values. Even if 

less realistic, such an approach is computationally tractable, involving networks of 
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genes that are either "on" or "off" (e.g. a gene is either fully expressed or not 

expressed at all) according to simple Boolean relationships, in a finite space. Such 

a coarse representation is used to obtain a first model for a complex biosystem 

including a large number of components, until more detailed data on process 

dynamics become available. ‘Electronic circuits’ structures (Maria [1]) have been 

extensively used to understand intermediate levels of regulation. Due to the very 

large number of states, and of TFs involved in the gene expression, the Boolean 

variables topological GRC models are organized in clusters, modules, disposed 

on multi-layers [1]. But, still they cannot reproduce in detail molecular 

interactions with slow and continuous responses to perturbations, eventually being 

abandoned.  

4) Stochastic models replace the 'average' solution of continuous-variable ODE 

kinetics (e.g. species concentrations) by a detailed random-based simulator 

accounting for the exact number of molecules present in the system. Because the 

small number of molecules for a certain species is more sensitive to stochasticity 

of a metabolic process than the species present in larger amounts, simulation via 

continuous models sometimes can lack of enough accuracy for random process 

representation (as cell signalling, gene mutation, etc.). Monte Carlo simulators are 

used to predict individual species molecular interactions, while rate equations are 

replaced by individual reaction probabilities, and the model output is stochastic in 

nature. Even if the required computational effort is very high, such models are 

useful to simulate system dynamics when species spatial location is important [1].  

By applying various modelling routes, successful structured models 

have been elaborated to simulate various regulatory mechanisms [2-3,30-34]. 

In fact, as mentioned by Crampin and Schnell [9], a precondition for a 

reliable modelling is the correct identification of both topological and kinetic 

properties. As few (kinetic) data are present in a standard form, non-

conventional estimation methods have been developed, by accounting for 

even incomplete information, and cell global regulatory properties [9,28].  

 The scope of this paper is to pointing-out, by referring the simple 

examples reviewed by Maria [1-2], the main conceptual differences between two 

modelling approaches used when developing deterministic dynamic models of 

metabolic cell biochemical processes. Specifically, the modelling framework of 

cell metabolic pathways by using continuous variable ODE dynamic models 

based on the process mechanism, concerns two different conceptual approaches: 

I) the default CVWC, that ignores the cell volume exponential increase during the 

cell growth, and ii) the holistic VVWC models, which explicitly account for the 

cell-volume growth, with preserving the cell isotonicity. To support the 

superiority of the VVWC approach, the reader is referred to additional examples 

on the deterministic modelling of the gene expression regulatory modules 
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(GERM), and of genetic regulatory circuits (GRC) in living cells given by [2], 

with using biochemical engineering principles, and rules [37].  

2. Deterministic modelling alternative 

Even if complicated and, often over-parameterized, the continuous 

variable dynamic deterministic ODE models of CCM and GRC-s present a 

significant number of advantages, being able to reproduce in detail the molecular 

interactions, the cell slow or fast continuous response to exo/ando-geneous 

continuous perturbations. (Maria [3], Styczynski and Stephanopoulos [6]). 

Besides, the use of ODE kinetic models presents the advantage of being 

computationally tractable, flexible, easily expandable, and suitable to be 

characterized using the tools of the nonlinear system theory (Banga [38], Heinrich 

and Schuster [8]), accounting for the regulatory system properties, that is: 

dynamics, feedback / feedforward, and optimality. And, most important, such 

ODE kinetic modelling approach allows using the strong tools of the classical 

(bio)chemical engineering modelling, that is (Maria [1]):  

i) molecular species conservation law (stoichiometry analysis; species ODE 

mass balance set);  

ii) atomic species conservation law (atomic species mass balance);  

iii) thermodynamic analysis of reactions (Haraldsdottir et al. [35]), including 

quantitative assignment of reaction directionality, set of equilibrium 

reactions, the Gibbs free energy balance analysis, set of cyclic reactions, 

identification of species at quasi-steady-state; 

iv) improved evaluation of steady-state metabolic flux distributions (i.e. 

stationary reaction rates) that provide important information for metabolic 

engineering (Zhu et al. [36]);  

v) application of lumping rules to ODE models (species and/or reaction 

lumping [28-29]). 

As classified by Maria [1-3], the ODE deterministic models have been 

developed in two alternatives below discussed: CVWC and VVWC.  

2.1. Alternative (A) 

The default Constant Volume Whole-Cell (CVWC) classical continuous 

variable ODE dynamic models do not explicitly consider the cell volume 

exponential, increase during the cell growth. When the continuous variable 

CVWC dynamic models are used to model the cell enzymatic processes, the 

default-modelling framework eq. (1) is that of a constant volume and, implicitly, 

of a constant osmotic pressure (), eventually accounting for the cell-growing rate 

as a pseudo-‘decay’ rate of key-species (often lumped with the degrading rate) in 
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a so-called ‘diluting’ rate. The CVWC formulation results from the species 

concentration definition of Cj = nj/V, leading to the default kinetic model: 
 

( / )1
( / , ) ( , , )

( ) 1

dn d n V dC nrj j j
s r V t h tij i jV t dt dt dt i

  


n k, C k ,          (1) 

where: Cj  = (cell-)species j concentration; V = system (cell) volume; nj = species j number of 

moles; rj = j-th reaction rate; s(i,j) = stoichiometric coefficient of the species “j” (individual or 

lumped) in the reaction “i”; t = time; j= 1,…,ns = number of cell species (individual or lumped); k 

= rate constant vector; i = 1,…,nr = number of reactions.  
 

The above formulation assumes a homogeneous volume with no inner 

gradients or species diffusion resistance. The used reaction rate expressions for 

the metabolic reactions are usually those of extended Michaelis-Menten or Hill 

type. Being very over-parameterized and strongly nonlinear, parameter estimation 

of such models in the presence of multiple constraints translates into a mixed 

integer nonlinear progeamming problem (MINLP) difficult to be solved because 

the searching domain is not convex [2-3].  

Such a CVWC dynamic model might be satisfactory for modelling many 

cell subsystems, but not for an accurate modelling of cell GRC and holistic cell 

properties under perturbed conditions, or the division of cells, by distorting very 

much or even misrepresenting the prediction results, as exemplified by Maria [2].  

2.2. Alternative (B) 

As an alternative, Maria [2-3] promoted over the last 15 years the holistic 

“variable-volume whole-cell” (VVWC) modelling framework by explicitly 

including in the model constraint equations accounting for the cell-volume 

growth, and by keeping constant the cell-osmotic pressure (to not damage the cell 

membrane), while the continuous ODE model was re-written either in terms of 

species moles or of species concentrations, as following [2]: 
 

d C d n d n
j 1 j 1 j

DC ; r
j jd t V d t V d t

   ;(j=1,..no. of species), 
  d ln V

D
d t

 , (2) 

because: 

  
 

d C n d n d nd ln Vj d j 1 j 1 j
C DC h C,k,t

j j jd t d t V V d t d t V d t

 
 
 
 

      ,(3) 

where: V = cell volume (in fact cytosol volume); nj= species j number of moles; rj = j-th reaction 

rate; D = cell-content dilution rate, i.e. cell-volume logarithmic growing rate; species inside the 

cell are considered individually or lumped; t = time.  

The (2-3) mass-balance formulation is that given by Aris [39] for the 

(bio)chemical reacting systems of variable-volume. In the VVWC formulation of 



138                                        Gheorghe Maria, Cristina Maria, Carmen Tociu 

 

the cell dynamic cell model an additional constraint must be also considered to 

preserve the system isotonicity (constancy of the osmotic pressure ) under 

isothermal conditions. This constraint should be considered together with the 

ODE model (2-3), that is the Pfeiffers’ law of diluted solutions [40] adopted and 

promoted by Maria [2-3]: 
 

   
nsRT

V t n t
j

j 1
 


                                                                    (4) 

which, by derivation and division with V leads to [2]: 

dnns1 dV RT 1 j
D

V dt V dtj

  
         

,                                                                      (5) 

In the above relationships, T = absolute temperature, and R = universal gas 

constant, V = cell (cytosol) volume. As revealed by the Pfeffer’s law eqn. (4) in 

diluted solutions [40], and by the eq. (5), the volume dynamics is directly linked 

to the molecular species dynamics under isotonic and isothermal conditions. 

Consequently, the cell dilution D results as a sum of reacting rates of all cell 

species (individual or lumped). The (RT/ ) term can be easily deducted in an 

isotonic cell system, from the fulfilment of the following invariance relationship 

derived from (4): 

( ) 1 1
( ) ( )

1 ( )
1 1 1

nsRT RT V t
V t n t constantj ns ns ns

j n t C Cj j jo
j j j

     
 

  
  

,      (6) 

As another observation, from (5) it results that the cell dilution is a complex 

function D(C,k) being characteristic to each cell and its environmental conditions. 

Relationships (5-6) are important constraints imposed to the VVWC cell 

model (2-3), eventually leading to different simulation results compared to the 

CVWC cell kinetic models that neglect the cell volume growth and isotonic 

effects (see an example given by Maria [2]). 

On the contrary, application of the default classical CVWC ODE kinetic 

models of eqn. (1) type with neglecting the isotonicity constraints presents a large 

number of inconveniences, related to ignoring lots of cell properties (discussed in 

detail by Maria [2]), that is:  

- the influence of the cell ballast in smoothing the homeostasis 

perturbations;  

- the secondary perturbations transmitted via cell volume following a 

primary perturbation;  

- more realistic evaluation of GERM regulatory performance indices 

(P.I.-s), allowing their optimisation following Fig. 4 objectives. 
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- the more realistic evaluation of the recovering/transient times after 

perturbations;  

- loss of the intrinsic model stability;  

- loss of the self-regulatory properties after a dynamic perturbation, etc.  

The basic equations and hypotheses of a VVWC model are presented in 

Fig. 3. Even if all cell regulation mechanisms are not fully understood, metabolic 

regulation at a low-level is generally better clarified. By using (bio)chemical 

engineering rules and concepts, the developed conventional (deterministic) 

dynamic models, approached in this paper, based on ODE kinetics of continuous 

variables, and on a mechanistic description of cell reactions taking place among 

individual species [ including proteins, mRNA, DNA, transcription factors TF-s, 

intermediates, etc.] have been proved to be a convenient route to analyse 

continuous metabolic cell processes and perturbations (see [1-2] for examples).  

In the dynamic models, only essential reactions are retained, species and 

reactions often are being included as lumps, the model complexity depending on 

measurable variables and available information. Such reduced VVWC kinetic 

models can be useful to analyse the cell regulatory functions, the CCM, treatment 

of both stationary and dynamic perturbations, cell cycles, oscillatory metabolic 

paths [1-2], by analyzing the species interconnectivity or perturbation effects. 

Examples of structured deterministic VVWC cell models are discussed by Maria 

[1-2,16,18,21, 41], thus completing the reviewed considerations. 

3. Modular modelling of GRC 

One successful application of VVWC models with continuous variables is 

those of simulating the regulatory properties of individual GERM, and of GRC 

comprising several linked GERM-s (no more than 23-25 [13]).  

A review of the systematic and comprehensive approaches in modelling 

the dynamics of GERM-s, and of GRC-s including chains of GERMs based on 

VVWC deterministic models and (bio)chemical engineering concepts and 

principles was presented by Maria [2](some simplified GERM representations are 

given in Fig. 1-right for a generic pair G/P, that is an encoding gene / and its 

expressed protein). 

Maria [1,2] also exemplifies how such dynamic models of continuous 

variables, still remain powerful tools for representing lot of metabolic processes 

dynamics. Such an approach takes the advantage of using well-known 

mathematical tools and numerical calculus algorithms, as well as (bio)chemical 

engineering concepts and tools to characterize the kinetics of the cell metabolic 

processes. This involves application of the classical modelling techniques, 

algorithmic rules, and nonlinear system control theory and rules to characterize 

the self-regulation of cell metabolic processes. 
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Fig.3. The variable cell-volume whole-cell (VVWC) dynamic modelling framework and its basic 

hypotheses [2-3]. 
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Fig. 4. The regulatory efficiency performance indices P.I.-s proposed to evaluate the 

perturbation treatment efficiency by a GERM following the definitions of Maria [3]. 

Abbreviations: Min = to be minimized; Max = to be maximized. Note: k(syn) and k(decline) refers 

to the  P overall reactions. 
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Examples of GRC models are also provided for the case of i) in-silico re-

design of the E. coli cloned bacterium metabolism by using a VVWC structured 

dynamic model for simulating the mercury uptake efficiency controlled by the 

GRC responsible for the mer-operon expression, and ii) in-silico derivation of an 

adjustable structured VVWC model to characterize genetic switches with 

application in designing of a large number of genetically modified micro-

organisms (GMO) with applications in medicine, such as therapy of diseases 

(gene therapy), new devices based on cell-cell communicators, biosensors, etc. 

4. Conclusions 

As a general conclusion, the (bio)chemical engineering principles and 

modelling rules are fully applicable to modelling cellular metabolic processes. 

This involves application of the classical modelling techniques (mass balance, 

thermodynamic principles), algorithmic rules, and nonlinear system control 

theory. The metabolic pathway representation with continuous and/or stochastic 

variables remains the most adequate and preferred representation of cell 

processes, the adaptable-size and structure (reaction, species) of the lumped model 

depending on available information and model utilisation scope. 
The paper pointed-out how the novel VVWC deterministic modelling 

approach promoted by Maria [1-2] has been proved to be a superior alternative to 

get adequate numerical simulators of the cell metabolism to be used for in-silico 

design of GRC and GMO with desirable characteristics, with important 

applications in industry (production of vaccines, biosyntheses optimization), or in 

medicine (gene therapy).  
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