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FIXED AND COMMON FIXED POINT THEOREMS

FOR WARDOWSKI TYPE MAPPINGS IN UNIFORM SPACES

by Muhammad Usman Ali1, Tayyab Kamran2, Fahimuddin3 and Muhammad Anwar4

In this paper we generalize Wardowski type mappings in the setting of uniform
spaces. By using these new notions we prove some fixed and common fixed point theorems
in uniform spaces. We also provide some examples to show the applicability of our
results.
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1. Introduction

Samet et al. [1] introduced the notions of α-admissible and α-ψ-contractive type
mappings and proved fixed point theorems on complete metric space by using these notions.
The results of Samet et al. [1] were generalized by many authors in different settings see
for example [1–16]. Wardowski [17] introduced the notion of F -contraction which is a nice
generalization of the classical contraction condition. He also proved a fixed point theorem for
a mapping satisfying the F -contraction. This result has been extended in different ways as
mentioned in [18–23]. Aamri and Moutawakil [26] introduced the notions of A-distance and
E-distance on uniform spaces and proved some common fixed point theorems on uniform
spaces.

The purpose of this paper is to prove some fixed and common fixed point theorems
on uniform spaces for mappings satisfying the contraction conditions obtained by refining
the ideas of [1] and [17].

Now, we recollect some basic definitions, notions and results which we require subse-
quently.

Let X be a nonempty set. A nonempty family “ϑ” of subsets of X × X is called a
uniform structure of X, if it satisfies the following properties:

(i) if G is in ϑ, then G contains the diagonal {(x, x)|x ∈ X};
(ii) if G is in ϑ and H is a subset of X ×X which contains G, then H is in ϑ;
(iii) if G and H are in ϑ, then G ∩H is in ϑ;
(iv) if G is in ϑ, then there exists H in ϑ, such that, whenever (x, y) and (y, z) are in H,

then (x, z) is in G;
(v) if G is in ϑ, then {(y, x)|(x, y) ∈ G} is also in ϑ.
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(v) if G is in ϑ, then {(y, x)|(x, y) ∈ G} is also in ϑ.

The pair (X,ϑ) is called a uniform space and the element of ϑ is called entourage or neigh-

borhood or surrounding. The pair (X,ϑ) is called a quasiuniform space (see e.g. [24,25] ) if

property (v) is omitted.

For a subset V ∈ ϑ, a pair of points x and y are said to be V -close if (x, y) ∈ V and

(y, x) ∈ V . Moreover, a sequence {xn} in X is called a Cauchy sequence for ϑ, if for any

V ∈ ϑ, there exists N ≥ 1 such that xn and xm are V -close for n,m ≥ N . For (X,ϑ), there

is a unique topology τ(ϑ) on X generated by V (x) = {y ∈ X|(x, y) ∈ V } where V ∈ ϑ.

A sequence {xn} in X is convergent to x for ϑ, denoted by lim
n→∞

xn = x, if for any

V ∈ ϑ, there exists n0 ∈ N such that xn ∈ V (x) for every n ≥ n0. Let ∆ = {(x, x)|x ∈ X}
be the diagonal of X. For V ⊆ X ×X, we define

V −1 = {(x, y)|(y, x) ∈ V }.

A uniform space (X,ϑ) is called Hausdorff if the intersection of all the V ∈ ϑ is equal to ∆

of X, that is, if (x, y) ∈ V for all V ∈ ϑ implies x = y. If V = V −1 then we say that a subset

V ∈ ϑ is symmetric. Throughout the paper, we consider that each V ∈ ϑ is symmetric. For

more details, see e.g. [26–29].

Now, we recall the notions of A-distance and E-distance.

Definition 1.1. [26, 27] Let (X,ϑ) be a uniform space. A function p : X ×X −→ [0,∞)

is said to be an A-distance if for any V ∈ ϑ there exists δ > 0 such that if p(z, x) ≤ δ and

p(z, y) ≤ δ for some z ∈ X, then (x, y) ∈ V .

Definition 1.2. [26, 27] Let (X,ϑ) be a uniform space. A function p : X ×X −→ [0,∞)

is said to be an E-distance if

(i) p is an A-distance,

(ii) p(x, y) ≤ p(x, z) + p(z, y), ∀x, y, z ∈ X.

Example 1.1. [26, 27] Let (X,ϑ) be a uniform space and let d be a metric on X. It is

evident that (X,ϑd) is a uniform space where ϑd is a set of all subsets of X ×X containing

a ”band” Uϵ = {(x, y) ∈ X2|d(x, y) < ϵ} for some ϵ > 0. Moreover, if ϑ ⊆ ϑd, then d is an

E-distance on (X,ϑ).

Lemma 1.1. [26, 27] Let (X,ϑ) be a Hausdorff uniform space and p is an A-distance on

X. Let {xn} and {yn} be sequences in X and {αn}, {βn} be sequences in [0,∞) converging

to 0. Then, for x, y, z ∈ X, the following results hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then y = z. In particular, if

p(x, y) = 0 and p(x, z) = 0, then y = z.

(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then {yn} converges to z.

(c) If p(xn, xm) ≤ αn for all n,m ∈ N with m > n, then {xn} is a Cauchy sequence in

(X,ϑ).

Let p be an A-distance. A sequence in a uniform space (X,ϑ) with an A-distance is

said to be a p-Cauchy if for every ϵ > 0 there exists n0 ∈ N such that p(xn, xm) < ϵ for all

n,m ≥ n0.

Definition 1.3. [26,27] Let (X,ϑ) be a uniform space and p is an A-distance on X. Then:

(i) X is called S-complete if for each p-Cauchy sequence {xn}, there exists x ∈ X,

limn→∞ p(xn, x) = 0.

(ii) X is called p-Cauchy complete if for each p-Cauchy sequence {xn}, there is x in X

with limn→∞ xn = x with respect to τ(ϑ) .
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(iii) T : X → X is p-continuous if limn→∞ p(xn, x) = 0, then we have limn→∞ p(T (xn), T (x)) =

0.

Remark 1.1. [26] Note that if (X,ϑ) is a Hausdorff uniform space which is S-complete,

then it is also p-Cauchy complete.

Wardowski [17] introduced the following functions and proved the following fixed

point theorem:

Definition 1.4. [17] A function F : R+ = (0,∞) → R is called F -function if it satisfies

the following conditions:

: (F1) F is strictly increasing function i.e., x1 < x2 implies F (x1) < F (x2).

: (F2) For each sequence {xn} of positive real numbers, we have limn→∞ xn = 0 if and

only if limn→∞ F (xn) = −∞.

: (F3) For each sequence {xn} of positive real numbers with limn→∞ xn = 0, there exists

k ∈ (0, 1) such that limn→∞ xknF (xn) = 0.

The family of F -functions is denoted by F.

Theorem 1.1. [17] Let (X, d) be a complete metric space and let T : X → X be a F -

contraction, that is, there exists a function F ∈ F and constant τ > 0 such that

τ + F (d(Tx, Ty)) ≤ F (d(x, y))

for each x, y ∈ X, whenever d(Tx, Ty) > 0. Then T has a unique fixed point.

Samet et al. [1] stated the notion of α-admissible mappings in the following way:

Definition 1.5. [1] A mapping T : X → X is an α-admissible if for any x, y ∈ X with

α(x, y) ≥ 1, we have α(Tx, Ty) ≥ 1.

Abdeljawad [7] extended this notion in the following way:

Definition 1.6. [7] A pair of two self mappings T, S : X → X is an α-admissible if for

any x, y ∈ X with α(x, y) ≥ 1, we have α(Tx, Sy) ≥ 1 and α(Sx, Ty) ≥ 1.

2. Main Results

We begin this section with the following definition.

Definition 2.1. Let (X,ϑ) be a uniform space such that p is an E-distance on X. A

mapping T : X → X is said to be an (α, F )-contractive mapping if there exist the functions

α : X ×X → [0,∞), F ∈ F and constant τ > 0 such that

τ + F (α(x, y)p(Tx, Ty)) ≤ F (p(x, y)), ∀x, y ∈ X (1)

whenever min{α(x, y)p(Tx, Ty), p(x, y)} > 0.

Theorem 2.1. Let (X,ϑ) be a S-complete Hausdorff uniform space such that p is an E-

distance on X. Let T : X → X be an (α, F )-contractive mapping which satisfies the following

conditions:

: (i) T is α-admissible;

: (ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

: (iii) T is p-continuous.

Then T has a fixed point.
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Proof. By hypothesis (ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. We define a sequence

{xn} in X by xn+1 = Txn for all n ∈ N ∪ {0}. If xn0 = xn0+1 for some n0, then xn0 is a

fixed point of T . Therefore, we assume that xn ̸= xn+1 for all n. As T is α-admissible then

α(x0, x1) = α(x0, Tx0) ≥ 1 implies α(x1, x2) = α(Tx0, Tx1) ≥ 1. Inductively, we have

α(xn, xn+1) ≥ 1, ∀n ∈ N ∪ {0}.

Thus from (1), we have

τ + F (p(xn, xn+1)) = τ + F (p(Txn−1, Txn))

≤ τ + F (α(xn−1, xn)p(Txn−1, Txn))

≤ F (p(xn−1, xn)) ∀n ∈ N.

This inequality yields to the following

F (p(xn, xn+1)) ≤ F (p(x0, x1))− nτ ∀n ∈ N. (2)

Letting n → ∞ in the above inequality, we get limn→∞ F (p(xn, xn+1)) = −∞. Thus

by using the property (F2), we get limn→∞ p(xn, xn+1) = 0. For convenience we denote

pn = p(xn, xn+1) for each n. Property (F3) implies that there exists k ∈ (0, 1) such that

limn→∞ pknF (pn) = 0. From (2), we have

pknF (pn)− pknF (p0) ≤ −npknτ.

Letting n→ ∞ in the above inequality, we have limn→∞ npkn = 0. Then there exists n0 ∈ N
such that npkn ≤ 1 for all n ≥ n0. Thus, we have pn ≤ 1

n1/k . As p is E-distance, then by

using triangular inequality for m > n > n0 we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + . . .+ p(xm−1, xm)

=
∞∑
i=n

pi −
∞∑

i=m

pi

≤
∞∑
i=n

1

i1/k
−

∞∑
i=m

1

i1/k
.

Letting n,m → ∞ in the above inequality we get limn,m→∞ p(xn, xm) = 0. Since p is

not symmetric, by using the assumption α(Tx0, x0) ≥ 1 and hypothesis of the theorem

in the similar manner as mentioned above we get limn→∞ p(xm, xn) = 0. Therefore,

{xn} is a p-Cauchy sequence in X. By S-completeness of X, we have u ∈ X such that

limn→∞ p(xn, u) = 0. Further by hypothesis (iii), we have limn→∞ p(Txn, Tu) = 0, that is,

limn→∞ p(xn+1, Tu) = 0. Hence, we have limn→∞ p(xn, u) = 0 and limn→∞(xn, Tu) = 0.

Thus by Lemma 1.1-(a), we have Tu = u. �

In next theorem, p-continuity of the mapping is replaced by another condition which

is imposed on the space.

Theorem 2.2. Let (X,ϑ) be a S-complete Hausdorff uniform space such that p is an E-

distance on X. Let T : X → X be an (α, F )-contractive mapping which satisfies the following

conditions:

: (i) T is α-admissible;

: (ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

: (iii) for any sequence {xn} in X with xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for all

n ∈ N ∪ {0}, we have α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
Then T has a fixed point.
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Proof. From the proof of Theorem 2.1, we know that {xn} is a p-Cauchy sequence in X

and α(xn, xn+1) ≥ 1 for each n ∈ N ∪ {0}. Further, there exists u ∈ X such that

limn→∞ p(xn, u) = 0. By hypothesis (iii), we have α(xn, u) ≥ 1 for each n ∈ N ∪ {0}.
Thus by using (1) and triangular inequality of p, we have

p(xn, Tu) ≤ p(xn, xn+1) + p(xn+1, Tu)

≤ p(xn, xn+1) + α(xn, u)p(Txn, Tu)

< p(xn, xn+1) + p(xn, u).

Letting n→ ∞ in the above inequality we get p(xn, Tu) = 0. Hence, we have limn→∞ p(xn, u) =

0 and limn→∞ p(xn, Tu) = 0. Thus by Lemma 1.1-(a), we have Tu = u. �

Example 2.1. Let X = { 1
n : n ∈ N} ∪ {0} be endowed with the usual metric p. Define

ϑ = {Uϵ : ϵ > 0}. It can be seen that (X,ϑ) is a uniform space. Define T : X → X as

Tx =


0 if x = 0

1
3n+2 if x = 1

n : n > 1

1 if x = 1,

and α : X ×X → [0,∞) as

α(x, y) =

{
1 if x, y ∈ X − {1}
0 otherwise.

.

It is easy to see that T is (α, F )-contractive mapping with F (x) = lnx for each x > 0 and

τ = 1. For x0 = 1
2 , we have α(x0, Tx0) = α(Tx0, x0) = 1. Further, for any sequence {xn}

in X with xn → x and α(xn−1, xn) = 1 for all n ∈ N, we have α(xn, x) = 1 for all n ∈ N.
Thus, by Theorem 2.2, we say that T has a fixed point.

To find out the uniqueness of fixed point, we consider the following condition:

: (J) For all x, y ∈ Fix(T ) we have z ∈ X such that α(z, x) ≥ 1 and α(z, y) ≥ 1,

where, Fix(T ) represents the set of all fixed points of T . The following theorem guarantees

the uniqueness of fixed point.

Theorem 2.3. If we add the condition (J) in the hypothesis of Theorem 2.1 (and Theorem

2.2), we get the uniqueness of fixed point of T .

Proof. On contrary suppose that u and v are two distinct fixed points of T . From the

condition (J), we have z ∈ X such that

α(z, u) ≥ 1 and α(z, v) ≥ 1. (3)

Since T is α-admissible, thus we get

α(Tnz, u) ≥ 1 and α(Tnz, v) ≥ 1, for all n ∈ N ∪ {0}. (4)

We define the sequence {zn} in X by zn+1 = Tzn = Tnz0 for all n ∈ N ∪ {0} and z0 = z.

Thus from (1), we get

τ + F (p(zn+1, u)) ≤ τ + F (α(zn, u)p(Tzn, Tu)) ≤ F (p(zn, u)) for all n ∈ N ∪ {0}.

Iteratively we get the following

F (p(zn, u)) ≤ F (p(z0, u))− nτ for all n ∈ N.

Letting n → ∞ in the above inequality, we get limn→∞ F (p(zn, u)) = −∞. By using Prop-

erty (F2) we reach limn→∞ p(zn, u) = 0. Similarly, we have limn→∞ p(zn, v) = 0. Thus, by

Lemma 1.1-(a), we get u = v. �
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In the following definition we introduce the notion of (α, F )-contractive pair for self

mappings:

Definition 2.2. Let (X,ϑ) be a uniform space such that p is an E-distance on X. A pair

of two self mappings T, S : X → X is an (α, F )-contractive pair if there exist the functions

α : X ×X → [0,∞), F ∈ F and constant τ > 0 such that

τ + F (α(x, y)max{p(Tx, Sy), p(Sx, Ty)}) ≤ F (p(x, y)) (5)

for all x, y ∈ X whenever max{α(x, y)max{p(Tx, Sy), p(Sx, Ty)}, p(x, y)} > 0.

With the help of above notion we prove the following common fixed point theorem.

Theorem 2.4. Let (X,ϑ) be a S-complete Hausdorff uniform space such that p is an E-

distance on X. Let a pair of two self mappings T, S : X → X be an (α, F )-contractive pair

which satisfies the following conditions:

: (i) (T, S) is α-admissible;

: (ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

: (iii) for any sequence {xn} in X with xn → x as n→ ∞ and α(xn, xn+1) ≥ 1 for each

n ∈ N ∪ {0}, then α(xn, x) ≥ 1 for each n ∈ N ∪ {0}.
Then T and S have a common fixed point.

Proof. By hypothesis (ii) we have x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1.

As (T, S) is an α-admissible pair, we construct a sequence {xn} in X such that Tx2n =

x2n+1, Sx2n+1 = x2n+2 and α(xn, xn+1) ≥ 1, α(xn+1, xn) ≥ 1 for all n ∈ N∪{0}. From (5),

we get

τ + F (p(x2n+1, x2n+2)) = τ + F (p(Tx2n, Sx2n+1))

≤ τ + F (α(x2n, x2n+1)×
max{p(Tx2n, Sx2n+1), p(Sx2n, Tx2n+1)})

≤ F (p(x2n, x2n+1)) ∀n ∈ N ∪ {0}. (6)

Likewise, we get the following

τ + F (p(x2n+2, x2n+3)) = τ + F (p(Sx2n+1, Tx2n+2))

≤ τ + F (α(x2n+1, x2n+2)×
max{p(Tx2n+1, Sx2n+2), p(Sx2n+1, Tx2n+2)})

≤ F (p(x2n+1, x2n+2)) ∀n ∈ N ∪ {0}. (7)

Thus from (6) and (7), we get

τ + F (p(xn+1, xn+2)) ≤ F (p(xn, xn+1)) ∀n ∈ N ∪ {0}.
This inequality yields the following

F (p(xn, xn+1)) ≤ F (p(x0, x1))− nτ for all n ∈ N. (8)

Following the details given in proof of Theorem 2.1, we conclude that {xn} is a p-Cauchy

sequence in X. By S-completeness of X, we have u ∈ X such that limn→∞ p(xn, u) = 0,

which implies limn→∞ Tx2n = limn→∞ Sx2n+1 = u. By hypothesis (iii), we get α(xn, u) ≥ 1

for each n ∈ N ∪ {0}. Thus, by using (5) and triangular inequality of p, we have

p(xn, Tu) ≤ p(xn, x2n+2) + p(x2n+2, Tu)

= p(xn, x2n+2) + p(Sx2n+1, Tu)

≤ p(xn, x2n+2) + α(x2n+1, u)max{p(Tx2n+1, Su), p(Sx2n+1, Tu)})
< p(xn, x2n+2) + p(x2n+1, u).
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Letting n → ∞ in the above inequality, we get limn→∞ p(xn, Tu) = 0. Further, we already

have limn→∞ p(xn, u) = 0. Thus by Lemma 1.1-(a), we have Tu = u. Analogously, we prove

that Su = u. Hence, u is a common fixed point of T and S. �

Remark 2.1. Note that Theorem 2.4 is valid if we replace condition (ii) with the condition

stated below:

There exists x0 ∈ X such that α(x0, Sx0) ≥ 1 and α(Sx0, x0) ≥ 1.

We can proof the following theorem on the same lines as the proofs of previous

theorems are done.

Theorem 2.5. Let (X,ϑ) be a S-complete Hausdorff uniform space such that p is an E-

distance on X. Let T : X → X be a mapping for which there exist the functions α : X×X →
[0,∞), F ∈ F and constant τ > 0 satisfying the following condition:

τ + F (α(x, y)max{p(Tx, y), p(x, Ty)}) ≤ F (p(x, y))

for each x, y ∈ X, whenever max{α(x, y)max{p(Tx, y), p(x, Ty)}, p(x, y)} > 0. Further

assume that the following conditions hold:

: (i) T is α-admissible;

: (ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

: (iii) for any sequence {xn} in X with xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for all

n ∈ N ∪ {0}, we have α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
Then T has a fixed point.

Example 2.2. Let X = { 1
n : n ∈ N} ∪ {0} be endowed with the usual metric p. Define

ϑ = {Uϵ : ϵ > 0}. It can be seen that (X,ϑ) is a uniform space. Define T : X → X as

Tx =


0 if x = 0

1
4n+1 if x = 1

n : n > 1

1 if x = 1,

and S : X → X as

Sx =


0 if x = 0

1
4n+1 if x = 1

n : n > 1

0 if x = 1,

and α : X ×X → [0,∞) as

α(x, y) =

{
1 if x, y ∈ X − {1}
0 otherwise.

It is easy to see that (T, S) is (α, F )-contractive pair with F (x) = lnx for each x > 0 and

τ = 1. For x0 = 1
2 , we have α(x0, Tx0) = α(Tx0, x0) = 1. Further, for any sequence {xn}

in X with xn → x and α(xn−1, xn) = 1 for all n ∈ N, we have α(xn, x) = 1 for all n ∈ N.
Thus, by Theorem 2.4, we say that T and S have a common fixed point.

To prove the uniqueness of common fixed point of mappings, we use the following

condition:

: (I) For each x, y ∈ CFix(T, S) we have α(x, y) ≥ 1;

where CFix(T, S) is the set of all common fixed points of T and S.

Theorem 2.6. By including condition (I) in the hypothesis of Theorem 2.4, we obtain the

uniqueness of common fixed point of T and S.
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Proof. Suppose on contrary that u, v ∈ X are two different common fixed points of T and

S. By condition (I), we have α(u, v) ≥ 1. From (5), we have

τ + F (p(u, v)) ≤ τ + F (α(u, v)max{p(Tu, Sv), p(Su, Tv)})
≤ F (p(u, v))

which is not possible for p(u, v) > 0. Thus, we have p(u, v) = 0. Further, we get p(u, u) = 0.

Therefore, Lemma 1.1-(a) implies that u = v. This is contradiction to our supposition.

Hence T and S have a unique common fixed point. �

The following results are immediately follow from our results by taking α(x, y) = 1

for each x, y ∈ X.

Corollary 2.1. Let (X,ϑ) be a S-complete Hausdorff uniform space such that p is an E-

distance on X. Let T : X → X be a mapping for which there exists a function F ∈ F and

constant τ > 0 satisfying the following condition:

τ + F (p(Tx, Ty)) ≤ F (p(x, y))

for each x, y ∈ X, whenever p(Tx, Ty) > 0. Then T has a unique fixed point.

Corollary 2.2. Let (X,ϑ) be a S-complete Hausdorff uniform space such that p is an E-

distance on X. Let T, S : X → X be two mappings for which there exists a function F ∈ F

and constant τ > 0 satisfying the following condition:

τ + F (max{p(Tx, Sy), p(Sx, Ty)}) ≤ F (p(x, y))

for each x, y ∈ X, whenever max{max{p(Tx, Sy), p(Sx, Ty)}, p(x, y)} > 0. Then T and S

have a unique common fixed point.
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