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A COMPARISON BETWEEN TWO APPROACHES USED FOR
DETERMINISTIC MODELLING OF METABOLIC
PROCESSES AND OF GENETIC REGULATORY CIRCUITS
IN LIVING CELLS
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The paper is pointing-out, by referring simple examples reviewed by Maria
[1-2], the conceptual differences between two modelling approaches used for
developing deterministic dynamic models of metabolic biochemical processes in
living cells. The reviewed examples concern the modelling framework of cell
metabolic pathways by using continuous variable ordinary differential (ODE)
dynamic models based on the process mechanism. Two approaches are discussed: I)
the default Constant Volume Whole-Cell (CVWC) classical ODE models, that
ignore the cell volume exponential increase during the cell growth, and ii) the
holistic variable-volume whole-cell (VVWC) models which explicitly account for the
cell-volume growth, with preserving the cell isotonicity. To support the superiority
of the VVWC approach, the reader is referred to additional examples on the
deterministic modelling of the gene expression regulatory modules (GERM), and of
genetic regulatory circuits (GRC) in living cells given by [2], with using the same
biochemical engineering principles, and rules of the nonlinear system control
theory.

Keywords: systems biology; bioinformatics; cell metabolism deterministic
modelling; homeostatic regulation; gene expression regulatory
modules; linking GERMs

Abbreviations

ATP adenosin-triphosphate GMO Genetic modified organisms

ADP adenosin-diphosphate GRC Genetic regulatory circuits

AMP adenosin-monophosphate M mRNA

CCM Central carbon metabolism MCA metabolic control analysis

CcvwcC Constant VVolume Whole-Cell modelling ODE Ordinary differential equation set
approach

G generic gene P Generic protein

GERM Gene expression regulatory module P.I. Performance indices

QSsS Quasi steady-state VVWC  Variable-volume whole-cell modelling

1. Professor, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of
Bucharest, Romania; corresponding author, e-mail: gmaria99m@hotmail.com

2 Senior Research Eng., National Inst. Research & Development in Environmental Protection
(NIRDEP), Bucharest, Romania.

3 Senior research PhD Eng., (NIRDEP), Bucharest, Romania.



128 Gheorghe Maria, Cristina Maria, Carmen Tociu

1. Introduction

Living cells are organized, self-replicating, evolvable, self-adjustable, and
responsive biological systems to environmental stimuli able to convert raw
materials (substrates/nutrients) from the environment into additional copies of
themselves.

The structural and functional cell organization, including components and
reactions, is extremely complex, comprising involving O(10%**) components,
O(10**) transcription factors (TF-s), activators, inhibitors, and at least one order
of magnitude higher number of (bio)chemical reactions, all ensuring a fast
adaptation of the cell to the changing environment [1-2]. Relationships between
structure, function and regulation in complex cellular networks are better
understood at a low (component) level rather than at the highest-level [5].

Cell regulatory and adaptive properties are based on homeostatic
mechanisms, which maintain quasi-constant (QSS) the key-species concentrations
and metabolites’ output levels, by adjusting the synthesis rates, by switching
between alternative substrates, or development pathways. Cell regulatory
mechanisms include allosteric enzymatic interactions and feedback in gene
transcription networks, metabolic pathways, signal transduction and other species
interactions (Crampin and Schnell [9]). In particular, protein synthesis
homeostatic regulation includes a multi-cascade control of the gene expression
with negative feedback loops and allosteric adjustment of the enzymatic activity
(Maria [1]).

Cells have a very complex but hierarchic organization (structural, functional, and

temporal, Fig. 1-left):

i) the structural hierarchy includes all cell components from simple
molecules (nutrients, saccharides, fatty acids, aminoacids, simple metabolites),
macromolecules or complex molecules (lipids, proteins, nucleotides,
peptidoglycans, coenzymes, fragments of proteins, nucleosides, nucleic acids,
intermediates), and continuing with well-organized nano-structures (membranes,
ribosomes, genome, operons, energy harnessing apparatus, replisome,
partitioning apparatus, Z-ring, etc. Lodish [10]). To ensure self-replication of
such a complex structure through enzymatic metabolic reactions using nutrients
(Nut), metabolites (Met), and substrates (glucose/fructose, N-source, dissolved
oxygen, and micro-elements), all the cell components should be associated with
specific functions, following a functional hierarchy.

i) functional hierarchy is in accordance to the species structure; e.g. sources
of energy (ATP, ADP, AMP), reaction intermediates, TF-s. Lodish [10]
provided examples of biological systems that have evolved in a modular fashion
and, in different contexts, perform the same basic functions. Each module,
grouping several cell components and reactions, generates an identifiable
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function (e.g. regulation of a certain reaction, of enzymes’ activity, gene
expression over a GERM, etc.). More complex functions, such as regulatory
networks, synthesis networks, or metabolic cycles can be built-up using the
building blocks rules of the Synthetic Biology (Heinemann and Panke [11]). This
is why, the modular GRC dynamic models, of an adequate mathematical
representation, seem to be the most comprehensive mean for a rational design of
GRC with desired behaviour (Sotiropoulos and Kaznessis [12]). Such a building
blocks cell structure is computationally very tractable when developing cell
reduced dynamic models for various metabolic sub-processes, such as:
regulatory functions of GERMs and of GRCs, enzymatic reaction Kinetics,
energy balance for ATP/ADP/AMP renewable systems, electron donor systems
for NADH, NADPH, FADH, FADH2 renewable components, or functions
related to the metabolism regulation (regulatory components / reactions of
metabolic cycles, gene transcription and translation); genome replication,
GERM (protein synthesis, storage of the genetic information, etc.), functions for
cell cycle regulation (nucleotide replication and partitioning, cell division).
When modelling GRCs, it is to consider the limited number of interacting
GERMs, one gene interacting with no more than 23-25 [13].

i)  the wide-separation of time constants of the metabolic reactions in the cell
systems is called time hierarchy. Reactions are separated in slow and fast
according to their time constant. In fact, only fast and slow reactions are of
interest, while the very slow processes are neglected or treated as parameters
(such as the external nutrient or metabolite evolution). Aggregate pools
(combining fast reactions) are used in building-up cell dynamic models in a way
that intermediates are produced in a minimum quantity and consumed only by
irreversible reactions. The stationary or dynamic perturbations are treated by
maintaining the cell components homeostasis (steady-states), with minimizing
the recovering or transition times after each perturbation [2].

A central part of such cell models concerns self-regulation of metabolic
processes belonging to the central carbon metabolism (CCM), via GRC-s. So,
one application of such dynamic deterministic cell models is the study of GRC-s,
for predicting ways by which biological systems respond to signals, or
environmental perturbations. The emergent field of such efforts is the so-called
‘gene circuit engineering’ and, a large number of examples have been reported
with in-silico re-creation of GRC-s conferring new properties to the mutant cells
(i.e. desired ‘motifs’ in response to external stimuli) [2,11]. Simulation of gene
expression, and of GRC makes possible in-silico design of GMO that possess
desired properties. By inserting GRC-s into organisms, one may create a large
variety of mini-functions / tasks in response to external stimuli.




130

Gheorghe Maria, Cristina Maria, Carmen Tociu

Self-replicating apparatus Time scale Self-replication Regul. net
Replisome, Partitioning el Nucleoid replication & Cell cycle
apparatus, Z-ring Sl::::f;f;:; partitioning, cell division regulation
Nucleoid Supercoil and organize Gene
genome expression
Ribosomes, Genome, Energy || Intermediate |  Protein synthesis, Store regulation
harnessing apparatus characteristic | genetic info, Harness energy
Cell wall, Nucleic acids, time Metabolic cycles, pathways, | Metabolism
Coenzymes Transcription, Translation | Iegulation
Peptidoglvcan, Membrane, Succession [ Catalysis, Energy carrency | Regulation
Protein cplx., Nucleotides of of enzyme
Lipids, Proteins, Nucleosides events Catalysis, Hydrophobic activity
effects
Saccharides, Fatty acids, Transient Intermediates and building blocks for cell
Aminoacids recovering structures and functions
Simple metabolites time
Raw materials (nutrients) <«Temporal Source of energy and material
<«Structural Hierarchy— [ Hierarchy— <Functional Hierarchy—
G(P)n series Module G(P)) | Module GP)1 | [ Module G(P2 |
L ] | P P
|G(PP)n series
Module G(PP)0 Module G(PP)1 Module G(PP)2
2P PP 2= PP P PP
PP
P [ . PP PP
=g _"»@.:’ GPP & GPPPP
G(P)n;M(P)n’ series
[Module GEPMPW | [Module GzMp | [ Module Gepyt:mepy |

F

~~

2% i L p P
—> G A.rp G 3= Gp (;P
LA APy p P £

_.t MP -— MP = \PP
— b = g

Fig. 1. (up) The hierarchical organization of living cells [1]. (down) The library of GERM for a
generic protein P synthesis. G (DNA)= gene encoding P. Horizontal arrows indicate reactions; the
vertical arrows indicate catalytic actions; M= mRNA,; PP= effectors [1,3].
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“With the aid of recombinant DNA technology, it has become possible to
introduce specific changes in the cellular genome. This enables the directed
improvement of certain properties of microorganisms, such as the productivity,
which is referred to as Metabolic Engineering (Bailey [14], Nielsen [15],
Stephanopoulos [7]). This is potentially a great improvement compared to earlier
random mutagenesis techniques but requires that the targets for modification are
known. The complexity of pathway interaction and allosteric regulation limits the
success of intuition-based approaches, which often only take an isolated part of
the complete system into account. Mathematical models are required to evaluate
the effects of changed enzyme levels or properties on the system as a whole, using
metabolic control analysis or a dynamic sensitivity analysis” (Visser [17]). In this
context, GRC dynamic models are powerful tools in developing re-design
strategies of modifying genome and gene expression seeking for new properties of
the mutant cells in response to external stimuli (Maria [2]). Examples of such
GRC modulated functions include:

- toggle-switch, i.e. mutual repression control in two gene expression modules,
and creation of decision-making branch points between on/off states according
to the presence of certain inducers [22];

- hysteretic GRC behaviour, that is a bio-device able to behave in a history-

dependent fashion, in accordance to the presence of a certain inducer in the

environment [32];

- GRC oscillator producing regular fluctuations in network elements and reporter

proteins, and making the GRC to evolve among two or several QSS [18];

- specific treatment of external signals by controlled expression such as amplitude

filters, noise filters or signal / stimuli amplifiers [21];

- GRC signalling circuits and cell-cell communicators, acting as ‘programmable’

memory units.

The development of dynamic models on a deterministic basis to
adequately simulate in detail the cell metabolism self-regulation, cell growth, and
replication for such an astronomical cell metabolism complexity is practical
impossible due to lack of structured information and computational limitations. A
review of some trials is presented by Styczynski and Stephanopoulos [6].

In spite of such tremendous modelling difficulties, development of
reduced dynamic models to adequately reproduce such complex synthesis related
to the central carbon metabolism (CCM) (Visser [17], Styczynski and
Stephanopoulos [6], Maria [18]), but also to the genetic regulatory system (Maria
[2]) tightly controlling the metabolic processes reported significant progresses
over the last decades in spite of the lack of structured experimental kinetic
information. Being rather based on sparse information from various sources, and
unconventional identification / lumping algorithms [2-3], such structured
deterministic kinetic models have been proved to be extremely useful for in-silico
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design of novel GRC-s conferring new properties/functions to the mutant cells
(GMO), that is desired ‘motifs’ in response to the external stimuli [2].
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Fig. 2. Covers of the Maria e-book [1] (left), and of the e-book [2] (right) published with Juniper
publ., Newbury Park, California 91320 (USA), 2017.

In fact, all the rules and algorithms used by the deterministic modelling of
CCM and GRC, discussed in the works of Maria [1-3] belong to the new
emergent field of Systems Biology. Systems Biology defined as “the science of
discovering, modelling, understanding and ultimately engineering at the molecular
level the dynamic relationships between the biological molecules that define
living organisms” (Leroy Hood, Inst. Systems Biology, Seattle) [4] is one of the
modern tools which uses advanced mathematical simulation models for in-silico
design of micro-organisms that possess specific and desired functions and
characteristics.

To model such a complex metabolic regulatory mechanism at a molecular
level, two main approaches have been developed over decades: structure-oriented
analysis, and dynamic (kinetic) models (Stelling [5]). A review of mathematical
model types used to describe metabolic processes is presented by Maria [3],
Styczynski and Stephanopoulos [6], and Stephanopoulos [7]. From the
mathematical point of view, various structured (mechanism-based) dynamic
models have been proposed to simulate the metabolic processes and their
regulation, accounting for continuous, discrete, and/or stochastic variables, in a
modular construction, ‘circuit-like’ network, or compartmented simulation
platforms (Crampin and Schnell [9], Maria [3], Bower and Bolouri [20]). Each
model type presents advantages but also limitations. Each theory presenting
strengths and shortcomings in providing an integrated predictive description of the
cellular regulatory network.
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1) Structure-oriented analyses or topological models ignore some mechanistic
details and the process kinetics and use the only network topology to
quantitatively characterize to what extent the metabolic reactions determine the
fluxes and metabolic concentrations (Heinrich and Schuster [8]). The so-called
‘metabolic control analysis’ (MCA) is focus on using various types of sensitivity
coefficients (the so-called ‘response coefficients’), which are quantitative
measures of how much a perturbation (an influential variable) affects the cell-
system states [ e.g. reaction rates, metabolic fluxes (stationary reaction rates),
species concentrations] around the cell steady-state (QSS). The systemic response
of fluxes or concentrations to perturbation parameters (i.e. the ‘control
coefficients’), or of reaction rates to perturbations (i.e. the ‘elasticity coefficients’)
have to fulfil the ‘summation theorems’, which reflect the network structural
properties, and the ‘connectivity theorems’ related to the properties of single
enzymes vs. the system behaviour. Originally, MCA has been introduced to
quantify the rate limitation in complex enzymatic systems. MCA have been
followed by a large number of improvements, mainly dealing with the control
analysis of the stationary states, by pointing-out the role of particular reactions
and cell components in determining certain metabolic behaviour. MCA methods
are able to efficiently characterize the metabolic network robustness and
functionality, linked with the cell phenotype and gene regulation. MCA allows a
rapid evaluation of the system response to perturbations (especially of the
enzymatic activity), possibilities of control and self-regulation for the whole path
or some subunits. Functional subunits are metabolic subsystems, called ‘modules’,
such as amino acid or protein synthesis, protein degradation, mitochondria
metabolic path, etc. (Kholodenko[19]). By ignoring the cell process dynamics and
using only a linearized representation of the cell system, the MCA reported a
limited utilisation for in-silico GMO design on a math model basis [3].

2) The classical approach to develop deterministic dynamic models is based on
a hypothetical reaction mechanism, kinetic equations, and known stoichiometry.
This route meets difficulties when the analysis is expanded to large-scale
metabolic networks, because the necessary mechanistic details and standard
kinetic data to derive the rate constants are difficult to be obtained. However,
advances in genomics, transcriptomics, proteomics, and metabolomics, lead to a
continuous expansion of bioinformatic databases, while advanced numerical
techniques, non-conventional estimation procedures, and massive software
platforms reported progresses in formulating such reliable cell models. Valuable
structured dynamic models, based on cell biochemical mechanisms, have been
developed for simulating various (sub)systems (Maria [1-2]). Conventional
dynamic models, based on ordinary differential (ODE) species mass balance, with
a mechanistic (deterministic) description of reactions tacking place among
individual species (proteins, mMRNA, intermediates, etc.) have been proved to be a
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convenient route to analyse continuous metabolic / regulatory processes and
perturbations. When systems are too large or poorly understood, coarser and more
phenomenological kinetic models may be postulated (e.g. protein complexes,
metabolite channelling, etc.). In dynamic deterministic models, usually only
essential reactions and components are retained, the model complexity depending
on the measurable variables and available information. To reduce the structure of
such a model, an important problem to be considered is the distinction between
the qualitative and quantitative process knowledge, stability and instability of
involved species, the dominant fast and slow modes of process dynamics, reaction
time constants, macroscopic and microscopic observable elements of the state
vector. Model reduction rules are presented by Maria [1-2, 28-29]). Such Kinetic
models can be useful to analyse the regulatory cell-functions, both for stationary
and dynamic perturbations, to model cell cycles and oscillatory metabolic paths
(Maria [18]), and to reflect the species interconnectivity or perturbation effects on
cell growth (Maria [2]). Mixtures of ODE kinetic models with discrete states (i.e.
‘continuous logical’ models), and of continuous ODE kinetics with stochastic
terms can lead to promising mixed models able to simulate both deterministic and
non-deterministic cell processes (Bower and Bolouri [20]). Representation of
metabolic process kinetics is made usually by using rate expressions of extended
Michaelis-Menten or Hill type (Maria [1,18,22]). To model in detail the cell
process complexity with deterministic ODE models is a challenging and difficult
task. The large number of inner cell species, complex regulatory chains, cell
signalling, motility, organelle transport, gene transcription, morphogenesis and
cellular differentiation cannot easily be accommodated into existing computer
frameworks. Inherently, any model represents a simplification of the real
phenomenon, while relevant model parameters are estimated based on the how
close the model behaviour is to the real cell behaviour. A large number of
software packages have been elaborated allowing the kinetic performance of
enzyme pathways to be represented and evaluated quantitatively (Maria [3],
Hucka [23]). Oriented and unified programming languages have been developed
(SBML, JWS, see Maria [1]) to include the bio-system organization and
complexity in integrated platforms for cellular system simulation (E-Cell, V-Cell,
M-Cell, A-Cell, see Maria [1,3]). Models from this category, among other
advantages, can perfectly represent the cell response to continuous perturbations,
and their structure and size can be easily adapted according to the available —
omics information. Such integrated simulation platforms tend to use a large
variety of biological databanks including enzymes, proteins and genes
characteristics together with metabolic reactions (CRGM-database [24]; NIH-
database [25], EcoCyc [26], KEGG [27]).

3) In the Boolean approach, variables can take only discrete values. Even if
less realistic, such an approach is computationally tractable, involving networks of
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genes that are either "on" or "off" (e.g. a gene is either fully expressed or not
expressed at all) according to simple Boolean relationships, in a finite space. Such
a coarse representation is used to obtain a first model for a complex biosystem
including a large number of components, until more detailed data on process
dynamics become available. ‘Electronic circuits’ structures (Maria [1]) have been
extensively used to understand intermediate levels of regulation. Due to the very
large number of states, and of TFs involved in the gene expression, the Boolean
variables topological GRC models are organized in clusters, modules, disposed
on multi-layers [1]. But, still they cannot reproduce in detail molecular
interactions with slow and continuous responses to perturbations, eventually being
abandoned.

4) Stochastic models replace the 'average' solution of continuous-variable ODE
kinetics (e.g. species concentrations) by a detailed random-based simulator
accounting for the exact number of molecules present in the system. Because the
small number of molecules for a certain species is more sensitive to stochasticity
of a metabolic process than the species present in larger amounts, simulation via
continuous models sometimes can lack of enough accuracy for random process
representation (as cell signalling, gene mutation, etc.). Monte Carlo simulators are
used to predict individual species molecular interactions, while rate equations are
replaced by individual reaction probabilities, and the model output is stochastic in
nature. Even if the required computational effort is very high, such models are
useful to simulate system dynamics when species spatial location is important [1].

By applying various modelling routes, successful structured models
have been elaborated to simulate various regulatory mechanisms [2-3,30-34].
In fact, as mentioned by Crampin and Schnell [9], a precondition for a
reliable modelling is the correct identification of both topological and kinetic
properties. As few (kinetic) data are present in a standard form, non-
conventional estimation methods have been developed, by accounting for
even incomplete information, and cell global regulatory properties [9,28].

The scope of this paper is to pointing-out, by referring the simple
examples reviewed by Maria [1-2], the main conceptual differences between two
modelling approaches used when developing deterministic dynamic models of
metabolic cell biochemical processes. Specifically, the modelling framework of
cell metabolic pathways by using continuous variable ODE dynamic models
based on the process mechanism, concerns two different conceptual approaches:
I) the default CVW(C, that ignores the cell volume exponential increase during the
cell growth, and ii) the holistic VVWC models, which explicitly account for the
cell-volume growth, with preserving the cell isotonicity. To support the
superiority of the VVWC approach, the reader is referred to additional examples
on the deterministic modelling of the gene expression regulatory modules
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(GERM), and of genetic regulatory circuits (GRC) in living cells given by [2],
with using biochemical engineering principles, and rules [37].

2. Deterministic modelling alternative

Even if complicated and, often over-parameterized, the continuous
variable dynamic deterministic ODE models of CCM and GRC-s present a
significant number of advantages, being able to reproduce in detail the molecular
interactions, the cell slow or fast continuous response to exo/ando-geneous
continuous perturbations. (Maria [3], Styczynski and Stephanopoulos [6]).
Besides, the use of ODE kinetic models presents the advantage of being
computationally tractable, flexible, easily expandable, and suitable to be
characterized using the tools of the nonlinear system theory (Banga [38], Heinrich
and Schuster [8]), accounting for the regulatory system properties, that is:
dynamics, feedback / feedforward, and optimality. And, most important, such
ODE kinetic modelling approach allows using the strong tools of the classical
(bio)chemical engineering modelling, that is (Maria [1]):

i)  molecular species conservation law (stoichiometry analysis; species ODE
mass balance set);

i)  atomic species conservation law (atomic species mass balance);

i)  thermodynamic analysis of reactions (Haraldsdottir et al. [35]), including
quantitative assignment of reaction directionality, set of equilibrium
reactions, the Gibbs free energy balance analysis, set of cyclic reactions,
identification of species at quasi-steady-state;

iIv) improved evaluation of steady-state metabolic flux distributions (i.e.
stationary reaction rates) that provide important information for metabolic
engineering (Zhu et al. [36]);

v) application of lumping rules to ODE models (species and/or reaction
lumping [28-29]).

As classified by Maria [1-3], the ODE deterministic models have been
developed in two alternatives below discussed: CVWC and VVWC.

2.1. Alternative (A)

The default Constant VVolume Whole-Cell (CVWC) classical continuous
variable ODE dynamic models do not explicitly consider the cell volume
exponential, increase during the cell growth. When the continuous variable
CVWC dynamic models are used to model the cell enzymatic processes, the
default-modelling framework eq. (1) is that of a constant volume and, implicitly,
of a constant osmotic pressure (r), eventually accounting for the cell-growing rate
as a pseudo-‘decay’ rate of key-species (often lumped with the degrading rate) in
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a so-called ‘diluting’ rate. The CVWC formulation results from the species
concentration definition of Cj = nj/V, leading to the default kinetic model:

1 dnj d(nj/V) de nr
= = = Sijl’i(n/V,k,t)zhj (C,k,1), (1)
1I=1

V() d  dt dt

where: Cj = (cell-)species j concentration; VV = system (cell) volume; nj = species j number of
moles; rj = j-th reaction rate; s(i,j) = stoichiometric coefficient of the species *j” (individual or
lumped) in the reaction “i”’; t = time; j= 1,...,ns = number of cell species (individual or lumped); k
= rate constant vector; i = 1,...,nr = number of reactions.

The above formulation assumes a homogeneous volume with no inner
gradients or species diffusion resistance. The used reaction rate expressions for
the metabolic reactions are usually those of extended Michaelis-Menten or Hill
type. Being very over-parameterized and strongly nonlinear, parameter estimation
of such models in the presence of multiple constraints translates into a mixed
integer nonlinear progeamming problem (MINLP) difficult to be solved because
the searching domain is not convex [2-3].

Such a CVWC dynamic model might be satisfactory for modelling many
cell subsystems, but not for an accurate modelling of cell GRC and holistic cell
properties under perturbed conditions, or the division of cells, by distorting very
much or even misrepresenting the prediction results, as exemplified by Maria [2].

2.2. Alternative (B)

As an alternative, Maria [2-3] promoted over the last 15 years the holistic
“variable-volume whole-cell” (VVWC) modelling framework by explicitly
including in the model constraint equations accounting for the cell-volume
growth, and by keeping constant the cell-osmotic pressure (to not damage the cell
membrane), while the continuous ODE model was re-written either in terms of
species moles or of species concentrations, as following [2]:

dC. dn. dn. d(In(v
11" J pc;d J:rj;(j=1,..no. of species), D:—( n(v))

, (2)

dt VvV dt i’V dt dt
because:

dC. n. dn. dn.

i _d (M1t Ldin(v)_ 1% o

gt —dt v [vat Ciar —var PCj=hj(Ckib).@

where: V = cell volume (in fact cytosol volume); nj= species j number of moles; rj = j-th reaction
rate; D = cell-content dilution rate, i.e. cell-volume logarithmic growing rate; species inside the
cell are considered individually or lumped; t = time.

The (2-3) mass-balance formulation is that given by Aris [39] for the
(bio)chemical reacting systems of variable-volume. In the VVWC formulation of



138 Gheorghe Maria, Cristina Maria, Carmen Tociu

the cell dynamic cell model an additional constraint must be also considered to
preserve the system isotonicity (constancy of the osmotic pressure w) under
isothermal conditions. This constraint should be considered together with the
ODE model (2-3), that is the Pfeiffers’ law of diluted solutions [40] adopted and
promoted by Maria [2-3]:

V(O=EL % nj(0 @
_RT n.
which, by derivation and division with V leads to [2]:
dn
1dv (RT)\N j
= — 5
VvV dt (ﬂ'j%[thJ ®)

In the above relationships, T = absolute temperature, and R = universal gas
constant, V = cell (cytosol) volume. As revealed by the Pfeffer’s law eqn. (4) in
diluted solutions [40], and by the eq. (5), the volume dynamics is directly linked
to the molecular species dynamics under isotonic and isothermal conditions.
Consequently, the cell dilution D results as a sum of reacting rates of all cell
species (individual or lumped). The (RT/ =) term can be easily deducted in an
isotonic cell system, from the fulfilment of the following invariance relationship
derived from (4):

ns
V(t)=§ ) nj(t):%= nsv(t) = 1 = nsl =constant,  (6)
)= >nj® >Cj > Cjo
j=1 j=1 j=1

As another observation, from (5) it results that the cell dilution is a complex
function D(C,k) being characteristic to each cell and its environmental conditions.

Relationships (5-6) are important constraints imposed to the VVWC cell
model (2-3), eventually leading to different simulation results compared to the
CVWC cell kinetic models that neglect the cell volume growth and isotonic
effects (see an example given by Maria [2]).

On the contrary, application of the default classical CVWC ODE Kkinetic
models of egn. (1) type with neglecting the isotonicity constraints presents a large
number of inconveniences, related to ignoring lots of cell properties (discussed in
detail by Maria [2]), that is:

the influence of the cell ballast in smoothing the homeostasis
perturbations;

- the secondary perturbations transmitted via cell volume following a

primary perturbation;

- more realistic evaluation of GERM regulatory performance indices

(P.1.-s), allowing their optimisation following Fig. 4 objectives.
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- the more realistic evaluation of the recovering/transient times after

perturbations;

- loss of the intrinsic model stability;

- loss of the self-regulatory properties after a dynamic perturbation, etc.

The basic equations and hypotheses of a VVWC model are presented in
Fig. 3. Even if all cell regulation mechanisms are not fully understood, metabolic
regulation at a low-level is generally better clarified. By using (bio)chemical
engineering rules and concepts, the developed conventional (deterministic)
dynamic models, approached in this paper, based on ODE kinetics of continuous
variables, and on a mechanistic description of cell reactions taking place among
individual species [ including proteins, mMRNA, DNA, transcription factors TF-s,
intermediates, etc.] have been proved to be a convenient route to analyse
continuous metabolic cell processes and perturbations (see [1-2] for examples).

In the dynamic models, only essential reactions are retained, species and
reactions often are being included as lumps, the model complexity depending on
measurable variables and available information. Such reduced VVWC Kkinetic
models can be useful to analyse the cell regulatory functions, the CCM, treatment
of both stationary and dynamic perturbations, cell cycles, oscillatory metabolic
paths [1-2], by analyzing the species interconnectivity or perturbation effects.
Examples of structured deterministic VVWC cell models are discussed by Maria
[1-2,16,18,21, 41], thus completing the reviewed considerations.

3. Modular modelling of GRC

One successful application of VVWC models with continuous variables is
those of simulating the regulatory properties of individual GERM, and of GRC
comprising several linked GERM-s (no more than 23-25 [13]).

A review of the systematic and comprehensive approaches in modelling
the dynamics of GERM-s, and of GRC-s including chains of GERMs based on
VVWC deterministic models and (bio)chemical engineering concepts and
principles was presented by Maria [2](some simplified GERM representations are
given in Fig. 1-right for a generic pair G/P, that is an encoding gene / and its
expressed protein).

Maria [1,2] also exemplifies how such dynamic models of continuous
variables, still remain powerful tools for representing lot of metabolic processes
dynamics. Such an approach takes the advantage of using well-known
mathematical tools and numerical calculus algorithms, as well as (bio)chemical
engineering concepts and tools to characterize the kinetics of the cell metabolic
processes. This involves application of the classical modelling techniques,
algorithmic rules, and nonlinear system control theory and rules to characterize
the self-regulation of cell metabolic processes.
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Mass Balance and State Equations Remarks
continuous variable dynamic
de 1 dnj model representing the cell
dr v at —DCj=gj(C.K) growing phase (ca. 30% of the
cell cycle)
1 a'nj .
F?=J:}'(C,}() ij=1..n
V)= RT %- n.(® Pfeffer's law in diluted
x5’ solutions
1dV ‘RT %, 1 dn; D = cell content dilution rate
= I_/ dr N T )=l ar = cell volume logarithmic
e growing rate
RT ¥ _ 1 _ 1
T rg i ”ES - J.;:S - constant osmotic pressure ()
j=1 J j=1 I j=1 Je constraint
constant.
all all
az C- _ az C- Derived from the isotonic
j J " j J osmolarity constraint

Hypotheses:

a. Negligible inner-cell gradients.

b. Open cell system of uniform content.

c. Semi-permeable membrane, of negligible volume and resistance to
nutrient diffusion, following the cell growing dynamics.

d. Constant osmotic pressure (the same in cytosol “cyt” and
environment “env”), ensuring the membrane integrity (n__ =7
G ot env
constant).

e. Nutrient and overall environment species concentration remain
unchanged over a cell cycle ¢

f. Logarithmic growing rate of average D_=In(2)/t_ : volume growth
of ; ¥ =Ve™; t,= duration of the cell cycle.

g. Homeostatic stationary growth of (dC; -"df}s =g;(C5. k) =0,

h. Perturbations in cell volume are induced by variations in species
copynumbers under the isotonic osmolarity constraint: Vpemb 'V =

(Xn) zn).

Notations: T = absolute temperature; R = universal gas constant;

W= cell (cytosol) volume; © = osmotic pressure; Cj = cell species |
concentration; n, = species j number of moles; r, = j-th reaction rate; t

= time; k =rate constant vector; ’s” index indicates the stationary state.

Fig.3. The variable cell-volume whole-cell (VVWC) dynamic modelling framework and its basic

hypotheses [2-3].
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Index Goal Objective Expression
stationary regulation Min R_ = ([P]s- [P]ns)/ [P]ns ;
stationary regulation Max Au.ns;wc = ks;m xk decline
stationary regulation Min S‘M =[(BC'.- 1 Ciz)f(@Cnar; 1 Oz, )]s
stationary regulation Min S_f,j —[@C;: 1 Cry (k5 ¢ kj)]s

dynamic regulation Min Ry =Max(Re(},)) ; Re(h)<0
dynamic regulation Min T, Tp
regulatory robustness Min (ORp /EKk)
interigflfli:cstivity Min AVG(T;'): average (Tj)
interigflfli:;ivity Min STD(‘I:j): st.dev. (1:}.)
QSS stability(note a) Min Re(A ,)< O ;foralli
Qss sta[‘t;ilig as]treng;th Min Max(Re(A; )
stsesusgf}tla[ggitzyb) Min ‘M,- <1
Notations: “n"= nominal value; “s” = stationary wvalue; A =

i

monodromy matrix; = species ” recovering time; Nui= nutrient;
Re= real part; AVG= average; STD= standard deviation; C, = species
‘I concentration; R, = dynamic regulatory (recovering) index, QSS
= quasi-steady-state; P denotes the key-protein expressed in the

analysed GERM_

Fig. 4. The regulatory efficiency performance indices P.l.-s proposed to evaluate the
perturbation treatment efficiency by a GERM following the definitions of Maria [3].
Abbreviations: Min = to be minimized; Max = to be maximized. Note: k(syn) and k(decline) refers
to the — P— overall reactions.
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Examples of GRC models are also provided for the case of i) in-silico re-
design of the E. coli cloned bacterium metabolism by using a VVWC structured
dynamic model for simulating the mercury uptake efficiency controlled by the
GRC responsible for the mer-operon expression, and ii) in-silico derivation of an
adjustable structured VVWC model to characterize genetic switches with
application in designing of a large number of genetically modified micro-
organisms (GMO) with applications in medicine, such as therapy of diseases
(gene therapy), new devices based on cell-cell communicators, biosensors, etc.

4. Conclusions

As a general conclusion, the (bio)chemical engineering principles and
modelling rules are fully applicable to modelling cellular metabolic processes.
This involves application of the classical modelling techniques (mass balance,
thermodynamic principles), algorithmic rules, and nonlinear system control
theory. The metabolic pathway representation with continuous and/or stochastic
variables remains the most adequate and preferred representation of cell
processes, the adaptable-size and structure (reaction, species) of the lumped model
depending on available information and model utilisation scope.

The paper pointed-out how the novel VVWC deterministic modelling
approach promoted by Maria [1-2] has been proved to be a superior alternative to
get adequate numerical simulators of the cell metabolism to be used for in-silico
design of GRC and GMO with desirable characteristics, with important
applications in industry (production of vaccines, biosyntheses optimization), or in
medicine (gene therapy).
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