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FRACTIONAL ORDER OPTIMAL CONTROL PROBLEMS VIA

THE OPERATIONAL MATRICES OF BERNSTEIN

POLYNOMIALS

Hossein Jafari*, Haleh Tajadodi

In this paper a numerical method for solving a class of fractional opti-

mal control problems is presented which is based on Bernstein polynomials approx-

imation. Operational matrices of integration, differentiation, dual and product are

introduced and are utilized to reduce the problem of solving a system of algebraic

equations. The method in general is easy to implement and yields good results.

Illustrative examples are included to demonstrate the validity and applicability of

the new technique.
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1. Introduction

Fractional order dynamics appear in several problems in science and engi-

neering such as viscoelasticity [2], dynamics of interfaces between nanoparticles and

substrates [5], etc. It has also been shown that the materials with memory and

hereditary effects and dynamical processes including gas diffusion and heat conduc-

tion in fractal porous media can be modeled by fractional order models better than

integer models [21].

Bernstein polynomials (B-polynomials) have many useful properties. They play a

prominent role in various areas of mathematics and have frequently been used in the

solution of integral equations, differential equations and approximation theory; see

e.g., [6, 13, 20]. In recent years various operational matrices for the polynomials have

been developed to cover the numerical solution of differential, integral and integro-

differential equations [10, 11, 14, 15]. The main advantage of the new method is that

with the use of only few number of Bernstein basis we achieve satisfactory results.

In this paper, we focus on optimal control problems with the quadratic performance

index and the dynamic system with the Caputo fractional derivative. We solve the

problem directly without using Hamiltonian formulas. Our tools for this aim are the
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Bernstein basis and the operational matrix of fractional integration. The problem

formulation is as follows:

J =
1

2

∫ 1

0
[q(t)x2(t) + r(t)u2(t)]dt, (1)

c
0D

α
t x(t) = a(t)x(t) + b(t)u(t), (2)

x(t0) = x0,

where q(t) ≥ 0, r(t) > 0, b(t) ̸= 0, and the fractional derivative is defined in the

Caputo sense. We intend to extend the application of polynomials to solve fractional

differential equations. Our main aim is to generalize Bernstein operational matrix

to fractional calculus. Also illustrative examples are included to demonstrate the

applicability of the new approach. In [1], the problem is solved by a discrete iterative

method.

We refer the interested reader to [3, 8, 12, 18] for more studies on this subject.

The paper is structured as follows: In Section 2, we present some preliminaries

on fractional calculus. Section 3 describes the basic formulation of B-polynomials

required for our subsequent development and Section 4 is devoted to the function

approximation by using B-polynomials basis. In Sections 5–6, we explain the general

procedure of forming of operational matrices of integration and product, respectively.

Section 7 is devoted to the formulation of the fractional optimal control problems.

In Section 8, we report our numerical finding and demonstrate the validity, accuracy

and applicability of the operational matrices by considering numerical examples.

2. Some preliminaries on fractional calculus

In this section, we give some basic definitions and properties of the fractional

calculus [16, 17] which are used further in this paper.

Definition 2.1. A real function f(t), t > 0 is said to be in the space Cα, α ∈ ℜ if

there exists a real number p (> α), such that f(t) = tpf1(t) where f1(t) ∈ C[0,∞).

Clearly Cα ⊂ Cβ if β ≤ α.

Definition 2.2. A function f(x), x > 0 is said to be in the space Cm
α ,m ∈ N

∪
{0},

if f (m) ∈ Cα.

Definition 2.3. The (left sided) Riemann - Liouville fractional integral of order

α > 0, of a function f ∈ Cα, α ≥ −1 is defined as:

0I
α
t f(t) =


1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ, α > 0, t > 0,

f(t), α = 0.

(3)
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As a property for the left Riemann - Liouville fractional integration, we have

0I
α
t t

γ =
Γ(γ + 1)

Γ(γ + α+ 1)
tγ+α, α ∈ IN ∪ {0} , t > 0. (4)

Definition 2.4. The (left sided) Caputo fractional derivative of f, f ∈ Cm
−1,

m ∈ IN
∪

{0}, is defined as:

C
0 D

α
t f(t) =


[
Im−αf (m)(t)

]
, m− 1 < α < m, m ∈ IN,

dm

dtm
f(t), α = m.

(5)

Note that

(i) 0I
α C

0 D
α
t f(t) = f(t)−

m−1∑
k=0

f (k)(0+)
tk

k!
, m− 1 < α ≤ m, m ∈ IN.

(ii) C
0 D

β
0I

αf(t) =


Iα−βf(t), if α > β,

f(t), if α = β,

Dβ−αf(t), if α < β.

3. Bernstein polynomials and their properties

The Bernstein polynomials of the mth degree on the interval [0, 1] are defined

as [4]:

Bi,m =

(
m

i

)
xi(1− x)m−i, 0 ≤ i ≤ m. (6)

Bernstein polynomials defined above form a complete basis over the interval [0, 1].

There are m + 1 mth-degree polynomials. For convenience, we set Bi,m(x) = 0, if

i < 0 or i > m. A recursive definition can also be used to generate the Bernstein

polynomials over [0, 1] so that the ith mth-degree Bernstein polynomials can be

written

Bi,m(x) = −xBi,m−1(x) + xBi−1,m−1(x). (7)

It can easily be shown that each of the Bernstein polynomials is positive and

also the sum of all the Bernstein polynomials is unity for all real x ∈ [0, 1], i.e.,∑m
i=0Bi,m(x) = 1. It is easy to show that any given polynomial of degree m can be

expanded in terms of linear combination of the basis functions.

By using the binomial expansion of (1− x)n−i, one can show that

Bi,m =

(
m

i

)
xi(1− x)m−i =

(
m

i

)
xi

(
m−i∑
k=0

(−1)k
(
m− i

k

)
xk

)

=
m−i∑
k=0

(−1)k
(
m

i

)(
m− i

k

)
xi+k, i = 0, 1, . . . ,m. (8)
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Now, if we define vector Ai+1, as

Ai+1 =

[
0, 0, . . . , 0, (−1)0

(
m

i

)
, (−1)1

(
m

i

)(
m− i

1

)
, . . . , (−1)m−i

(
m

i

)(
m− i

m− i

)]
,

then Bi,m(x) = Ai+1Tm(x), for i = 0, 1, . . . ,m, where

Tm(x) =


1

x
...

xm

 .

Now if we define (m+ 1)× (m+ 1) matrix A such that

A =


A1

A2

...

Am+1

 ,

then

ϕ(x) = ATm(x), (9)

where

ϕ(x) =


B0,m(x)

B1,m(x)
...

Bm,m(x)

 ,

and matrix A is an upper triangular matrix given by :

A =



(−1)0
(
m
0

)
(−1)1

(
m
0

)(
m−0
1−0

)
. . . (−1)m−0

(
m
0

)(
m−0
m−0

)
. . .

...

0 (−1)0
(
m
i

)
. . . (−1)m−i

(
m
i

)(
m−i
m−i

)
...

. . .
. . .

...

0 . . . 0 (−1)m
(
m
m

)


and |Aj| = Πm

i=0

(
m
i

)
, so A is an invertible matrix.

4. Approximation of function

We recall here some theorems and lemma that are stated and proved in [9].

Theorem 4.1. Let X be an inner product space and M ̸= ϕ a convex subset which is

complete (in the metric induced by the inner product). Then for every given x ∈ X

there exists a unique y ∈ M such that

δ = infỹ∈M ∥x− ỹ∥ = ∥x− y∥ . (10)

Lemma 4.1. In Theorem 4.1, let M be a complete subspace Y and x ∈ X fixed.

Then z = x− y is orthogonal to Y .
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Theorem 4.1 and Lemma 4.1 together imply the following theorem.

Theorem 4.2. For every given x in a Hilbert space H and every given closed sub-

space Y of H there is a unique best approximation to x out of Y .

The Gram determinant of y1, y2, . . . , yn is defined by

G(y1, y2, . . . , yn)=

⟨y1, y1⟩ ⟨y1, y2⟩ . . . ⟨y1, yn⟩
⟨y2, y1⟩ ⟨y2, y2⟩ . . . ⟨y2, yn⟩

...
...

...

⟨yn, y1⟩ ⟨yn, y2⟩ . . . ⟨yn, yn⟩

,

where ⟨, ⟩ denotes the inner product. We also note a useful criterion involving G.

Theorem 4.3. Elements y1, y2, . . . , yn of a Hilbert space H constitute a linearly

independent set in H if and only if

G(y1, y2, . . . , yn) ̸= 0

It is interesting that the distance ∥x− y0∥ between x and the best approximation

y0 to x (error of approximation) can also be expressed by Gram determinants.

Theorem 4.4. Suppose that H be a Hilbert space and Y be a closed subspace of H

such that dimY < ∞ and y1, y2, . . . , yn is any basis for Y . Let x be an arbitrary

element in H and y0 be the unique best approximation to x out of Y . Then

∥x− y0∥2 =
G(x, y1, y2, . . . , yn)

G(y1, y2, . . . , yn)
, (11)

where

G(x, y1, y2, . . . , yn)=

⟨x, x⟩ ⟨x, y1⟩ . . . ⟨x, yn⟩
⟨y1, x⟩ ⟨y1, y2⟩ . . . ⟨y1, yn⟩

...
...

...

⟨yn, x⟩ ⟨yn, y1⟩ . . . ⟨yn, yn⟩

.

Now, Suppose that H = L2[0, 1] and {B0,m, B1,m, . . . , Bm,m} ⊂ H be the set of

Bernstein polynomials of mth-degree and

Y = Span {B0,m, B1,m, . . . , Bm,m} , (12)

and f be an arbitrary element in H. Since Y is a finite dimensional vector space, f

has the unique best approximation out of Y such as y0 ∈ Y , that is

∃y0 ∈ Y ; ∀y ∈ Y ∥f − y0∥2 ≤ ∥f − y∥2 , (13)

where ∥f∥2 =
√

⟨f, f⟩.
Since y0 ∈ Y , there exist unique coefficients c0, c1, . . . , cm such that

f(x) ≃ y0 =

m∑
i=0

ciBi,m = cTϕ, (14)
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where ϕT = [B0,m, B1,m, . . . , Bm,m] and cT = [c0, c1, . . . , cm]. Then cT can be ob-

tained by

cT ⟨ϕ, ϕ⟩ = ⟨f, ϕ⟩, (15)

where

⟨f, ϕ⟩ =
∫ 1

0
f(x)ϕ(x)Tdx = [⟨f,B0,m⟩, ⟨f,B1,m⟩, . . . , ⟨f,Bm,m⟩], (16)

and ⟨ϕ, ϕ⟩ is a (m+1)×(m+1) matrix which is called the dual matrix of ϕ, denoted

by Q, and will be introduced in the following. Therefore

Q = ⟨ϕ, ϕ⟩ =
∫ 1

0
ϕ(x)ϕ(x)Tdx, (17)

and then

cT =

(∫ 1

0
f(x)ϕ(x)Tdx

)
Q−1. (18)

The elements of the dual matrix, Q, are given explicitly by

Qi+1,j+1 =

∫ 1

0
Bi,m(x)Bj,m(x)dx

=

(
n

i

)(
n

j

)∫ 1

0
(1− x)2n−(i+j)xi+jdx

=

(
n
i

)(
n
j

)
(2n+ 1)

(
2n
i+j

) i, j = 0, 1, . . . ,m.

By (9), we have

Q =

∫ 1

0
ϕ(x)ϕ(x)Tdx =

∫ 1

0
(ATm(x))(ATm(x))Tdx,

= A

[∫ 1

0
Tm(x)Tm(x)Tdx

]
AT = AHAT ,

where H is a well-known Hilbert matrix,

A =


1 1

2
1
3 . . . 1

m+1
1
2

1
3

1
4 . . . 1

m+2
...

...
...

...
1

m+1
1

m+2
1

m+3 . . . 1
2m+1

 .

5. The operational matrix of integration

In this section we describe breifley about the Bernstein polynomials opera-

tional matrices of fractional integration of the vector ϕ. The operational matrices

can be approximated as [19]

0I
α
x ϕ(x) ≃ Iαϕ(x), (19)
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where Iα is the (m+ 1)× (m+ 1) Riemann-Liouville fractional operational matrix

of integration. We construct Iα as follows:

0I
α
x ϕ(x) =

1

Γ(α)

∫ x

0
(x− τ)α−1ϕm(τ)dτ =

1

Γ(α)
xα−1 ∗ ϕ(x), (20)

where ∗ denotes the convolution product and from (9) and by using (4) we get

1

Γ(α)
xα−1 ∗ ϕ(x) =

1

Γ(α)
xα−1 ∗ (ATm(x)) =

1

Γ(α)
A(xα−1 ∗ Tm(x))

=
A

Γ(α)

[
xα−1 ∗ 1, xα−1 ∗ x, . . . , xα−1 ∗ x

]T
= A [Iα1, Iαx, . . . , Iαx]T

= A

[
0!

Γ(α+ 1)
xα,

1!

Γ(α+ 2)
xα+1, . . . ,

m!

Γ(α+m+ 1)
xα+m

]T
= ADTm, (21)

where D is an (m+ 1)× (m+ 1) matrix given by

D =


0!

Γ(α+1) 0 . . . 0

0 1!
Γ(α+2) . . . 0

...
...

. . . 0

0 0 . . . m!
Γ(α+m+1)

 or Di,j =

{
i!

Γ(α+i+1) , i = j,

0, i ̸= j,

where i, j = 0, 1, . . . ,m and Tm is given by:

Tm =


xα

xα+1

...

xα+m

 .

Now we approximate xk+α by m+ 1 terms of the Bernstein basis

xα+i ≃ ET
i ϕm(x) (22)

Therefore we have

Ei = Q−1

(∫ 1

0
xα+iϕ(x)dx

)
(23)

= Q−1

[∫ 1

0
xα+iB0,m(x)dx,

∫ 1

0
xα+iB1,m(x)dx,. . . ,

∫ 1

0
xα+iBm,m(x)dx

]T
=Q−1Ei,

where Ei = [Ei,0, Ei,1, . . . , Ei,m] and

Ei,j =

∫ 0

1
xα+iBi,j(x)dx =

m!Γ(i+ j + α+ 1)

Γ(j! +m+ α+ 2)
, i, j = 0, 1, . . . ,m, (24)
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where E is an (m + 1) × (m + 1) matrix that has vector Q−1Ei for ith columns.

Therefore, we can write

Iαϕ(x) = AD[ET
0 ϕ(x), E

T
1 ϕ(x), . . . , E

T
mϕ(x)]T

= ADETϕ(x). (25)

Finally, we obtain

0I
α
x ϕ(x) ≃ Iαϕ(x) (26)

where

Iα = ADE, (27)

is called the Bernstein polynomials operational matrix of fractional integration.

6. The product operational matrix

It is always necessary to evaluate the product of ϕ(x) and ϕ(x)T , which is

called the product matrix for the Bernstein polynomials basis. The operational

matrices for the product Ĉ is given by

cTϕ(x)ϕ(x)T ≃ ϕ(x)T Ĉ, (28)

where Ĉ is an (m+ 1)× (m+ 1) matrix. So from (9) we have

cTϕ(x)ϕ(x)T = cTϕ(x)
(
Tm(x)TAT

)
= [cTϕ(x), x(cTϕm(x)), . . . , xm(cTϕm(x))]AT

=

[
n∑

i=0

ciBi,m(x),

n∑
i=0

cixBi,m(x), . . . ,

n∑
i=0

cix
mBi,m(x)

]
. (29)

Now, we approximate all functions xkBi,n(x) in terms of {Bi,m}mi=0 for i, k = 0, 1, . . . ,m.

By (14), we have

xkBi,m(x) ≃ eTk,iϕm(x). (30)

that ek,i = [e0k,i, e
1
k,i, . . . , e

m
k,i]

T , then we obtain the components of the vector of ek,i

ek,i = Q−1

(∫ 1

0
xkBi,m(x)ϕ(x)dx

)
= Q−1

[∫ 1

0
xkBi,m(x)B0,m(x)dx,

∫ 1

0
xkBi,m(x)B1,m(x)dx,. . . , xkBi,m(x)Bm,m(x)dx

]T
=

Q−1

2m+ k + 1

[ (
m
0

)(
2m+k
i+k

) , (
m
1

)(
2m+k
i+k+1

) , . . . , (
m
m

)(
2m+k
i+k+m

)]T i, k = 0, 1, . . . ,m. (31)
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Thus we obtain finally

n∑
i=0

cix
kBi,m(x) =

n∑
i=0

ci

 n∑
j=0

ejk,iBj,m(x)

 =
n∑

j=0

Bj,m(x)

(
n∑

i=0

cie
j
k,i

)

= ϕm(x)T

[
n∑

i=0

cie
0
k,i,

n∑
i=0

cie
1
k,i, . . . ,

n∑
i=0

cie
m
k,i

]T
= ϕm(x)T [ek,0, ek,1, . . . , ek,m] c = ϕm(x)TVk+1c, (32)

where Vk+1(k = 0, 1 . . . ,m) is an (m+1)× (m+1) matrix that has vectors ek,i(i =

0, 1, . . . ,m) given, for each columns. If we choose an (m+ 1)(m+ 1) matrix

C̄ = [V1c, V1c, . . . , Vm+1c], from (29) and (32) we can write

cTϕ(x)ϕ(x)T ≃ ϕ(x)T C̄AT (33)

and therefore we obtain the operational matrix of product, Ĉ = C̄AT .

7. Solving fractional optimal control problems

Consider the following fractional optimal control problem

J =
1

2

∫ 1

0
[q(t)x2(t) + r(t)u2(t)]dt, (34)

c
0D

α
t x(t) = a(t)x(t) + b(t)u(t), (35)

x(0) = x0.

We expand the fractional derivative of the state variable by the Bernstein basis ϕ:

c
0D

α
t x(t) ≃ CTϕ(t), (36)

u(t) = UTϕ(t), (37)

where

CT = [c0, c1, . . . , cm], (38)

UT = [u0, u1, . . . , um], (39)

are unknowns. Using (9) and (27), x(t) can be represented as

x(t) = 0I
α
t
c
0D

α
t x(t) + x(0) ≃ (CT Iα + dT )ϕ, (40)

where Iα is the fractional operational matrix of integration of order α and

dT = [x0, 0, . . . , 0]. (41)

Also using (14) and (18) we approximate functions a(t), b(t), q(t), r(t) by the Bern-

stein basis as

a(t) ≃ ATϕ, b(t) ≃ BTϕ, (42)

q(t) ≃ QTϕ, r(t) ≃ RTϕ, (43)
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where

AT = [a0, a1, . . . , am], BT = [b0, b1, . . . , bm], (44)

QT = [q0, q1, . . . , qm], RT = [r0, r1, . . . , rm], (45)

and using (18) we obtain coefficients ai, bi, qi, ri and using Eqs.(37), (40) and (43),

the performance index J can be approximated as

J ≃ J [C,U ] =
1

2

∫ 1

0
[(QTϕ(t))((CT Iα + dT )ϕ(t)ϕ(t)T (CT Iα + dT )T )

+ (RTϕ(t))(UTϕ(t)ϕ(t)TU)dt]. (46)

Using Eqs. (36), (37), (40) and (42) the dynamical system (35) can also be approx-

imated as

CTϕ−ATϕϕT (CT Iα + dT )T −BTϕϕTU = 0. (47)

Now using Eq(28) we have

ATϕϕT ≃ ϕT ÂT , (48)

BTϕϕT ≃ ϕT B̂T , (49)

and using Eqs. (48) and (49) in (47) we obtain

CTϕ− ϕT ÂT (CT Iα + dT )T − ϕT B̂TU = 0 (50)

or

(CT − (CT Iα + dT )Â− UB̂)ϕ = 0. (51)

Finally using (53) we convert the dynamical system (35) to the linear system of

algebraic equations

(CT − (CT Iα + dT )Â− UB̂) = 0. (52)

Let

J∗[C,U, λ] = J [C,U ] + [CT − (CT Iα + dT )Â− UB̂]λ, (53)

where λ = (λ0 λ1 · · · λm)T , is the unknown Lagrange multiplier. Now the necessary

conditions for the extremum are

∂J∗

∂C
= 0,

∂J∗

∂U
= 0,

∂J∗

∂λ
= 0. (54)

By determining C,U we can determine the approximate values of u(t) and x(t) from

(37) and (40), respectively. The method we presented here is based on Rietz direct

method for solving variational problems [7].
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8. Illustrative examples

Example 8.1. Consider the following time invariant problem

J =
1

2

∫ 1

0
[x2(t) + u2(t)]dt (55)

subject to the system dynamics

c
0D

α
t x(t) = −x(t) + u(t), (56)

with initial condition x(0) = 1.

Our aim is to find u(t) which minimizes the performance index J . For this

problem we have the exact solution in the case when α = 1 given by

x(t) = cosh(
√
2t) + βsinh(

√
2t),

u(t) = (1 +
√
2β)cosh(

√
2t) + (

√
2 + β)sinh(

√
2t),

where

β = −cosh(
√
2) +

√
2sinh(

√
2)√

2cosh(
√
2) + sinh(

√
2)

≃ −0.98 (57)

Using (36), (37) we approximate c
0D

α
t x(t) and u(t). In Table 1, we give the absolute

error of x(t) when α is demonstrated by the Bernstein operational matrices. In

Figs. 1 and 2, the state variable x(t) and the control variable u(t) are plotted for

α = 0.8 and different values of with m = 3, 4, 5. It is obvious that with increase in

the number of the Bernstein basis, the approximate values of x(t) and u(t) converge

to the exact solutions. Figs. 3 and 4 demonstrate the approximation of x(t) and

u(t) for different values of α together with the exact solution for α = 1 when m = 3.

Table 1

Absolute error of x(t) in Example 1 when α = 1.

t m=3 m=4 m=5

0.0 -0.00123 -0.0000899 -0.00000625

0.1 0.000341 0.0000477 0.0000134

0.2 0.000508 0.0000325 0.0000212

0.3 0.000112 0.00000774 0.0000324

0.4 -0.000287 0.0000213 0.0000473

0.5 -0.000397 0.0000643 0.0000620

0.6 -0.000150 0.000103 0.0000749

0.7 0.000293 0.0001121 0.0000888

0.8 0.000629 0.0000914 0.0001077

0.9 0.000371 0.0000941 0.0001312
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Fig. 1 Approximate solutions for x(t) Fig. 2 Approximate solutions for x(t).
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Fig.3 Approximate solutions of x(t) for Fig.4 Approximate solutions of u(t) for

α = 0.8, 0.9, 0.99, 1 and exact solution. α = 0.8, 0.9, 0.99, 1 and exact solution.

Example 8.2. This example considers a time varying fractional optimal control

problem. We find the control u(t) which minimizes the performance index J given

in Example 8.1 subject to the following dynamical system:

c
0D

α
t x(t) = tx(t) + u(t), (58)

x(0) = 1. (59)

In Figs. 5 and 6, the state variable x(t) and the control variable u(t) are plotted for

α = 0.8 and different values of m. It is obvious that with increase in the number of

the Bernstein basis, the approximate values of x(t) and u(t) converge to the exact

solutions. Figs. 7 and 8 demonstrate the approximation of x(t) and u(t) for different

values of α together with the exact solution for α = 1 when m = 5.

9. Conclusion

In the present work we developed an efficient and accurate method for solving

a class of fractional optimal control problems. The Bernstein polynomials opera-

tional matrices of fractional integration, product matrix and coefficient matrix Ĉ

were derived for constrained optimization and used to reduce the main problem

to the problem of solving a system of algebraic equations. A general procedure of

forming these matrices was given. Illustrative examples were presented to demon-

strate the validity and applicability of the new method. Mathematica was used for

computations in this paper.
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Fig. 5 Approximate solutions for x(t) Fig. 6 Approximate solutions for x(t).

0.2 0.4 0.6 0.8 1
t

0.65

0.7

0.75

0.8

0.85

0.9

0.95

xHtL

0.2 0.4 0.6 0.8 1
t

-1

-0.8

-0.6

-0.4

-0.2

uHtL

Fig. 7 Approximate solutions of x(t) for Fig. 8 Approximate solutions of u(t) for

α = 0.8, 0.9, 0.99, 1 and exact solution. α = 0.8, 0.9, 0.99, 1 and exact solution.
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