
U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 1, 2015 ISSN 1223-7027

COMMON SOLUTIONS OF A SYSTEM OF VARIATIONAL

INEQUALITY PROBLEMS

M. Eslamian1, S. Saejung2, J. Vahidi3

In this paper, we introduce and study a new iterative scheme for a family of

unrelated variational inequalities. The scheme is based on viscosity method. We obtain

strong convergence of the proposed algorithm to common solutions to an infinite count-

able family of variational inequalities in a real Hilbert spaces. The results obtained in

this paper extend and improve some recent known results.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨., .⟩ and norm ∥.∥. Let C be a

nonempty closed convex subset of H. Let A : C −→ H be a nonlinear operator. It is well

known that the Variational Inequality Problem (V IP ) is to find u ∈ C such that

⟨Au, v − u⟩ ≥ 0, ∀v ∈ C.

The theory of variational inequalities has played an important role in the study of a wide

class of problems arising in pure and applied sciences including mechanics, optimization and

optimal control, partial differential equation, operations research and engineering sciences.

During the last decades this problem has been studied by many authors, (see [1-15]).

Recently, Censor, Gibali and Reich [16, 17] (see also [18]) introduced the Common

Solutions to Variational Inequality Problem (CSVIP) which consists of finding common

solutions to unrelated variational inequality. The general form of the CSVIP is the following:

Let H be a Hilbert space. Let there be given, for each i = 1, 2, ..., N , an operator

hi : H −→ H and a nonempty, closed and convex subset Ci ⊂ H, with
∩N

i=1 Ci ̸= ∅.
The CSVIP (for single-valued operators) is to find a point z ∈

∩N
i=1 Ci such that, for each

i=1,2,...,N,

⟨hiz, x− z⟩ ≥ 0, ∀x ∈ Ci, 1 ≤ i ≤ N. (1.1)

For 1 ≤ i ≤ N , we denote by SOL(Ci, hi) the solution set of (1). We note that in

CSVIP, if we choose all hi = 0, then the problem reduces to that of finding a point z ∈∩N
i=1 Ci in the nonempty intersection of a finite family of closed and convex set, which
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is the well known Convex Feasibility Problem (CFP). Note that the CFP has received a

lot of attention due to its extensive applications in many applied disciplines as diverse

as approximation theory, image recovery and signal processing, control theory, biomedical

engineering, communications, and geophysics (see [19, 20] and the references therein).

Definition 1.1. Let h : H −→ H be an operator and let C ⊂ H. The operator h is called

(i) Lipschitz continuous on C ⊂ H with constant L > 0 if

∥h(x)− h(y)∥ ≤ L∥x− y∥, ∀x, y ∈ C.

(ii) nonexpansive on C if it is Lipschitz continuous with constant L = 1.

(iii) a k−contraction if it is Lipschitz continuous with constant k < 1.

(iv) inverse strongly monotone with constant β > 0, (β − ism) if

⟨h(x)− h(y), x− y⟩ ≥ β∥h(x)− h(y)∥2, ∀x, y ∈ C.

Recently, Censor, Gibali and Reich [17], proved the following weak convergence the-

orem for solving the finite-set CSVIP in a real Hilbert space.

Theorem 1.2. Let H be a Hilbert space. For each 1 ≤ i ≤ N , let an operator hi : H −→ H

and a nonempty, closed and convex subset Ci ⊂ H be given. Assume that
∩N

i=1 Ci ̸= ∅, and
Ψ =

∩N
i=1 SOL(Ci, hi) ̸= ∅ and that for each 1 ≤ i ≤ N , hi is αi− ism. Set α := mini{αi}

and take λ ∈ (0, 2α). Let {xn} be a sequence generated by

xn+1 =

N∑
i=1

wn,i(PCi(I − λhi)xn), n ≥ 0,

where
∑N

i=1 wn,i = 1. Then the sequence {xn} converges weakly to a point z ∈ Ψ, where

z = limn−→∞ PΨxn.

In an infinite dimensional Hilbert space, this algorithm does not in general, have

strong convergence. This bring us a natural question how to modify this algorithm so that

strongly convergent sequence is guaranteed. In this paper, using the viscosity approximation

method, we introduce a new iterative process for an infinite family-set CSVIP. Moreover,

we establish strong convergence of the proposed algorithm to finding a common solution of

an infinite countable family of variational inequalities in a Hilbert space.

2. Preliminaries

A bounded linear operator A on H is called strongly positive if there exists γ > 0

such that

⟨Ax, x⟩ ≥ γ∥x∥2, (x ∈ H).

For a nonexpansive mapping T from a nonempty subset C of H into itself a typical problem

is to minimize the quadratic function

min
x∈Fix(T )

1

2
⟨Ax, x⟩ − ⟨x, b⟩, (2.1)

over the set of all fixed points Fix(T ) of T (see [21, 22]).
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Lemma 2.1. ([23]) Let H be a Hilbert space and {xn} be a bounded sequence in H. Then

for any given {λn}∞n=1 ⊂ (0, 1) with
∑∞

n=1 λn = 1 and for any positive integer i, j with i < j,

∥
∞∑

n=1

λnxn∥2 ≤
∞∑

n=1

λn∥xn∥2 − λiλj∥xi − xj∥2.

Lemma 2.2. ([21]) Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− ηn)an + ηnδn, n ≥ 0,

where {ηn} is a sequence in (0, 1) and δn is a sequence in R such that

(i)
∑∞

n=1 ηn = ∞,

(ii) lim supn−→∞ δn ≤ 0 or
∑∞

n=1 |ηnδn| < ∞.

Then limn−→∞ an = 0.

Lemma 2.3. ([24]) Let {un} be a sequence of real numbers that does not decrease at infinity,

in the sense that there exists a subsequence {uni} of {un} which satisfies uni < uni+1 for

all i ≥ 0. Also consider the sequence of integers {τ(n)} defined by

τ(n) = max{k ≤ n : uk < uk+1}.

Then τ(n) is a nondecreasing sequence verifying limn−→∞ τ(n) −→ ∞ and for all sufficiently

large number n, it holds that uτ(n) ≤ uτ(n)+1 and we have un ≤ uτ(n)+1.

Definition 2.4. Let C be a closed convex subset of H. For every point x ∈ H, there exists

a unique nearest point in C, denoted by PCx such that

∥x− PCx∥ ≤ ∥x− y∥ ∀y ∈ C.

PC is called the metric projection of H onto C.

Lemma 2.5. ([18]) Let C ⊂ H be a nonempty, closed and convex subset and let h : H −→ H

be an α-ism operator on H. Then for each λ ∈ (0, 2α),

(i) PC(I − λh) is nonexpansive;

(ii)

x⋆ ∈ SOL(C, h) ⇐⇒ x⋆ ∈ Fix(PC(I − λh)).

Since the fixed point set of nonexpansive operators is closed and convex, the projection

onto the solution set SOL(C, h) is well defined whenever SOL(C, h) ̸= ∅.

3. Main Result

In this section, we introduce a general algorithm for infinite family-set CSVIP. Then,

we establish the strong convergence of the proposed algorithm to finding a common solution

of an infinite countable family of variational inequalities in a Hilbert space.

Theorem 3.1. Let H be a Hilbert space. Let Ci be a family of nonempty, closed and

convex subset of H and hi : H −→ H be a family of operators. Assume that Ψ =∩∞
i=1 SOL(Ci, hi) ̸= ∅ and that for each i ∈ N, hi is θi− ism. Suppose that θ = infi θi > 0
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and take λ ∈ (0, 2θ). Assume that g be a k- contraction of H into itself and A be a self-

adjoint strongly positive bounded linear operator on H with coefficient γ and 0 < γ < γ
k . Let

{xn} be a sequence generated by x0 ∈ H and{
yn = αnxn +

∑∞
i=1 βn,iPCi(I − λhi)xn, n ≥ 0,

xn+1 = ηnγg(xn) + (I − ηnA)yn, ∀n ≥ 0,
(3.1)

where αn +
∑∞

i=1 βn,i = 1 and {αn}, {βn,i} and {ηn} satisfy the following conditions:

(i) {ηn} ⊂ (0, 1), limn−→∞ ηn = 0,
∑∞

n=1 ηn = ∞,

(ii) {αn}, {βn,i} ⊂ (0, 1) and lim infn−→∞ αnβn,i > 0, for all i ∈ N.
Then the sequence {xn} converges strongly to z ∈ Ψ, which solves the variational inequality

;

⟨(A− γg)z, x− z⟩ ≥ 0, ∀x ∈ Ψ. (3.2)

Proof. First, we show that there exists a unique z ∈ Ψ such that z = PΨ(I − A + γg)z.

Indeed, since Ψ =
∩∞

i=1 SOL(Ci, hi) is closed and convex, (see Lemma 2.5), we have that

the projection PΨ is well defined. Now, let Q = PΨ, we show that Q(I − A + γg) is a

contraction of H into itself. In fact,

∥Q(I −A+ γg)(x)−Q(I −A+ γg)(y)∥ ≤ ∥(I −A+ γg)(x)− (I −A+ γg)(y)∥

≤ ∥(I −A)x− (I −A)y∥+ γ∥gx− gy∥

≤ (1− γ)∥x− y∥+ γk∥x− y∥

≤ (1− (γ − γk))∥x− y∥.

Thus there exists a unique element z ∈ Ψ such that z = PΨ(I−A+γg)z. Since limn−→∞ ηn =

0, we may assume that ηn ∈ (0, ∥A∥−1) for all n ≥ 0. Also we have ∥I−ηnA∥ ≤ 1−ηnγ (see

[22] for details). Next, we show that {xn} is bounded. Since z ∈ Ψ we have PCi(I−λhi)z = z.

By Lemma 2.5, the operators PCi(I − λhi) are nonexpansive and hence we have that

∥yn − z∥ ≤∥αnxn +
∑∞

i=1 βn,iPCi
(I − λhi)xn − z∥

≤αn∥xn − z∥+
∑∞

i=1 βn,i∥PCi(I − λhi)xn − PCi(I − λhi)z∥

≤αn∥xn − z∥+
∑∞

i=1 βn,i∥xn − z∥

≤∥xn − z∥.

(3.3)

Hence

∥xn+1 − z∥ =∥ηn(γg(xn)−Az) + ((I − ηnA)(yn − z)∥

≤ηn∥γg(xn)−Az∥+ ∥I − ηnA∥∥yn − z∥

≤ηnγ∥g(xn)− g(z)∥+ ηn∥γg(z)−Az∥+ (1− ηnγ)∥xn − z∥

≤ηnγk∥xn − z∥+ ηn∥γg(z)−Az∥+ (1− ηnγ)∥xn − z∥

≤ (1− ηn(γ − γk))∥xn − z∥+ ηn∥γg(z)−Az∥

=(1− ηn(γ − γk))∥xn − z∥+ ηn(γ − γk) 1
γ−γk∥γg(z)−Az∥

≤max{∥xn − z∥, 1
γ−γk∥γg(z)−Az∥}.
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It follows by induction that

∥xn − z∥ ≤ max{∥x0 − z∥, 1

γ − γk
∥γg(z)−Az∥}, ∀n ≥ 0.

This shows that {xn} is bounded and so is {g(xn)}. Next, we show that for each i ∈ N,

lim
n−→∞

∥xn − PCi(I − λhi)xn∥ = 0.

By using Lemma 2.1, for every i ∈ N we have that

∥yn − z∥2 ≤ ∥αnxn +
∑∞

i=1 βn,iPCi(I − λhi)xn − z∥2

≤ αn∥xn − z∥2 +
∑∞

i=1 βn,i∥PCi(I − θihi)xn − z∥2 − αnβn,i∥PCi(I − λhi)xn − xn∥2

≤ αn∥xn − z∥2 +
∑∞

i=1 βn,i∥xn − z∥2 − αnβn,i∥PCi(I − λhi)xn − xn∥2

≤ ∥xn − z∥2 − αnβn,i∥PCi(I − λhi)xn − xn∥2.
(3.4)

Hence we have from (3.4) that

∥xn+1 − z∥2 = ∥ηn(γg(xn)−Az) + (I − ηnA)(yn − z)∥2

≤ η2n∥γg(xn)−Az∥2 + (1− ηnγ)
2∥yn − z∥2 + 2ηn(1− ηnγ)∥γg(xn)−Az∥∥yn − z∥

leqη2n∥γg(xn)−Az∥2 + (1− ηnγ)
2∥xn − z∥2 + 2ηn(1− ηnγ)∥γg(xn)−Az∥∥xn − z∥

−(1− ηnγ)
2αnβn,i∥PCi(I − λhi)xn − xn∥2.

(3.5)

By (3.5), we have that

(1− ηnγ)
2αnβn,i∥PCi

(I − λhi)xn − xn∥2

≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + 2ηn(1− ηnγ)∥γg(xn)−Az∥∥xn − z∥+ η2n∥γg(xn)−Az∥2.
(3.6)

Case A: Put Γn = ∥xn − z∥ for all n ∈ N. Suppose that Γn+1 ≤ Γn for all n ∈ N. In this

case limn−→∞ Γn exists. Since limn−→∞ ηn = 0, and {g(xn)} and {xn} are bounded, from

(3.6) we have

lim
n−→∞

(1− ηnγ)
2αnβn,i∥PCi(I − λhi)xn − xn∥2 = 0,

which implies that

lim
n−→∞

∥PCi(I − λhi)xn − xn∥ = 0.

Next we show that lim supn−→∞⟨(A−γg)z, z−xn⟩ ≤ 0. We can choose a subsequence {xni}
of {xn} such that

lim
i−→∞

(⟨A− γg)z, z − xni
⟩ = lim sup

n−→∞
(⟨A− γg)z, z − xn⟩.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly

to x∗. Without loss of generality, we may assume that xni converges weakly to x∗. Since for

each i ∈ N, the operators PCi(I − λhi) are nonexpansive and limn−→∞ ∥PCi(I − λhi)xn −
xn∥ = 0, the demiclosed principle implies that x∗ ∈ Ψ. Hence, from z = PΨ(I − A + γg)z

and x∗ ∈ Ψ, it follows that

lim sup
n−→∞

⟨(A− γg)z, z − xn⟩ = lim
i−→∞

(⟨A− γg)z, z − xni⟩ = (⟨A− γg)z, z − x∗⟩ ≤ 0.

On the other hand, since

xn+1 − z = ηn(γg(xn)−Az) + (I − ηnA)(yn − z).
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It is known that in a Hilbert space H,

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

This implies that

∥xn+1 − z∥2 ≤ ∥(I − ηnA)(yn − z)∥2 + 2ηn⟨γg(xn)−Az, xn+1 − z⟩
≤ (1− ηnγ)

2∥xn − z∥2 + 2ηnγ⟨g(xn)− g(z), xn+1 − z⟩+ 2ηn⟨γg(z)−Az, xn+1 − z⟩
≤ (1− ηnγ)

2∥xn − z∥2 + 2ηnkγ∥xn − z∥∥xn+1 − z∥+ 2ηn⟨γg(z)−Az, xn+1 − z⟩
≤ (1− ηnγ)

2∥xn − z∥2 + ηnkγ(∥xn − z∥2 + ∥xn+1 − z∥2) + 2ηn⟨γgz −Az, xn+1 − z⟩
≤ ((1− ηnγ)

2 + ηnkγ)∥xn − z∥2 + ηnγk∥xn+1 − z∥2 + 2ηn⟨γg(z)−Az, xn+1 − z⟩.
Hence

∥xn+1 − z∥2 ≤ 1−2ηnγ+(ηnγ)
2+ηnγk

1−ηnγk
∥xn − z∥2 + 2ηn

1−ηnγk
⟨γgz −Az, xn+1 − z⟩

=(1− 2(γ−γg)ηn

1−ηnγg
)∥xn − z∥2 + (ηnγ)

2

1−ηnγg
∥xn − z∥2 + 2ηn

1−ηnγk
⟨γgz −Az, xn+1 − z⟩

≤ (1− 2(γ−γk)ηn

1−ηnγk
)∥xn − z∥2 + 2(γ−γk)ηn

1−ηnγk
( (ηnγ

2)M
2(γ−γk) + 1

γ−γk )⟨γgz −Az, xn+1 − z⟩)

= (1− γn)∥xn − z∥2 + γnδn,

where M = sup{∥xn − z∥2 : n ≥ 0}, γn = 2(γ−γk)ηn

1−ηnγk
and

δn =
(ηnγ

2)M

2(γ − γk)
+

1

γ − γk
⟨γgz −Az, xn+1 − z⟩).

It is easy to see that γn −→ 0,
∑∞

n=1 γn = ∞ and lim supn−→∞ δn ≤ 0. Now, by Lemma

2.2, we conclude that the sequence {xn} converges strongly to z.

Case B: Suppose that there exists a subsequence {Γni
} ⊂ {Γn} such that Γni

< Γni+1

for all i ∈ N. In this case, we define τ : N −→ N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then we have from Lemma 2.3 that Γτ(n) < Γτ(n)+1. So we have from (3.6) that

(1− ητ(n)γ)
2ατ(n)βτ(n),i∥PCi(I − λhi)xτ(n) − xτ(n)∥2

≤ 2ητ(n)(1− ητ(n)γ)∥γg(xτ(n))−Az∥∥xτ(n) − z∥

+ η2τ(n)∥γg(xτ(n))−Az∥2 + ∥xτ(n) − z∥2 − ∥xτ(n)+1 − z∥2

≤ 2ητ(n)(1− ητ(n)γ)∥γg(xτ(n))−Az∥∥xτ(n) − z∥+ η2τ(n)∥γg(xτ(n))−Az∥2. (3.7)

By our assumption that limn−→∞ ηn = 0, we get that

lim
n−→∞

∥PCi(I − λhi)xτ(n) − xτ(n)∥ = 0.

Following the same argument as the proof of Case A for {xτ(n)} we have that

∥xτ(n)+1 − z∥2 ≤ (1− ητ(n))∥xτ(n) − z∥2 + ητ(n)δτ(n),

where ητ(n) −→ 0,
∑∞

n=1 ητ(n) = ∞ and lim supn−→∞ δτ(n) ≤ 0. Hence, by Lemma 2.2, we

obtain limn−→∞ ∥xτ(n) − z∥ = 0 and limn−→∞ ∥xτ(n)+1 − z∥ = 0. Thus by Lemma 2.3 we

have

0 ≤ ∥xn − z∥ ≤ max{∥xτ(n) − z∥, ∥xn − z∥} ≤ ∥xτ(n)+1 − z∥.
Therefore {xn} converges strongly to z = PΨ(I −A+ γg)z. �
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Putting A = I and γ = 1 in Theorem 3.1, for a finite-set CSVIP we obtain the

following result.

Theorem 3.2. Let H be a Hilbert space. Let Ci be a family of nonempty, closed and

convex subset of H and hi : H −→ H be a family of operators. Assume that Ψ =∩N
i=1 SOL(Ci, hi) ̸= ∅ and that for each i = 1, 2, ..., N , hi is θi− ism. Set θ = miniθi

and take λ ∈ (0, 2θ). Assume that g be a k- contraction of H into itself. Let {xn} be a

sequence generated by x0 ∈ H and{
yn = αnxn +

∑N
i=1 βn,iPCi(I − λhi)xn, n ≥ 0,

xn+1 = ηng(xn) + (1− ηn)yn, ∀n ≥ 0,
(3.8)

where αn +
∑∞

i=1 βn,i = 1 and {αn}, {βn,i} and {ηn} satisfy the following conditions:

(i) {ηn} ⊂ (0, 1), limn−→∞ ηn = 0,
∑∞

n=1 ηn = ∞,

(ii) {αn}, {βn,i} ⊂ (0, 1) and lim infn−→∞ αnβn,i > 0, for all i = 1, 2, ..., N .

Then the sequence {xn} converges strongly to z ∈ Ψ, which solves the variational inequality

;

⟨z − gz, x− z⟩ ≥ 0, ∀x ∈ Ψ. (3.9)

Now we consider a new iterative scheme. By using similar argument as in the proof

of Theorem 3.1 we can prove the following theorem.

Theorem 3.3. Let H be a Hilbert space. Let Ci be a family of nonempty, closed and

convex subset of H and hi : H −→ H be a family of operators. Assume that Ψ =∩∞
i=1 SOL(Ci, hi) ̸= ∅ and that for each i ∈ N, hi is θi− ism. Suppose g be a k-contraction

of H into itself. Let {xn} be a sequence generated by x0 ∈ H and

xn+1 = αnxn + βng(xn) +

∞∑
i=1

γn,iPCi(I − θihi)xn, n ≥ 0,

where αn+βn+
∑∞

i=1 γn,i = 1. If limn−→∞ βn = 0,
∑∞

n=0 βn = ∞, and lim infn αnγn,i > 0.

Then the sequence {xn} converges strongly to z ∈ Ψ, where z = PΨg(z).
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