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TESPAR-BASED 2D SHAPE RECOGNITION  

Corneliu FLOREA1, Laura FLOREA2, Constantin VERTAN3 

In this paper we introduce a novel shape descriptor based on a three step 
procedure. The first step aims to offer invariance to rotation. The second step 
decreases the dimensionality from 2D to a pair of 1D waveforms by using either 
image projections, or contour tracing, which in the third step are encoded with the 
TESPAR (Time-Encoded Signal Processing and Recognition) procedure. The 
proposed shape encoding preserves the most important features of shapes, being 
suitable for posterior clustering as a filtering step. The method is tested on the 
MPEG-7 database, providing promising results in both accuracy and execution 
time.    
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1. Introduction 

The analysis and understanding of visual shapes is one of the most 
important topics in pattern recognition. A shape is an object’s silhouette that is 
typically retrieved after a segmentation step, has a significance in the context of 
the given problem to be solved by image processing and analysis and, thus, is the 
typical result of turning the multi-planar/grayscale image into a binary image. 
Notable examples of this model are graphical signs, letters or musical signs in 
image based document analysis and recognition [1]. 

Beyond the recognition of printed or handwritten signs, letters or musical 
signs, the shape identification, recognition, and classification is necessary in a 
plethora of problems. For instance, in high dynamic range, the scene may be 
decomposed in frameworks (i.e. shapes) [2], which may be further individually 
described, being a reliable tool for scene understanding and thus adaptive tone 
compression. Another example is the face analysis, where the segmented mouth 
or the eye silhouettes are indicators of the expression dynamics [3], [4]. 

Since the 2D objects are projections of 3D objects, their 2D silhouettes 
may change [5] due to:  
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• The variability of the view point with respect to objects. This may 
lead to object scaling, rotation, warping. 

• Non-rigid object motion (e.g., people walking or fish swimming). 
In such a case the object is articulated. 

• Noise due to digitization or flaws in the segmentation process. 
Traditionally, descriptors of shape silhouette may fall in one of the 

following categories: contour-based methods and region-based methods [6]. Each 
class may be further divided into structural approaches (segments/sections 
primitives) and global approaches (i.e. the shape is represented as a whole). 
Taking into account that shapes may be represented into the original spatial 
domain or in the transform domain, based on whether the shape features are 
derived from the spatial domain or from the transformed domain, this provides a 
supplemental degree for classification.  

Common, simple, global descriptors are the area, the compacticity ratio 
(perimeter2/area), the eccentricity (ratio of the length of major axis to the length of 
minor axis), major axis orientation, and bending energy [7]. These simple global 
descriptors are able to discriminate shapes within large categories, thus, they are 
pre-filters that eliminate false positives and can be used as an initial separation 
procedure. 

The more recent shape descriptors approaches aim at robustness, 
employing representations that are invariant (or insensitive) to certain groups of 
deformations. For example, the popular scale invariant feature transform (SIFT) 
[8] selects scale invariant blob regions for reliable key point identification. The 
use of the statistical moments works toward invariance to similarity transforms. 
Next, Ling and Jacobs [9], showed that robustness to object articulation is 
achieved by using the inner-distance. 

Yet, we must point out that the more recent methods, such as the aspect 
space [10] while being highly accurate are also very complex, going up to O(N3) 
operations (where N is the number of pixels forming the shape). Under such 
circumstances, there is need for simpler and computationally efficient methods, 
especially since silhouette recognition acts as an intermediate step of more 
complex systems. In this paper we propose a simple binary shape / silhouette 
descriptor extracted in three steps: rotation normalization, dimensionality 
reduction to a pair of 1D waveforms and TESPAR encoding. The main 
contribution is the introduction of TESPAR-based shape descriptors. The 
proposed system is tested on the MPEG-7 silhouette database. 
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Fig 1. An example showing 8 typical classes of objects from the MPEG-7 database. Silhouettes 

from the same class are one the same line; note the within- and the inter-class variability. 

2. MPEG7-CE-Shape-1 Database 

The proposed framework and shape descriptors are tested for the shape 
recognition task on the widely used MPEG-7 CE-Shape-1 part B database [5]. 
The database contains 1400 silhouette images grouped within 70 classes, where 
each class contains 20 images different shapes (some examples are shown in Fig. 
1). The shapes varies by articulation, rotation, perspective, etc. 

The performance of different solutions is measured by the so called Bull’s 
Eye score: every shape in the database is submitted as a query and the number of 
shapes from the same class from the most similar 40 returned results is counted. 
The Bull’s Eye score is then defined as the ratio of the number of correct hits to 
the best possible number of hits (which is 20 x 1400). The Bull’s Eye metric 
evaluates the capacity of a descriptor to preserves objects from the same class as 
compact clusters in larger sets of data.  
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3. Shape description 

The proposed object descriptor consists in three steps: rotation 
normalization, shape regression and TESPAR encoding. The step of shape 
regression refers to the reduction of the two dimensional form to a set of 2 linear 
vectors. Two methods are envisages for this case, methods that are based on 
integral projections or methods that are based on contour tracing. The resulting 
(one-dimensional) waveforms are encoded with TESPAR for constructing the 
shape final descriptor.  

3.1. Rotation normalization 

As one may notice in fig. 1, the data from each class is originally 
presented with various rotations. Taking into account that the proposed 
descriptors are not invariant to rotation, to gain robustness with respect to this 
category of variation, a dedicated strategy must be employed.  

The main idea is to separate shapes into elongated and compact categories. 
In the elongated shape case, the main axis gives the shape inclination. For the 
compact shapes, the angle of the major axis is subject to interference from 
articulation and a different measure should be provided. Here the relative angular 
position of the weighting center of mass of the shape with respect to the 
geometrical center is considered. 

The actual algorithm that is applied to any shape, consists of the following 
steps : 

1. Consider the shape as a set of pixels. Each pixel is a point into a 2D 
space, represented as a pair of (row, column) coordinates. Thus, the 
shape is the particular output of a 2D random variable.  

2. Given the shape (random variable), compute the covariance matrix. 
Next, determine the eigenvectors (major axis and minor axis) and 
eigenvalues (the variance on each eigenaxis). 

3. Compute the eccentricity as the eigenvalues ratio. If this is larger than 
a threshold (i.e. 2), then the shape is elongated (e.g. the spoons or the 
hammers from fig. 1). For elongated shapes, we rotate the shape such 
that the major axis is horizontal. 

4. If the shape is not elongated (the eigenvalue ratio is smaller than the 
threshold), it is compact (e.g. fish in fig. 1) and the shape is rotated 
such that the weighted center of mass of the shape is directly above the 
shape geometrical center. 
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3.2 Shape regression to a pair of 1D waveforms 

Integral projections. For an image I(x,y), x=1,…M, and y=1,…,N, the 
horizontal and vertical integral projections functions are defined as: 

 

 
 

Fig. 3 Original image and the two resulting integral projection functions (top row) and respectively 
the contour waves as computed by Moore neighbor tracing algorithm 

∑
=

=
N

y
H yxIyI

1
),()(

    (1) 

and respectively, the vertical one:  

∑
=

=
M

x
V yxIyI

1
),()(
    (2) 

 
The dimensionality reduction using integral projections functions is 

illustrated in Fig. 3, top row. The integral projection shows the distribution of the 
shape over rows and respectively columns. 

Contour tracing. The alternative choice to projections is to use the contour 
tracing, technique that is also known as border following or boundary following; it 
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is applied to objects within digital images in order to extract their boundary. In 
fact, given a 2D shape the method will return a pair of waveforms: the row 
coordinates of the contour and respectively the column coordinates. We used the 
Moore-Neighbor Tracing algorithm [11] and an illustration of it is presented in 
Fig. 3, bottom row.  

The Moore neighborhood of a pixel, P, is the set of 8 pixels which share a 
vertex or edge with that pixel. The main contour tracing algorithm steps are: 

• The starting point is a white pixel (in shape), having in its 
neighborhood black pixels. 

• Extract the contour by going around the pattern in a clockwise 
direction. 

• Every time we hit a white pixel, P, backtrack (i.e. go back to the black 
pixel on which we stand), then, go around the pixel P in a clockwise 
direction, visiting each pixel in its Moore neighborhood, until we hit a 
white pixel.  

• The algorithm terminates when the start pixel is visited for a second 
time (i.e. the shape was surrounded). 

 In this case the two waveforms are the contour rows and columns with 
respect to contour perimeter. 

3.3. TESPAR encoding  

TESPAR (Time-Encoded Signal Processing and Recognition) encoding 
was introduced by King and Phipps [12] as a technique for representation and 
recognition of 1D, band-limited speech signals. It has been used, for instance, in 
speaker recognition [13] and was used in image analysis as part of a system for 
for iris center localization [14]. The TESPAR encoding is based on the 
determination of zero-crossings of the signal. The interval between two 
consecutive zero-crossings is called an epoch. While in the original TESPAR 
paper [11], an epoch was described by two parameters (the duration and the 
shape), inspired by [14], we consider here three parameters (as presented in Fig. 
4) and we replace the zero-crossing by the intersection with a key-level: 

• Duration - the number of samples in the epoch; 
• Amplitude - the maximal signed deviation of the signal with respect to 

the key-level; 
• Shape - the number of local extremes in the epoch. 
Depending on the problem specifics, additional parameters of the epochs 

may be  considered,  such as  the difference between  the  highest and  the lowest  
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Fig 4. TESPAR Encoding of a given signal. 

The associated code is:  [37;+1;2;    57;-0.808;2;   18;0.308,1]. 
 

mode from the given epoch. Further extensions are at hand if an epoch is 
considered an approximation of a probability density function and the extracted 
parameters are the statistical moments of the said distribution. 

TESPAR was developed for 1D signal encoding and its authors [12] 
recommend it as a reliable encoding technique for low, limited band signals. 
Indeed, the projections functions and the contour waveforms are low bandwidth 
signals. In both cases epoch select specific part of the shape. 

Features. Given a rotation normalized silhouette, its descriptor is formed 
by the concatenating the TESPAR encoding of the two waveforms: horizontal and 
vertical projections functions and contour rows and respectively columns in the 
case of tracing. 

 
4. Results 

 
As said, the proposed descriptor is tested on MPEG-7 database with Bull’s 

Eye objective score as reference for the accuracy.  
 

4.1 Metrics used  
 

 Given a shape, in the process of determining the Bull’s Eye score distance 
to all other shapes must be found. There exist multiple possibilities to compute 
such distance. Considering that two descriptors are X=[x1, x2,…xP] and 
respectively Y=[y1, y2,…yP], we considered the following metrics: the Manhattan - 
L1 distance, the Euclidean distance, the Hellinger coefficient and the cosine 
distance. We recall that the Hellinger Coefficient is defined as  



86                                     Corneliu Florea, Laura Florea, Constantin Vertan 

( )∑
=

−=
P

i
ii yxYXH

1

2
),(    (3) 

 
while the Cosine distance is defined as: 
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Table 1 
Bull’s Eye Score for the full MPEG-7 database, when various distances were used as 

similarity measures and the shape description was done with various methods. We marked 
with gray the best achieved result 

             Distance  
Method       L1 Euclidean Hellinger Cosine 

Contour tracing 
(original image) 35.37% 32.62% 34.12% 28.71% 

Contour tracing 
(image upscaled 2x) 33.95% 32.25% 32.89% 25.71% 

Contour tracing 
(image upscaled 5x) 23.6% 21.44% 22.94% 19.36% 

Image projections 27.95% 28.23% 24.56% 22.35% 

 

4.2. Recognition accuracy  

 The results of the proposed system for various combinations of 
parameters, when testing on the full database (i.e. on 70 classes) are presented in 
Table 1. To give an idea of the complexity of data, a random chance classifier 
produces 2.8% accuracy. 
 While the shapes description with image projections is insensitive to 
image relative size, the latter impacts the contour tracing: larger the shape is, more 
possibilities for the Moore neighborhood, thus, more detailed view of the shape is 
retrievable. Consequently, we take into account increasing the shape size by 
various factors. Yet, the results show that the impact is negative and the best 
performance is retrieved at the original scale. 
 We note that even simpler and computationally faster, the Manhattan 
distance leads to best results, followed by the Hellinger coefficient. When 
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compared with Euclidean distance, the latter imposes a heavier penalty on 
differences on larger values and tends to ignore the ones on the smaller values.   
  

Table 2 
Bull’s Eye Score for the full MPEG-7 database: comparative results. 

Method Proposed Random chance Aspect space [10] 
Bull’s eye score 35.37% 2.8 % 95,96% 

 
As one may see, the proposed results are considerably higher than random 

chance, yet there is space for improvement as the aspect space method [10] 
reaching 96% retrieval accuracy as showed in table 2. The main flaw of the 
proposed method is the discrimination for articulated objects. In such a case, the 
contour tracing method is more robust, yet it also, sometimes fail. 
 However, if from the full 70-class database we retain only the 20 classes 
that contain least articulated objects, the Bull's Eye score increases to 92.75% for 
contour tracing with L1 distance and to 90.50% for image projections with  
Hellinger coefficient. In such a case the random chance leads to 9.48% accuracy.  
 Complexity and duration. The complexity order of all methods is linear 
with respect to the number of pixels of the image, as the shape signature is 
computed in linear time and rotation normalization takes most of it. Given a 
shape, its description takes 0.25 msec while using TESPAR encoded image 
projections and 0.4 msec with contour tracing. A Bull's Eye query on the 
described database takes 20 msec. The tests were performed with Matlab code on 
an Intel Xeon at 3.3 Ghz CPU. 

5. Conclusions and continuations 

In this paper we have proposed two new simple binary shape descriptors. 
The descriptors relies on rotation normalization, data reduction to a pair of 1D 
waveforms and TESPAR encoding. The descriptors shown promising results on 
the very challenging MPEG-7 database, especially if only classe with non 
articulated objects are considered. Specifically they achieve high accuracy when 
described no-articulated compact objects. While the achieved retrieval rate (bull’s 
eye score) is inferior to state of the art methods, the proposed method is 
significantly faster; thus in the current shape the proposed descriptor is suitable to 
discriminate among silhouettes of non-articulated objects such as the mouth in 
various expressive positions. Due to its simplicity and speed, the proposed 
descriptor is a viable solution as pre/post-processing in other systems  and not as a 
stand-alone box. 

Taking into account that the inner distance introduced in [9] was showed 
to be robust with respect to object’s articulation the next step of the research is to 
subtract from such descriptors those features that would increase its robustness to 
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articlation. In such a way we hope to significantly increases the overall 
performance on the full database. 
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