U.P.B. Sci. Bull., Series A, Vol. 87, Iss. 1, 2025 ISSN 1223-7027

SOME PROPERTIES OF MINIMAL AND MAXIMAL OPERATORS IN
AN ABSTRACT FRAMEWORK

Viorel Catani! and Horia-George Georgescu?

The main goal of this paper is to give a two-parameter abstract framework
in which we build a theory of minimal and mazimal operators associated to a linear
operator A : D(A) C X — X, with dense domain D(A), where X is a complex Banach
space. We prove an analogue of the Agmon-Douglis-Nirenberg inequality for pseudo-
differential operators in our abstract setting. Using this inequality, we show that the
minimal and maximal operators of the operator A are equal under suitable hypotheses
on the complex Banach space X and on the operator A. As an application, we study
the existence and regularity of weak solutions of the linear equations Au = f on the
reflexive complex Banach space X. Further, we prove a perturbation result regarding
the Agmon-Douglis-Nirenberg estimate when the operator A is perturbed by a potential
operator with some suitable properties. Moreover, an application to strongly continuous
semigroups of contractions generated by the operator A is given. Finally, we prove that
the minimal operator of the operator A is Fredholm under suitable hypotheses.

Keywords: minimal and maximal operators, Agmon-Douglis-Nirenberg inequality, strongly
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1. Introduction

In this work, following Wong’s point of view in the paper [16], we build an abstract
framework in which we construct and study the minimal and maximal operators associated
to an operator A : D(A) C X — X, with dense domain D(A), where X is a complex Banach
space.

We must emphasize that this abstract framework includes certain concrete cases
of Lebesgue and Sobolev spaces and classes of pseudo-differential operators such as M-
hypoelliptic pseudo-differential operators (see [6], [7], [12]), SG-pseudo-differential operators
(see [4], [5], [8], [13]) or hybrid pseudo-differential operators (see [2]) defined on these spaces.

The paper is organised as follows.

In Section 2, we introduce the weighted Bessel potentials of orders (si, s2) € R? and
we define the X-Sobolev spaces by using them. Moreover, we introduce a class of linear
operators of orders (mj,ms) € R? in connection with the X-Sobolev spaces. This class
of linear operators remembers us of the class of hybrid pseudo-differential operators in [2].
Some notations and facts concerning the minimal and maximal operators associated to an
operator A are also recalled (see [16]). In Section 3, we state and prove an analogue of the
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Agmon-Douglis-Nirenberg (A-D-N) inequality for pseudo-differential operators in the case
of an operator A : D(A) C X — X, with dense domain D(A), under suitable hypotheses.
Using the A-D-N inequality, we prove that the minimal and maximal operators are equal
under resonable hypotheses on the complex Banach space X and the operator A. As an
application of this fact, we get the existence and regularity of weak solutions of the linear
equations Au = f on the Banach space X. Two perturbation results, one regarding the
A-D-N inequality and the other result concerning the strongly continuous semigroup of
contractions, are given in Section 4. More precisely, we prove a type of the A-D-N inequality
in the case when the operator A is perturbed by a potential with some suitable properties.
If A is the infinitesimal generator of a semigroup of contractions, then Ay 4+ V is also the
infinitesimal generator of an one parameter strongly semigroup of contractions, where Ag
is the minimal operator associated to the operator A and V is a maximally dissipative
operator with some suitable properties. In Section 5, the last one, we prove that under
resonable hypotheses on the operator A, its minimal operator Ag is Fredholm.

2. Preliminaries

Let X be a complex Banach space whose norm is denoted by |||y and let S be a
dense subspace of X. We consider that S is a topological vector space of which topology is
defined by a countable family of semi-norms {| |; : j =1,2,...}.

We say that a sequence {pr} in S converges to an element ¢ in S if and only if
lor —@l; = 0 as k — oo for all j =1,2,.... We denote by S’ the space of all continuous
linear functionals on the space S and by (u, ) the value of a functional v in S’ at an element
pin S.

A functional v is continuous if and only if (u, i) — 0 as k — oo for all sequences
{¢r} converging to zero in S as k — .

A sequence {uy} in S’ is said to converge to an element u in S” if and only if (ug, ) —
(u, ) as k — oo for all ¢ in S. We assume that the spaces X and X’ are continuously
embedded in S’.

The definitions and notations used above are similar to the ones used in the theory
of distributions and are also used by Wong in [16].

Now, we present the abstract framework in which we will work, framework that is
similar to the one in the paper [16] and can concretely be encountered in the theory of
distributions.

Let us suppose that there exists a family of reflexive complex Banach spaces X ;\1’82
with norms denoted by ||||s;,s5,0,x,—00 < 81,82 < 00, where A : R — R, is a weight
positive function and a two-parameter group of continuous linear mappings Jé\l s PS8 =
S’ —oo < 51, 89 < 00, satisfying the following conditions:

(1) JSAIM maps S into S, —oo < 51,52 < 00 and JEA’6 : X — X is a compact operator
for every positive number ¢.

(i) X2 ,, ={ues:JA

51,82 —S81,—S82
(iii)

ueX},—oo<31,52<oo.

sy smnx = |72, —oully u € XD, —00 < 51,52 < 0. (2.1)

(iv)

Let s; <t;, 7 =1,2. Then, XA, C XM and

ty,ta = “*s1,82

||u||81782,A,X < Hu”thtz,/\,x’ u € Xt/i,tz' (2'2)

(v) X2 ,, can be continuously embedded in S/, —co < s1, s2 < 00.
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) and (X2 . ) can be continuously

(vi) S can be continuously embedded in (X2 o s

embedded in S’, —00 < s1, 89 < 00. o
(vii)
(u,cp):W,u€X§\17sz,cp€S,—oo<sl,SQ<oo. (2.3)
We call JSAhS2 the weighted Bessel potentials of orders (s1,$2) € R? and X;\hsz the
X-Sobolev spaces of orders (s1,s2) € R?.

Definition 2.1. Let T': S — S’ be a continuous linear mapping.
We assume that there exists a pair of real numbers (my, mo) such that T : XsA1,32 —

XSAl_mhsrmz is a bounded linear operator for all (s, s2) € R%. We say that T is an operator
of order (my, msg) if my and mqy are the least numbers for which 7" : X;‘lys2 — XSA1 iy 59—
is a bounded linear operator.

If m; = mo = —o0, then we call T an infinitely smoothing operator.

Definition 2.2. Let A: S C X — X be a linear operator such that A maps S into S and
its formal adjoint A* maps S into S continuously. We say that A is an operator of order
(mq,mg) if the extended operator A : S — S’ is of order (m1,mo) (see the relation (2.5)
for the definition of the extended operator A : S" — S’).

Remark 2.1. The two-parameter family of X-Sobolev spaces X é\l,s ,» 51, 82 € R, considered

previously, define a two-parameter abstract framework which enable us to fit the theory of
SG-pseudo-differential operators (see [4], [5], [8]) or the theory of a hybrid class of pseudo-
differential operators (see [2]).

A one-parameter abstract framework in which the theory of minimal and maximal
operators was studied for the first time was introduced by Wong in [16]. This abstract
framework was used later in the joint paper [10] of Wong and Iancu in order to establish
some results related to the semi-linear heat equations in Hilbert spaces. In his PhD Thesis
(see [11]), Iancu used extensively this abstract framework.

Remark 2.2. It should be mentioned that, in various works, particular cases of the previ-
ously considered abstract framework can be found. For example, if we take X = LP(R"™), S is
a Schwartz space of the rapidly decreasing functions, 1 < p < oo, J;\hs2 =15, .,
A(x)752A() 7, 0o < 81,82 < oo and A € C* (R") is a weight function with some suitable
properties, then we obtain a concrete two-parameter framework in the paper [2], in which
the authors present their results.

In this case, for a fixed p € (1,00), the family of spaces Hzlpgr“ corresponds to spaces
A

51890 00 < 81, 82 < 00 and satisfies the conditions (i)-(vii).

Proposition 2.1. Let s1,82,t1,ts € (—00,00). Then,

9OTA L yA A ; ; .
i) Jtth : Xshs2 — Xs1+t1,s2+t2 18 an unitary operator;

i) S is dense in X2 .
Proof. i) Let u € Xé\hsz. From (2.1), we obtain that
A _ || A A _ || gA —
HJtl,tzuH51+t1752+t2 - HJ*81*t17*52*t2‘]t17t2uHX - HJ*SL*&UHX - ”uHShS%A'
Hence, Jt/},m : X§\1752 — Xsﬁ+t1,sz+t2 is an isometry. It remains only to prove that J{}h :

A A . . . . . A A
X — X3, 4,.50+t, 18 @ surjection. For this, let y be in X ., o ., . Thus, J2, _, y €

81,52 -
A A A
X81732 and Jt17t2 (J—t17—t2y) =Y.
ii) Let u € X2 Then JA u € X. Since S is dense in X, there exists a sequence
win X as k — oo. Let ¢ = JA _ on, k=

S$1,82° —81,—82
81,82

{pr} of elements in S such that ¢, — JA

—81,—82

1,2,.... Since J* _ maps S into S, it follows that ¢, € S,k =1,2,....

81,82

, where oy, 5, (2,8) =
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By the definition of X2 we obtain that

81,527
A A A
1ok = ully o0 = 17260 —sa¥r = T2 —saull = llon = T2, —sull
for all £ = 1,2,....Therefore, ¥ — u in XS{\I)SZ as k — oo. This proves that S is dense in
A
81,82°

Thus, the proof is complete.

Remark 2.3. j) From (i), (ii) and Proposition 2.1, we have that
SCXCXh

and S is dense in X{. Since S in dense in X, it implies that X = X&.
jj) From Proposition 2.1 i), it follows that Jt’}h is an operator of orders (—t1, —t2).

Now we recall some namings, notations and well-known results concerning the theory
of minimal and maximal operators (see [2], [5]-[7], [15], [16]).

Let X be a complex Banach space, S a dense subspace of X and let A be a linear
operator from X into X with domain S. We denote by X’ the space of all bounded linear
functionals on X and by (2, x) the value of a functional 2’ in X’ at an element = in X.

Definition 2.3. Let D (A') be the set of all functionals y’ in X’ for which there is a
functional z’ in X’ such that

(v, Ax) = (2',z), =e€b. (2.4)

We can prove that for any 3 in X', there exists at most one 2’ in X’ for which (2.4) holds.
Thus, we can define Ay’ = 2/, for all 3y in D (A*). We call A? the true adjoint of A.

We can prove easily that A? is a closed linear operator from X’ into X’ with domain
D (AY).
Let us observe that if B is a linear extension of A, then A?! is a linear extension of B?.

Definition 2.4. Let A be a linear operator from X into X with domain S. The operator
A is closable if and only if

o €S0k —0in X, App > zin X =z =0.

In the following, we define the minimal operator of the operator A.
Suppose that A is a closable operator. We can construct a closed linear extension Ag
of A.

Definition 2.5. Let D (Ag) be the set of all  in X for which there exists a sequence
{r}ie, in S such that ¢, — 2 in X, Ap, — y for some y in X as k — co. We can define
Aoz =y, for any z € D (Ayp).

It can be proved that the definition of Ay does not depend on the particular choice
of the sequence {px}r-, and it can also be proved that Ag is the smallest closed linear
extension of A (i.e. if B is any closed linear extension of A, then B is also a linear extension
of Ap). We call Ag the minimal operator of A.

We further assume in this work that X is a reflexive complex Banach space.

In order to define the maximal operator, we need to introduce the notion of formal
adjoint. We assume that the space X and its dual space X' can be continuously embedded
in some topological space Y. Thus, the spaces X and X’ will be identified as subspaces of
Y. We also assume that there exists a subspace S of Y such that S is a dense subspace of
X and X'.
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For the following definitions and results, we let A be a linear operator from X into
X with domain S.

Definition 2 .6. T he formal adjoint A *of the operator A, ifit exists,is defined to be the
restriction of the true adjoint A* to the space S.

From Definition 2.6, we observe t hat the formal adjoint A *existsifand only if S is
contained in the domain of A°.

Definition 2 .7. We define the linear operator 4; from X into X by A4; = (4*)".
Let ¢ € S. By Definition 2.7, we have

(@7 Alx) = (A*(p, :C)

for all z in D (A4,).
By the definition of the true adjoint, ¢ € D (A}) and Al = A*p.

Proposition 2.2. ([16]) A; is a closed linear operator from X into X with domain D (A1)
containing the space S.

Proposition 2.3. ([16]) The domain D (A%) of the adjoint of Ay contains the space S.
Proposition 2.4. ([16]) A; is a linear extension of Ag.

From Proposition 2.4 we see that (Ag)" is a linear extension of (4;)" and by Propo-
sition 2.3, the domain of (A;)" contains the space S. It follows that the domain of (Ag)*
contains the space S.

Theorem 2.1. ([16]) Ay is the largest closed linear extension of A with the property that
the space S is contained in the domain of its adjoint (i.e. if B is any closed linear extension
of A such that S C D (B?), then A; is a linear extension of B).

Definition 2.8. The operator A; from Theorem 2.1 is called the maximal operator of A.

Let A be a linear operator from X into X with domain S. We suppose that A maps
S into S and its formal adjoint A* maps S into S continuously (i.e. if {¢} is any sequence
in S such that ¢ — 0in S as k — oo, then Apy — 0 and A*pp, — 0in S as k — 00).

The linear operator A can be extended to the space S’.

For any u in S’, Au is an element in S’ given by the relation

(Au, ) = (v, A"p), €S (2.5)

It is easy to show that A : S’ — S’ is a continuous linear mapping.

3. Some properties of minimal and maximal operators

In this section, we prove an analogue of the A-D-N inequality for pseudo-differential
operators in the case of the operator A : S € X — X with domain S that satisfies some
hypotheses. Using this inequality, we will obtain the equality of minimal and maximal
operators associated to the operator A when certain suitable hypotheses are satisfied. As an
application, we study the existence and regularity of weak solutions of the linear equations
Au= fon X.

Theorem 3.1. (Agmon-Douglis-Nirenberg inequality [1]) Let A : S € X — X be
a linear operator such that A maps S into S and its formal adjoint A* maps S into S
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continuously. Suppose that A is of positive order (my,ms) and there exists a linear operator
B of order (—my, —mg) from X into X with domain S such that

BA=I+R, (3.1)

where I is the identity operator, and R is an infinitely smoothing operator. Then, there exist
two positive constants Cy and Co such that

Culllmymzn < 1A2llo,0,4 + [2ll0.0.4 < Collelmyman, = € Xip, (32)

Proof. First, we prove the right-hand side of inequality (3.2). Since A is of order (mq, ms),
by (2.2) and by boundedness of A it follows that there exist two positive constants K3 and
K5 such that

||A$||0’0,A < Kle”ml,mmA and

Izll0,0.4 < KallZllmy,ma.n,z € X,

miy,m2"

Hence, there exists a positive constant Co = max (K1, Ks) such that

14z ]lo.0.4 + l[llo.0.4 < Collllimy ma.n @ € X,

my,ma"

Now, we have to prove the left-hand side of inequality (3.2).
By (8.1) it follows that

z = BAz — Rx,z € X2

mi,ma?
where B is an operator of order (—mj,—ms) and R is an infinitely smoothing operator.
Hence,
||$Hm1,m2,/\ = HBA"E - Rx”mhmZ,A < ”BA‘THml,mz,A + HRmel’m%A'

Since # € X} ., and A is of order (my,my), it follows that Az € X§,. The operator
B: Xé\)o — Xf}lhmz is bounded. Therefore, there exists a positive constant K} such that

|BAZ |1y ,man < K1 [|Azl0,0,0, 7 € X7

mi1,ma”’

Since z € X2 - X&o» let z € X&O. The operator R is infinitely smoothing, so

my,ma
there exists a positive constant K} such that

IR [ms,man < Ksll2ll0,0,052 € Ko, iy
Using the last two inequalities above, it follows that
[/l main < KillAzllo,0,4 + Kollz]l0,0,a

< max (K1, K3) ([ Az]lo,0,a + ||z

0,0.),2 € X2

mi,maz°

So, taking C; = , we get

1
max(K{,Ké)

A

Cill@[lmyma,n < N[ Az]l0,0,4 + ]l0,0,4, 7 € X55, iy

Thus, the proof is complete. O

Remark 3.1. The estimate (3.2) can be seen as an analogue of the Agmon-Douglis-
Nirenberg estimate for pseudo-differential operators in the case of an operator A from X
into X with dense domain (see [1]). We must specify that some versions of this estimate
can be found, for example, in [5], [7] and [8] for the class of pseudo-differential operators
with global symbols introduced by Camperi in [4] or for a class of hybrid pseudo-differential
operators introduced by Alimohammady and Kalleji in [2].

Theorem 3.2. Let A be as in Theorem 3.1. Then, D (4,) = XA

mi,ma”’



Some properties of minimal and maximal operators in an abstract framework 35

Proof.” D7 Let x € X,‘,\lhmz. By Proposition 2.1, S'is dense in X,/,\lhmz. Hence, there exists a
sequence {¢y} of elements in S such that ¢ — = in Xf,\lhmz as k — oo. By the right-hand side
of inequality (3.2), {Ap} and {¢k} are Cauchy sequences in X. Therefore, ¢, — = and Agy,
— fin X for some z and fin X as k — oo. Thus, by the definition of Ag, z € D (Ag) and Apx
= f.

7 C 7 Let x € D(Ap). By the definition o f A o, t here e xists a s equence { ¢} of
elements in S for which ¢ — x in X and Ay — f in X for some f in X as k — oo. Hence,
{¢r} and {Aypy} are Cauchy sequences in X. Using (3.2), {¢«} is a Cauchy sequence in

My Since XA i complete, it follows that ¢ — w in X7, . for some u in X}, .

as k — o0o. By (2.2), ¢, — v in X as k — 00, so £ = u. Thus, x € X2

mi,ma”

The proof of the Theorem 3.2 is complete. O
Now we came to the main result of this section.
Theorem 3.3. Let A be as in Theorem 3.1. Then, Ag = A;.

Proof. Since A; is an extension of Ay and D (4y) = X{v\n,mw
D (A1) C XN, s

Let z € D(Ay).

Using the hypotheses from Theorem 3.1, it follows that there exists an operator B of
order (—my, —msz) such that = BAx — Rz, where R is an infinitely smoothing operator.

Let uw € D(A1). By Definition 2.7,

it remains to prove that

(p, A1u) = (A%p,u), @€S. (3.3)
By (2.5), we have

(Au, ) = (u, A%p), peS. (3.4)
Using (2.3) and (3.4),

(o, Au) = (A"p,u), p€S. (3.5)

Therefore, by (2.3), (3.3) and (3.5),

(A1U,(P) = (AU,(p), P e S.

Hence, Aju = Au for all u € D (A4;).
Since Az = A1z € X = X&O, we have that BAr € XA

my,mz”’
A

my,m2"°

Since z € X and R is an
infinitely smoothing operator, we obtain that Rz € X
Thus, v € X,’,\Ll’mz.

The proof of this theorem is complete. O

For more details concerning the minimal and maximal operators corresponding to
different types of pseudo-differential operators, see, for example, [2], [5]-[8], [12].

Now, we give an application regarding the existence and regularity of weak solutions
of the linear equations on the reflexive complex Banach space X.

Definition 3.1. Let f € X. Then, an element v in X is called a weak solution of the linear
equation Au = f if (A*p,u) = (p, f), for all p € S.

Proposition 3.1. Let A: S C X — X be a linear operator and let f € X. Then v € X is
a weak solution of the linear equation Au = f iff u € D (A;) and Aju = f.

Proof. The ”only if” part follows from the definitions of the maximal operator A; and of
the weak solutions. Indeed, u € D (A4;) and A;u = f implies that (¢, Aju) = (A*p,u), for
all p € S or equivalently (¢, f) = (A*p,u), for all ¢ € S. Therefore, u is a weak solution of
the linear equation Au = f.
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The ”if” part follows from the definition of the weak solutions. Let u € X be a weak
solution of the linear equation. Then, (A*p, u) = (¢, Au), for all ¢ € S. From the definition
of the maximal operator A;, we obtain that (p, Aju) = (A*p,u), for all ¢ € S. Hence,
u € D(A;) and Aju = f. |

Now, we can state and prove the following theorem.

Theorem 3.4. Let A : D(A) C X — X be a linear operator as in Theorem 3.1 and let

f € X. Then, every weak solution u of the linear equation Au = f is in X,/,‘h’mz.

Proof. Let u be a weak solution of Au = f.

Using Proposition 3.1, we obtain that u € D (A;). By Theorem 3.3, A; = Ay. Hence,
u € D (Ap). By Theorem 3.2, D (Ag) = XA ...

Therefore, u € X,ﬁ\%mQ.

The proof of the theorem is complete. O
Remark 3.2. The previous theorem represents a regularity result because it tells us that
every weak solution u of the linear equation Au = f belongs to a more regular space Xﬁ%mz
in the sense that X2 C Xfo =X by (2.2).

mi,ma2
4. Two perturbation results

In this section, we give a perturbation result concerning the A-D-N inequality and
another result regarding the strongly continuous semigroup of contractions.

First, we assume that for 0 < s; < t; and for every positive number ¢ > 0, there
exists a positive constant C. such that

lo.o.au € X} . (4.1)

Let us observe that when we take s = (s1,52),t = (t1,t2) in R? such that 0 < 57 < t1,82 <
0 < t9, we have the estimate

||uH51707A < EHUHtLOJ\ + CEHU’

lullsy s < ellulley ton + Cellulloo.n, u € X554, (42)
using (2.2) and (4.1).

Remark 4.1. The inequality (4.1) is an abstract version of the Erhling inequality related
to the pseudo-differential operators on LP (R™) spaces (see [17]) and the inequality (4.2) is
an almost analogue, in our abstract setting, of this inequality.

Theorem 4.1. Let A be an operator as in Theorem 3.1 and let V : D(V) C X — X with
S C D(V) be a closed operator such that there exists a positive constant C for which

Vellooa < Cllellsy,szn, ¢ €S, (4.3)
where 0 < s1 < mq,82 <0< mg. Then, there exist positive constants Cy and Cy such that
Cill@llmyman < NA+V)@llgon + lello0a < Coll@llmyman, ©€S.  (44)
Proof. Let ¢ € S. By (4.3) and the right-hand side of the inequality (3.2), we get
1A+ V) @llgoa + lellooa < IALllgoa + 1VEll0,0,a + [l
< [A¢llgo,a + Cliellsison + llollo,0,n
< (C+ Co) [|@llmy,mar = Coll@llmymons @ €S.

By (4.3) and (4.2), for every positive number ¢, there exists a positive constant C. such

that
[(A+V) SOHO,(LA > ”ASO”o,o,A —IVelloo.a = [[Ag| 0,0,A — Cllellsy,s2,n
2 [|A¢llo,0,4 = ell@llmimsa = Cellelloon, ¢ €5

0,0,A
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By the left-hand side of the inequality (3.2), we get

I(A+V) ¢ellgoa = (Cr =) [llmymsn = (Cc+ D llelloon, ¢ €S

Choosing ¢ < (7, we obtain

1
lello0.a + 1A+ V) @llgon = llellooa + 1(A+ V) ello,0,4
C.+1
Cl — & ~
Z o 1elmimen = Cull@lmiman, ¢ €5
€
The proof is complete. O

Now, we can state and prove the main result of this section.

Theorem 4.2. Let A be an operator as in Theorem 3.1 and let V : D(V) C X — X with
S C D(V) be a closed operator that satisfies the estimate

Velloon < Cliellsysons @ €5, (4.5)

where 0 < s1 < mq,82 <0< mg. Then, there exist positive constants Cy,Cy such that
Cil[ullmy,ma,a < [[(Ao +V) u”o,o,/\ + ullo,o,a < Coflullmy man,uw € X?’[}L],YVLQ' (4.6)

Proof. Let u € XA

my,ma”
. A .
in X7, , @8 J — 00.

By the right-hand side of the inequality (3.2), we obtain that

There exists a sequence {(}72, of functions in S such that p; — u

Ap; = Agu € X as j — oo.
By (4.5),
Ve =Verloon < Clles = erlly, spn < Clles = Crlly myn =0 as ik — oo

Thus, Vg; — v for some v in X as j — oo. Since V' : D(V) — X is closed, u € D(V) and
Vu=nw.
By Theorem 4.1,

Crl@jllmy mpn < N(A0+ V) @5l 0.a + 1951004 < Col1851l00, a5

for j=1,2,....
Now, if we let 7 — oo, then the proof of the theorem is complete. O

In order to give an application to strongly continuous semigroups of contractions
generated by the operator A, we need to recall the following result (see Corollary 3.8 in [9]
or Corollary 3.3 in [14]).

Theorem 4.3. Let X be a complex Banach space and let || - || be its norm. Let A be the
infinitesimal generator of one-parameter strongly continuous semigroup of contractions on
the complex Banach space X. Let B be a dissipative operator which satisfies D(A) C D(B)
and |Bz|| < a||Az|| + C||z|| for x € D(A), where 0 < a <1 and C > 0.

Then A + B is the infinitesimal generator of a one-parameter strongly continuous
semigroup of contractions on X.

Now, we can state and prove the following theorem.
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Theorem 4.4. Let A be an operator as in Theorem 3.1 such that A is the infinitesimal
generator of a strongly continuous semigroup of contractions on X.
Let V : D(V) C X — X be a maximally dissipative operator with S C D(V') such that
HVQD||0707A < C”SD”SLSQ,/M‘P €5,

where 0 < 81 < mq, s2 <0< mg and C is a positive constant.
Then Ay + V is the infinitesimal generator of an one-parameter strongly continuous
semigroup of contractions on X.

Proof. Let € > 0 such that eC' < 1.
By (2.2), the abstract case of the Erhling inequality (4.2) and the left-hand side of
the Agmon-Douglis-Nirenberg estimate (3.2), we can get a positive constant C. such that

Velloo.n < Cellpllmi,ma,a + CCllglloon <

Cz (14¢llg 0.0 + llo0.n ) + CCclllloon (4.7)
=Ce ||A‘P||0,0,A + (Ce + CC)l#llo,0.a, ¢ € S

Let u € X2 and let {¢x}r be a sequence in S such that

mi,ma
Cr — U

in X2 as k — oo.

miy,m2

Using (4.7), we have

1Verlloon < CellApkllo.0.a + (Ce + CC:) [[¢kll0,0.a5

for k=1,2,....
Since V is maximally dissipative, if we let k — oo, we get

[Vullgon < CellAoullggn + (Ce + CC) flullg g o
for u € XA C D(V) (because by (iv) XA C Xt ., CXP=X).

miy,m2 my,m2 $1,82

Now, using Theorem 4.3 the proof is complete. O

5. Fredholmness of minimal operator A

In this section, we prove that the minimal operator Ag of the operator A is Fredholm
when suitable hypotheses are satisfied.

Let us recall that a closed linear operator A : X — X from a complex Banach space
X into a complex Banach space Y with dense domain D(A) is said to be Fredholm if

i) R(A) is a closed subspace of Y;

ii) N(A) and N (A?) are finite dimensional,

where R(A) is the range of A, N(A) is the null space of A and N (A?) is the null
space of the adjoint A’

Now, we recall a result in which we find the necessary and sufficient conditions for an
operator to be Fredholm.

Theorem 5.1. (see [3]) Suppose that A is a closed linear operator from a complex Banach
space X into a complex Banach space Y with dense domain D(A). Then, A is Fredholm if
and only if one can find a closed linear operator B : Y — X, compact operators K1 : X — X
and Ko :Y =Y such that BA=1+ K; on D(A) and AB=1+ K5 onY.

In order to prove the main result of this section, we need the following theorem.

Theorem 5.2. Let s1,892,t1,t2 € R such that s < t1 and so < ta. Then, the inclusion

;LY A A ;
i Xy 4, > Xg, s, 1S a compact operator.
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Proof. Since t; — s;1 > 0, t3 — s3 > 0 by the hypothesis, then, by a corollary of the
Archimedean property, there exists a positive number € such that 0 < e <t; —s1, 0 <e <
tg — S9.
Let us consider the following mappings
AL gA . vA A
(Js,s) J—Sl,—SQ . th,tg — th—sl—s,tg—SQ—sv
Sy A A A . yA A
[ thfslfs,tgfsgfs — XO,O a‘nd JE,E . XU,O — XU,O‘
By the composition of these three mappings, we get

A (AT A . vA A
JE7EZ (‘]E,S) J—Sl,—sz ' Xt17t2 - X070'

But (JsAwg)f1 J/)Sl,fsQ and ¢ are bounded linear operators, by Proposition 2.1 and
the property (iv) in the definition of the two-parameter abstract framework in Section 2,
and Jé\)s is a compact operator by property (i) in the definition of the same two-parameter
abstract framework. )

Therefore, JQEZ' (Jé\,s)f J/_\Sl,_s2 : Xﬁ,tz — X&o is a compact operator.

Let us remark that for v in X{},tz, it follows that Jﬁsi (JsA’E) - J/_\sl’_s2u = Jﬁ‘sh_sQu €
X(/)\,0~ Hence, u € Xé\hs2 and the inclusion i : X{}_’)52 — Xsf\l,s2 is a compact operator.

|

The main result in this section reads as follows.

Theorem 5.3. Let A: S C X — X be an operator as in Theorem 3.1 such that it satisfies
the equality AB = I + L, where B is the operator in Theorem 3.1 and L is an infinitely
smoothing operator. Then, the bounded linear operator Ag : X2 C X — X is Fredholm.

my,ma

Proof. Since A satisfies the hypothesis of Theorem 3.1, there exists a linear operator B of
order (—my, —ms) from X to X with domain S such that BA =T+ R and AB =1+ L,
where [ is the identity operator and R, L are infinitely smoothing operators.

For all positive numbers t1, t, the linear operator R : X — X{})t2 is bounded by the
definition of the smoothing operator and 7 : X{}’t2 — X is compact by Theorem 5.2. Thus,
R: X — X is a compact operator.

Similarly, L : X — X is also a compact operator.

By Theorem 5.1, we obtain that Ay : X,/}n’,m C X — X is Fredholm.

Thus, the proof is complete. O
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