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COMMON SOLUTIONS OF A SYSTEM OF VARIATIONAL
INEQUALITY PROBLEMS

M. Eslamian®, S. Saejung?, J. Vahidi®

In this paper, we introduce and study a new iterative scheme for a family of
unrelated variational inequalities. The scheme is based on viscosity method. We obtain
strong convergence of the proposed algorithm to common solutions to an infinite count-
able family of variational inequalities in a real Hilbert spaces. The results obtained in

this paper extend and improve some recent known results.
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1. Introduction

Let H be a real Hilbert space with inner product (.,.) and norm |.||. Let C be a
nonempty closed convex subset of H. Let A : C — H be a nonlinear operator. It is well
known that the Variational Inequality Problem (VIP) is to find u € C such that

(Au,v —u) >0, Vv e C.

The theory of variational inequalities has played an important role in the study of a wide
class of problems arising in pure and applied sciences including mechanics, optimization and
optimal control, partial differential equation, operations research and engineering sciences.
During the last decades this problem has been studied by many authors, (see [1-15]).
Recently, Censor, Gibali and Reich [16, 17] (see also [18]) introduced the Common
Solutions to Variational Inequality Problem (CSVIP) which consists of finding common
solutions to unrelated variational inequality. The general form of the CSVIP is the following:
Let H be a Hilbert space. Let there be given, for each i = 1,2,...,N, an operator
h; : H — H and a nonempty, closed and conver subset C; C H, with ﬂivzl C; # 0.
The CSVIP (for single-valued operators) is to find a point z € ﬂfvzl C; such that, for each
i=1,2,...,N,
(hiz,x — z) >0, VeeC;, 1<i<N. (1.1)
For 1 < i < N, we denote by SOL(C;, h;) the solution set of (1). We note that in
CSVIP, if we choose all h; = 0, then the problem reduces to that of finding a point z €
ﬂivzl C; in the nonempty intersection of a finite family of closed and convex set, which
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is the well known Convex Feasibility Problem (CFP). Note that the CFP has received a
lot of attention due to its extensive applications in many applied disciplines as diverse
as approximation theory, image recovery and signal processing, control theory, biomedical
engineering, communications, and geophysics (see [19, 20] and the references therein).

Definition 1.1. Let o : H — H be an operator and let C' C H. The operator h is called
(i) Lipschitz continuous on C' C H with constant L > 0 if

[h(z) = h()|| < Lllz—yl,  Vz,yeC.

(ii) nonexpansive on C' if it is Lipschitz continuous with constant L = 1.
(iii) a k—contraction if it is Lipschitz continuous with constant k < 1.
(iv) inverse strongly monotone with constant 8 > 0, (8 — ism) if

(h(z) = h(y), = —y) = Bllh(z) — h(y)|?, Vz,y e C.

Recently, Censor, Gibali and Reich [17], proved the following weak convergence the-
orem for solving the finite-set CSVIP in a real Hilbert space.

Theorem 1.2. Let H be a Hilbert space. For each 1 <1 < N, let an operator h; : H — H
and a nonempty, closed and convex subset C; C H be given. Assume that ﬂfvzl Ci # 0, and
U = ﬂf\il SOL(C;, h;) # O and that for each 1 < i < N, h; is a;— ism. Set a = min;{a;}
and take X € (0,2a). Let {z,} be a sequence generated by

N
Tn4+1 = an,i(PCi (I - )\hi)xn)a n Z 07

i=1

where ZZ]\LI Wp,; = 1. Then the sequence {x,} converges weakly to a point z € U, where

z=lim,,_ oo Pyx,.

In an infinite dimensional Hilbert space, this algorithm does not in general, have
strong convergence. This bring us a natural question how to modify this algorithm so that
strongly convergent sequence is guaranteed. In this paper, using the viscosity approximation
method, we introduce a new iterative process for an infinite family-set C'SVIP. Moreover,
we establish strong convergence of the proposed algorithm to finding a common solution of
an infinite countable family of variational inequalities in a Hilbert space.

2. Preliminaries

A bounded linear operator A on H is called strongly positive if there exists ¥ > 0
such that
(Az,2) 272, (v e H).
For a nonexpansive mapping 7" from a nonempty subset C' of H into itself a typical problem
is to minimize the quadratic function

1
in  =(Az,z) — (z.b 2.1
L, (Az,z) — (2,b), (2.1)

over the set of all fixed points Fiz(T) of T (see [21, 22]).
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Lemma 2.1. ([23]) Let H be a Hilbert space and {x,} be a bounded sequence in H. Then
for any given {\,}22, C (0,1) with .~ | A\, = 1 and for any positive integer i, withi < j,

o0 o0
| Z Annll® < Z Anlla? — Aidjlli — xjHQ-
n=1 n=1

Lemma 2.2. ([21]) Assume that {a,} is a sequence of nonnegative real numbers such that
An+41 S (1 - nn)an + 77n6’ru n Z Oa

where {n,} is a sequence in (0,1) and &, is a sequence in R such that

(1) Z:,ozl 77n = o0,

(ii) limsup, o0, <0 or > 07| |1,0,] < oo
Then lim,, . a, = 0.
Lemma 2.3. ([21]) Let {uy} be a sequence of real numbers that does not decrease at infinity,

in the sense that there exists a subsequence {un,} of {un} which satisfies uy, < up,+1 for
all i > 0. Also consider the sequence of integers {T(n)} defined by

7(n) = max{k < n:up < upy1}.

Then 7(n) is a nondecreasing sequence verifying lim,,_, ., 7(n) — oo and for all sufficiently
large number n, it holds that u,(n) < Urn)+1 and we have uy < Ur(p)41-

Definition 2.4. Let C be a closed convex subset of H. For every point x € H, there exists
a unique nearest point in C, denoted by Pox such that

le = Pox|| <z —yll  VyeC.
Pc is called the metric projection of H onto C.
Lemma 2.5. ([138]) Let C C H be a nonempty, closed and convex subset and leth : H — H
be an a-ism operator on H. Then for each A € (0,2a),
(i) Pc(I — A\h) is nonexpansive;
(i)
x* € SOL(C,h) <= z* € Fiz(Pc(I — Ah)).

Since the fized point set of nonexpansive operators is closed and convex, the projection
onto the solution set SOL(C, h) is well defined whenever SOL(C,h) # (.

3. Main Result

In this section, we introduce a general algorithm for infinite family-set CSVIP. Then,
we establish the strong convergence of the proposed algorithm to finding a common solution
of an infinite countable family of variational inequalities in a Hilbert space.

Theorem 3.1. Let H be a Hilbert space. Let C; be a family of nonempty, closed and
conver subset of H and h; : H — H be a family of operators. Assume that ¥ =
Niey SOL(C;, h;) # 0 and that for each i € N, h; is 0;— ism. Suppose that § = inf; 6; > 0
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and take A € (0,20). Assume that g be a k- contraction of H into itself and A be a
adjoint strongly positive bounded linear operator on H with coefficient ¥ and 0 < v < % Let
{zn} be a sequence generated by xo € H and

{yn = QpTy + Zzl Bn,iPCi (I - )\hz)xnv n > 07
LTn+1 = 77n'79(xn) + (I — M A)Yn, Vn > 0,
where o, + Y ooy Bni = 1 and {a,},{Bn,:} and {n,} satisfy the following conditions:

(i) {nn} C (Oa 1)7 lim, oo =0, Ezozl Mn = 00,
(i) {an}, {Bni} C (0,1) and liminf, oo B > 0, for alli € N.

Then the sequence {x,,} converges strongly to z € ¥, which solves the variational inequality

((A=~g)z,x— z) >0, Vo e V. (3.2)

Proof. First, we show that there exists a unique z € ¥ such that z = Py(I — A + vg)z.
Indeed, since ¥ = (2, SOL(C;, h;) is closed and convex, (see Lemma 2.5), we have that
the projection Py is well defined. Now, let @ = Py, we show that Q(I — A + ~vg) is a
contraction of H into itself. In fact,

QU —A+v9)(z) — QU —A+v9)W < [[(I —A+79)(2) — (I - A+v9) (W)
< |[(I = Az — (I - Ayl +7llgz — gyl
<A =)z -yl +kllz -yl
< (1= F =)z -yl

Thus there exists a unique element z € ¥ such that z = Py (I —A+~vg)z. Since lim,,—,o0 7, =
0, we may assume that n,, € (0, ||A||~!) for all n > 0. Also we have ||[I —n,A|| < 1—n,7 (see
[22] for details). Next, we show that {x,} is bounded. Since z € ¥ we have P, (I—Ah;)z = z.
By Lemma 2.5, the operators Pg, (I — Ah;) are nonexpansive and hence we have that

lyn — 2l <llanz, + Zjil Bn,i P, (I = Xhy)zp — 2|
<apllT, — 2| + Z;.i1 Br,illPe, (I — Ahi)zn, — Po, (I — Ah;)z||
<apllzn — 2l + 3072, Builln — 2|l

<|lzn — 2.

Hence
[#ns1 =2 =lm(vg(an) — Az) + (I = 10 A)(yn — 2)||
<nllvg(zn) — Azl + 1T — nnAllllyn — 2|
< YNg(@n) — g2 + nallvg(2) — Az[ + (1 = na7¥) lzn — 2||
Snpvklzn — 2l + nallvg(2) — Azl + (1 — 0 9)|J2n — 2|
S =nu(F = vk))zn — 2l + nallvg(2) — Az||

=1 =1 (T = vR)llzn — 2ll + 7 (T — vk) ==z 79(2) — Az||

<mazf|ln — 2ll, =z 7g() — Az}
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It follows by induction that

1
—z|| < — —A Vn > 0.
[2n — 2|l < maz{lzo — =], = Wkllvg(z) z[I}, n>
This shows that {z,} is bounded and so is {g(z,)}. Next, we show that for each i € N,
lim ||J,‘n - Pci (I - /\hl)l‘nH =0.
n—r-o0o
By using Lemma 2.1, for every i € N we have that

[yn = 2II* < lanzn + D it BriPo, (I = Mhi)w, — z||?
< anllzn = 2| + 3272 Buill Pe, (I = Oihi)zn — 2|1 — anBnil| Po, (I = i)z — 2|
< apllzn — 2l + 327 Buillzn — 2)1? — anBuill Po, (I — Ahi)zn — 2412
< len = 2l = anBuill Po; (I = M)z, — 2.
(3.4)
Hence we have from (3.4) that

[@ns1 = 21> = na(vg(2n) — A2) + (I = 0nA)(yn — 2)|1?

<mallvg(@n) = Az[* + (1 = 127)lyn — 201* + 200 (1 = 927 79 (2n) — Azlllyn — |
legny |vg(zn) — Az|I> + (1 = 907) |20 — 2l + 200 (1 = 9u7) Ig(20) — Az|l[|z — 2||
_(1 - nni) O‘nﬁn i (I Ah; )xn - xn||2

(3.5)
By (3.5), we have that
(1= n7)° (I = Ahi)n — ap?
< lwn = 201 = lensr = 2017 + 20 (1 = 0¥ 179 (20) — Azll|lon — 2] + 02 llvg(zn) — Az|*.
(3.6)

Case A: Put Ty, = |z, — z|| for all n € N. Suppose that T',,1q < T, for all n € N. In this
case lim, o, I, exists. Since lim,_ o 1, = 0, and {g(x,)} and {x,} are bounded, from
(3.6) we have

lim (1 - "7n7)2an6n,iHPCi (I - )‘hi)xn - xﬂ||2 =0,

n———o0

which implies that
lim |[[Pc,(I = Ahi)xyn — x| = 0.
n—aoo

Next we show that limsup,,__, . ((A—~g)z, z—x,) < 0. We can choose a subsequence {z,, }
of {x,} such that
lim ((A—~9g)z, 2 — x,,) = limsup({A — vg)z, 2z — x,).
11— 00 n—o0
Since {x,,} is bounded, there exists a subsequence {mnj} of {x,,,} which converges weakly
to z*. Without loss of generality, we may assume that z,,, converges weakly to 2*. Since for
each i € N, the operators Pg, (I — Ah;) are nonexpansive and lim, o || Pc, (I — M)z, —
Zn|| = 0, the demiclosed principle implies that «* € ¥. Hence, from z = Pg(I — A + vg)z
and z* € U, it follows that
limsup((A —v9)z,z2 — 2,,) = lim ((A—~9)z,z — x,,) = (A —vg)z,z2 —x*) < 0.
n—>moo 11— 00

On the other hand, since

Tpt1 — 2 =N (Y9(Tn) — A2) + (I = 1 A)(yn — 2)-
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It is known that in a Hilbert space H,
lz +yl* < ll2l* + 20y, 2 +y),  Va,y € H.
This implies that
21 = 21 < 1 = 00 A)(yn — 2)II° + 200 (yg(20n) — Az, 241 — 2)
< (1 =ma7)? 20 = 21% + 2007(g(2n) — 9(2), Tns1 — 2) + 2a(vg(2) — Az, Tni1 — 2)
< (1= 0a7)?llzn — 201 + 20pky||2n — 2llllTns1 — 2[ + 200 (v9(2) — Az, Zpi1 — 2)
< (1 =m7)? w0 — 212 + maky (20 — 21° + llongs — 21%) + 200 (v92 — Az, Tps1 — 2)
<((1- %7)2 + k) || 20 — 2”2 + Yk || Tng1 — 2”2 + 20 (v9(2) — Az, 2p 01 — 2).

Hence
1-2n,7+(Nn +nnvk 2
lonss — 2> < T2TEO DT k2 g B gy Az 2 — )
2(7— n n 2
:(1 - %) |xn - ZH2 + 1(nnn,yg||xn Z”2 1= :n»y <793 Az, xpy1 — Z>
2 k) 27—~k F2)M
<(1— B |, — 2|2 4 20 (AT I Ly lygz — Az, @y — 2))

(1= yn)llzn — Z||2 + nbn,

Q(V_’Yk)nn

jE—" and

where M = sup{||z, — z[|> : n >0}, v, =

_ (UnVZ)M +
20 =nk) A=k
It is easy to see that v, — 0, Zzozl Yn = oo and limsup,,_ .. d, < 0. Now, by Lemma
2.2, we conclude that the sequence {x,} converges strongly to z.
Case B: Suppose that there exists a subsequence {I',,,} C {I',,} such that T'),, < T, 11
for all ¢ € N. In this case, we define 7 : N — N by

(V92 — Az, Tpi1 — 2)).

7(n) = max{k <n:Tp <Tr}.

Then we have from Lemma 2.3 that I';(,,) < T'z(n)41. So we have from (3.6) that

(1 = 1) 7)o () Br ()il Poy (1 = M) Zr () — Ty ||
< 20 (n) (1 = ey DNV9(@7 () — Az [|27(n) — 2]
2y I09(@ ) = A2+ 7y = 212 = Ny — 2112
<207y (1 = ey V9 (@2 () = A7) = 2l + 020y [0 (27 my) = A2]% (3.7)
By our assumption that lim, ., 7, = 0, we get that
n&noo HPci (I — )\hi)xT(n) — :L‘T(n) || =0.
Following the same argument as the proof of Case A for {z,(,)} we have that
||x'r(n 1~ ZH (1 - nr(n )Hl‘r(n - Z” + nr(n)(s (n)»

where 7,y — 0,507, Nr(ny = 00 and limsup,, . 0, < 0. Hence, by Lemma 2.2, we
obtain lim, o [[Z7(n) — 2| = 0 and lim, o [|7+(n)+1 — 2]| = 0. Thus by Lemma 2.3 we
have

0 < |lzn —2[ < max{”x‘r(n) =z, lzn — 21} < Hmr(n)-&-l —z||.

Therefore {x,,} converges strongly to z = Py(I — A + vg)z. O
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Putting A = I and v = 1 in Theorem 3.1, for a finite-set CSVIP we obtain the
following result.

Theorem 3.2. Let H be a Hilbert space. Let C; be a family of nonempty, closed and
conver subset of H and h; : H — H be a family of operators. Assume that ¥ =
ﬂf\il SOL(C;,h;) # 0 and that for each i = 1,2,...,N, h; is 6;— ism. Set 8 = min;6;
and take A € (0,20). Assume that g be a k- contraction of H into itself. Let {z,} be a
sequence generated by xo € H and

{yn = QpTy + Zi\il 5n,¢PC7¢ (I - Ahl)x’fh n Z 07

(3.8)
Zrt1 = Mg (xn) + (1 — 10)Yn, Vn >0,

where an + Y ooy B = 1 and {an}, {Bn,i} and {n,} satisfy the following conditions:
(1) {nn} C (Oa 1); hmn—>oo Tin = 07 22021 TIn = 00,
(i) {an},{Bn,i} € (0,1) and liminf,,_ o @By, > 0, for alli =1,2,...,N.
Then the sequence {x,} converges strongly to z € U, which solves the variational inequality
(z—gz,x —2) >0, Ve e V. (3.9)
Now we consider a new iterative scheme. By using similar argument as in the proof
of Theorem 3.1 we can prove the following theorem.

Theorem 3.3. Let H be a Hilbert space. Let C; be a family of nonempty, closed and
conver subset of H and h; : H — H be a family of operators. Assume that ¥ =
Moz SOL(C;, h;) # 0 and that for each i € N, h; is 6;— ism. Suppose g be a k-contraction
of H into itself. Let {x,} be a sequence generated by xo € H and

Tn+l = Opdnp + ﬁng(xn) + Z’Yn,iPCi (I - eihi)l’n, n Z 0;
i=1
where o + B+ Y roq Ynyi = 1. Iflimy, o0 By = 0, >°0° ) Bn = 00, and liminf, oy, ; > 0.
Then the sequence {x,} converges strongly to z € U, where z = Pyg(z).
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