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SCATTERING OF ELECTROMAGNETIC WAVES ON

SQUARE PATCH-TYPE FREQUENCY SELECTIVE SURFACE

Anton Tuzov1

Abstract In this paper an analytical approach for calculating scattering matrix ele-
ments for the case of normal incidence of the plane electromagnetic waves on the square

patch-type Frequency Selective Surface (FSS), which is placed at the interface between

two dielectric media is proposed. Analytical expressions for the reflection and transmis-
sion coefficients are accurate enough for practical purposes as shown by 3D electromag-

netic simulation results.
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1. Introduction

At present, analytical and numerical methods [1–4, 6–10, 12–17] are widely used to
solve problems of electromagnetic wave scattering by frequency selective surfaces (FSS).

In this paper an analytical approach for calculating scattering matrix elements for
the case of normal incidence of plane electromagnetic waves on a square patch-type FSS
from both sides, which is placed at an interface between two dielectric media with different
dielectric permittivities, is proposed. Simple analytical expressions for the elements of the
scattering matrix are derived under quasi-static assumption.

A comparison of frequency dependencies of the reflection and transmission coeffi-
cients calculated analytically by the derived formulae and computed numerically by 3D
electromagnetic simulation is carried out. Approximation error estimates of these analytical
expressions are given.

2. Analytical solution

2.1. Electromagnetic field

Let us consider electromagnetic oscillations near the patch-type FSS (see Figure 1)
excited by two plane waves incident normally from both sides:

Einc
x =

{
Einc

1 exp
(
ik1z − iωt

)
, z < 0,

Einc
2 exp

(
−ik2z − iωt

)
, z > 0,

(1a)

H inc
y =


Einc

1

Z1
exp
(
ik1z − iωt

)
, z < 0,

−E
inc
2

Z2
exp
(
−ik2z − iωt

)
, z > 0,

(1b)
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where Einc
x , H inc

y are component of electric and magnetic fields of the incident waves, re-

spectively; k1, 2 = ω
√
ε0 ε1,2 µ0 are wave numbers, Z1, 2 = Z0/

√
ε1, 2 are characteristic

impedance, ε1, 2 are relative dielectric permittivities of
medium 1 (z < 0) and medium 2 (z > 0), respectively, separated by the FSS plane (z = 0);

Z0 =
√
µ0/ε0; ε0, µ0 are absolute dielectric permittivity and absolute magnetic permeability

of free space.
The field components of incident waves (1) are homogeneous in the plane of the FSS

(Einc
x , H inc

y do not depend on x, y), hence according to Floquet’s principle [5] the components
Ex, Hy, Ez, Hz of the excited near-field of the FSS are periodic functions with respect to x, y
with the period equal to the FSS unit cell size D. Therefore restrict ourself to consideration
of the unit cell (Figure 1 (b)). Here D is the unit cell size, w is the square patch width,
D − w is the gap between patches.
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Figure 1. Two-dimensional view of patch-type FSS (a) and FSS unit cell (b).
Region I for z = 0 is an infinitesimally thin, perfectly conducting patch,
regions II, III, IV – a dielectric medium homogeneous in the plane of the FSS (z = 0) and
in each of the half-spaces: relative dielectric permittivity equals ε1 for z < 0, ε2 for z ≥ 0.

Under the quasi-static condition (D � λ, where λ is a wavelength) the Helmholtz’s
equation is approximated by the Laplace equation:

4Ex = 0, 4Hy = 0, 4Ez = 0, 4Hz = 0, (2)

where 4 is the three-dimensional Laplace operator.

We find a solution of (2) as a linear combination of two particular solutions. Since
any function can be written as a sum of even and odd functions, we will find the component
Ex for the first particular solution as an even function with respect to z, for the second one
– as an odd function. Other components Hy, Ez, Hz of these particular solutions are either
even or odd functions with respect to z.

2.1.1. The first particular solution. For the first particular solution of (2) we will find the
component Ex as an even function with respect to z. It follows from the time-harmonic
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Maxwell’s equations that Ex ∝ (rot H)x, Ez ∝ (rot H)z. Hence, Hy, Ez is odd, Hz is even
with respect to z.

Asymptotic behavior of Ex, Ez near edges is defined by the following edge conditions:

Ex
∣∣∣x=w/2+ρ,
z=0.

∝Ex
∣∣∣∣∣x=w/2+ρ cosϕ,
z=ρ sinϕ,
z 6=0.

∝ ρ−1/2, ρ→ +0. (3a)

Ex
∣∣∣y=w/2+ρ,
z=0.

∝Ex
∣∣∣∣∣y=w/2+ρ cosϕ,
z=ρ sinϕ,
z 6=0.

∝ ρ1/2, ρ→ +0. (3b)

where ρ > 0 is the distance between the observation point (x, y, z) and the nearest edge,
ρ is sufficiently small; distances to another edges are assumed to be much larger than ρ; ϕ
is the polar angle, −π < ϕ < π, ϕ 6= 0; the sign ∝ means asymptotic proportionality at
ρ→ +0 (Θ-notation).

The edge conditions (3) are the strengthening of Meixner’s ones [11, 13]. Note that
exact solution for one-dimensional planar array FSS formed by infinitesimally thin parallel
perfectly conducting strips [2] satisfies (3).

It follows from (3) that in the regions I (z 6= 0) and II (∀z) (see above 1(b)) near the

edges (ρ is sufficiently small):

∣∣∣∣∂2Ex∂x2

∣∣∣∣ � ∣∣∣∣∂2Ex∂y2

∣∣∣∣. Hence, in the Laplace equation (2) the

second derivative with respect to y can be neglected. Therefore, we will obtain an analytical
expression for Ex, in the regions I, II under the assumption of independence on y.

At a sufficiently small distance from the edge x = w/2 (so that distances to the an-
other edges y = ±w/2 are much larger than distance to x = w/2) the regions I and II
can be approximately regarded as infinite along the y-axis (I - an infinitesimally thin
perfectly conducting strip, II - a dielectric medium). In this case the incident waves (1)
are E-polarized and electro-quasi-static approximation of Maxwell equations can be used,
i.e. E = −∇ϕ̃, where ϕ̃ is electric scalar potential. Due to the symmetry of E with re-
spect to the planes x = 0, z = 0 it is sufficient to restrict the computational domain to
{(x, z) : 0 ≤ x ≤ D/2, z ≥ 0}. The corresponding Laplace equation for electric potential
with boundary conditions is:

4ϕ̃ = 0, 4 =
∂2

∂x2
+

∂2

∂z2
, (4a)

ϕ̃ = ϕ̃1 for 0 < x ≤ w/2, z = 0 and x = 0, z ≥ 0, (4b)

ϕ̃ = ϕ̃2 for x = D/2, z ≥ 0, (4c)

where ϕ̃1, ϕ̃2 are some given constants.
The exact solution of (4) obtained using the conformal mapping method by anal-

ogy with [2], up to a constant multiplier, is: ϕ̃(x, z) = =V0(z + ix), where V0(z +

ix) = arccosh

(
cosh (π(z + ix)/D)

cosα

)
, α =

πw

2D
. Hence,

EI, II
x (x, z) = − ∂

∂x
=V0(z + ix) =

∂

∂x
=V (x+ iz), z ≥ 0,

EI, II
z (x, z) = − ∂

∂z
=V0(z + ix) =

∂

∂z
=V (x+ iz), z ≥ 0,

(5)

since V0(z + ix) = V (x+ iz), where

V (x+ iz) = arccosh

(
cos (π(x+ iz)/D)

cosα

)
, α =

πw

2D
. (6)
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Since in the first particular solution Ex must be even function with respect to z, we
construct an even extension of Ex to the half-space z < 0:

EI, II
x (x, z) = ∓ ∂

∂x
=V (x+ iz), ∀z, (7)

where the upper sign (”-”) corresponds to the half-space z ≤ 0, the lower sign (”+”) corre-
sponds to the half-space z ≥ 0; on the plane z = 0 both expressions coincide. Here ∓ is due

to the oddness of the function
∂

∂x
=V (x+ iz) with respect to z.

Thus, EI, II
x satisfies the edge condition (3a) and approximately satisfies (due to ne-

glecting the second derivative with respect to y) the Laplace equation in three dimensions (2).
In analogy with (7), we derive from (5) that:

EI, II
z (x, z) = ∓ ∂

∂z
=V (x+ iz), ∀z. (8)

The z-component of the time-harmonic Maxwell’s equations: (rot H)z =
= −i ω ε0 ε1, 2Ez, ∀z, therefore

∂HI, II
y

∂x
= ± i ω ε0 ε1, 2

∂

∂z
=V (x+ iz).

The function V (x+ iz) defined by (6) is an analytic function in the regions under consider-
ation (−w/2 < x < D − w/2, z < 0 and −w/2 < x < D − w/2, z > 0) (in each half-spaces
z < 0, z > 0 separately). Hence, its real and imaginary parts, considered as functions of
two real variables, satisfy the Cauchy–Riemann equations in these regions, so that

∂HI, II
y

∂x
= ± i ω ε0 ε1, 2

∂

∂x
<V (x+ iz). (9)

Integrating (9) with respect to x yields

HI, II
y (x, z) = ± i ω ε0

ε1 + ε2
2
<V (x+ iz). (10)

Here an additive function of integration is defined so that Hy is odd function with respect
to z, as the first particular solution requires.

It follows from boundary conditions for the electromagnetic field at the planar inter-
face between two dielectric media that Hy in the regions II, III, IV is continuous across the

interface (z = 0): Hy

∣∣∣ z=−0 = Hy

∣∣∣ z=+0
. Continuity and oddness of Hy with respect to z

results in

HII, III, IV
y

∣∣∣ z=∓ 0
= 0. (11)

Note that HII
y defined by (10) satisfies the interface condition (11).

It follows from (11), (10), (6) that

〈Hy〉
def
=

1

D2

D−w/2∫
−w/2

D−w/2∫
−w/2

Hy

∣∣∣ z=∓ 0
dx dy =

w

D2

w/2∫
−w/2

HI
y

∣∣∣ z=∓ 0
dx =

=∓ i ω ε0
ε1 + ε2

2
w/D ln cosα, (12)

since

w/2∫
−w/2

<V (x+iz)
∣∣∣ z=∓0

dx=<
w/2∫
−w/2

arccosh

(
cos(πx/D)

cosα

)
dx=−D lncosα.

Let us obtain an analytical expression for Ex in the regions I (∀z), IV (∀z). For this purpose,
we first derive analytical expressions for Hy.
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Asymptotic behavior of Hy near the edge y = w/2 is defined by:

Hy
∣∣∣y=w/2−ρ,
z=0.

∝ Hy

∣∣∣∣∣y=w/2+ρ cosϕ,
z=ρ sinϕ,
z 6=0.

∝ ρ−1/2, ρ→ +0, (13a)

and near the edge x = w/2 by:

Hy
∣∣∣x=w/2−ρ,
z=0.

∝ Hy

∣∣∣∣∣x=w/2+ρ cosϕ,
z=ρ sinϕ,
z 6=0.

∝ ρ1/2, ρ→ +0. (13b)

The edge conditions (13) are the strengthening of Meixner’s ones [11, 13]. Note that ex-
act solution for one-dimensional planar array FSS formed by infinitesimally thin parallel
perfectly conducting strips [2] satisfies (13).

It follows from (13) that in the Laplace equation (2) in the regions I (∀z) and IV

(z 6= 0) near the edges (ρ is sufficiently small):

∣∣∣∣∂2Hy

∂y2

∣∣∣∣ � ∣∣∣∣∂2Hy

∂x2

∣∣∣∣. Hence, dependence of

Hy on x is weak (compared with dependence on y) in the regions I, IV (∀z) (here, at z = 0,
consistently with (11), HIV

y = 0).
At a sufficiently small distance from the edge y = w/2 (so that distances to the

another edges x = ±w/2 are much larger than distance to y = w/2) the regions I and IV
can be approximately regarded as infinite along the x-axis (I - an infinitesimally thin
perfectly conducting strip, II - a dielectric medium).

In this case the incident waves (1) are H-polarized and magneto-quasi-static ap-
proximation of Maxwell equations can be used, i.e. H = −∇ψ, where ψ is magnetic scalar
potential. Due to the symmetry of H with respect to the planes y = 0, z = 0 it is sufficient
to restrict the computational domain to {(y, z) : 0 ≤ y ≤ D/2, z ≥ 0}. The corresponding
Laplace equation for magnetic potential with boundary conditions is:

4ψ = 0, 4 =
∂2

∂y2
+

∂2

∂z2
, (14a)

ψ = ψ1 for y = 0, z ≥ 0, (14b)

ψ = ψ2 for w/2 ≤ y < D/2, z = 0 and y = D/2, z ≥ 0, (14c)

where ψ1, ψ2 are some given constants.
The exact solution of (14) obtained using the conformal mapping method by analogy

with [2], up to a constant multiplier, is:

ψ(y, z) = =Ψ0(z + iy),

where Ψ0(z + iy) = arcsinh

(
sinh (π(z + iy)/D)

sinα

)
, α =

πw

2D
. Hence,

HI, IV
y (y, z) = − ∂

∂y
=Ψ0(z + iy)= − ∂

∂y
<Ψ(y + iz), z ≥ 0, (15)

since Ψ0(z + iy) = iΨ(y + iz), where

Ψ(y + iz) = arcsin

(
sin (π(y + iz)/D)

sinα

)
, α =

πw

2D
, (16)

Thus, HI, IV
y (y, z) defined by (15) satisfies only the edge condition (13a) and exactly

satisfies the corresponding two-dimensional Laplace equation ((2) without the second de-
rivative with respect to x).
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As we have remarked, dependence of Hy on x is weak in the regions I (∀z), IV (∀z),
hence Hy can be constructed by combining (15) and (10) in a manner similar to [3].

Hy(x, y, z) = C<V (x)
∂

∂y
<Ψ(y + iz), z ≥ 0,

where C is an undetermined constant multiplier. Since in the first particular solution
Hy must be odd function with respect to z, we construct an odd extension of Hy to the
half-space z < 0:

Hy(x, y, z) = ±C<V (x)
∂

∂y
<Ψ(y + iz), ∀z. (17)

Here ± is due to the evenness of the function
∂

∂y
<Ψ(y+ iz) with respect to z. Furthermore,

Hy(x, y, z) satisfies the condition (11).
Thus, Hy(x, y, z) defined by (17) in the regions I (∀z), IV (∀z) is valid also in II (z = 0),

III (z = 0) consistently with (11). Here, Hy(x, y, z), in contrast to HI, IV
y (y, z), satisfies

both (13a) and (13b) edge conditions and approximately satisfies (due to the smallness of
the second derivative with respect to x) the Laplace equation in three dimensions (2).

To determine the constant C, calculate 〈Hy〉 again:

〈Hy〉 = ±C 1

D2
<Ψ(y ∓ i 0)

∣∣∣∣∣∣∣
w/2

−w/2

·
w/2∫
−w/2

<V (x) dx = ∓C π

D
ln cosα, (18)

since

w/2∫
−w/2

<V (x) dx = −D ln cosα, <Ψ(y ∓ i 0)

∣∣∣∣∣∣∣
w/2

−w/2

= <
[
arcsin(1∓ i 0)−

− arcsin(−1∓ i 0)
]

= π. Comparing (18) with (12), we obtain

C = i ω ε0
ε1 + ε2

2

w

π
, then (17) takes the form:

Hy(x, y, z) = ± i ω ε0
ε1 + ε2

2

w

π
<V (x)

∂

∂y
<Ψ(y + iz). (19)

The y-component of the time-harmonic Maxwell’s equations: (rot E)y = = i ωµ0Hy, ∀z,
therefore

∂Ex
∂z

= ∓ω2 ε0
ε1 + ε2

2
µ0

w

π
<V (x)

∂

∂y
<Ψ(y + iz).

The function Ψ(y + iz) defined by (16) is an analytic function in the regions under consid-
eration. Hence, its real and imaginary parts, considered as functions of two real variables,
satisfy the Cauchy–Riemann equations, so that

∂Ex
∂z

= ∓ω2 ε0
ε1 + ε2

2
µ0

w

π
<V (x)

∂

∂z
=Ψ(y + iz). (20)

Integrating (20) with respect to z yields in the regions I (∀z), IV (∀z)

Ex(x, y, z) = ∓ω2 ε0
ε1 + ε2

2
µ0

w

π
<V (x)=Ψ(y + iz). (21)

Here an additive function of integration is defined from interface conditions for the electro-
magnetic field.
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It follows from (7), (21) that

〈Ex〉
def
=

1

D2

D−w/2∫
−w/2

D−w/2∫
−w/2

Ex
∣∣∣ z=∓0

dxdy=
w

D2

D−w/2∫
w/2

EII
x (x,z)

∣∣∣ z=∓0
dx+ (22)

+
1

D2

D−w/2∫
w/2

w/2∫
−w/2

Ex(x,y,z)
∣∣∣ z=∓0

dxdy=−πw

D2
+ω2 ε0

ε1+ε2
2

µ0
w

π
lncosα·lnsinα,

since

D−w/2∫
w/2

EII
x (x, z)

∣∣∣ z=∓ 0
dx = ∓

[
=V (D − w/2∓ i 0)−=V (w/2∓ i 0)

]
=

= ∓=
[
arccosh(−1± i 0)− arccosh(1± i 0)

]
= −π,

D−w/2∫
w/2

=Ψ(y + iz)
∣∣∣ z=∓ 0

dy = ∓
D−w/2∫
w/2

arccosh

(
sin (πy/D)

sinα

)
dy = ±D ln sinα,

2.1.2. The second particular solution. Components of the second particular solution of (2)
are supplementary to ones of the first particular solution, i.e. Ex, Hz are odd functions, Hy,
Ez are even functions with respect to z. The simplest nontrivial solution of (2) satisfying
these requirements is

Ex = 0, Hy = H0, Ez = 0, Hz = 0, (23)

where H0 6= 0 is some constant.

Thus, electric and magnetic field components Ẽx, H̃y, which are a linear combination
of the first and second particular solutions with the coefficients c1, c2, have the following
average values:

〈Ẽx〉 = c1〈Ex〉, 〈H̃y〉 = c1〈Hy〉+ c2H0, (24)

respectively, where 〈Ex〉, 〈Hy〉 are defined by (22), (12).

2.2. Scattering matrix

The considered patch-type FSS can be modelled as a two-port network: some domains
to the left (z < 0) and right (z > 0) of the FSS plane (z = 0) are viewed as port 1 and
2, respectively. The relationship between the incident and scattered waves is described by
scattering matrix S:

b = S a, (25)

where a = (a1, a2)ᵀ, b = (b1, b2)ᵀ.
Here a1, a2 are the normalized complex amplitudes of the incident waves and b1, b2

are ones of the scattered waves at port 1 and 2, respectively [6]:

a1, 2 = Einc
1, 2/

√
Z1, 2 , b1, 2 = Esct

1, 2/
√
Z1, 2 , (26a)

where Einc
1, 2 are the complex amplitudes of the electric fields of the incident waves (1a), Esct

1, 2

are the complex amplitudes of the electric fields of the scattered waves at port 1 and 2,
respectively.

It follows from (26a) that

H inc
1, 2 = ± a1, 2/

√
Z1, 2 , Hsct

1, 2 = ∓ b1, 2/
√
Z1, 2, (26b)



348 Anton Tuzov

where the upper and lower signs correspond to the port 1 and 2, respectively; H inc
1, 2, Hsct

1, 2

are the complex amplitudes of the magnetic fields of the incident (1b) and scattered waves,
respectively.

Boundary conditions for the electromagnetic field at ports 1 and 2 are of the form

Einc
1, 2 +Esct

1, 2 = 〈Ẽx〉,

H inc
1, 2 +Hsct

1, 2 = 〈H̃y〉,
(27)

where 〈Ẽx〉, 〈H̃y〉 are defined by (24).
Substituting (24), (26) into (27) gives

a1, 2
√
Z1, 2 + b1, 2

√
Z1, 2 = c1〈Ex〉

± a1, 2/
√
Z1, 2 ∓ b1, 2/

√
Z1, 2 = c1〈Hy〉+ c2H0,

(28)

where 〈Ex〉, 〈Hy〉 are defined by (22), (12).
Let us rewrite the system of linear algebraic equations (28) in the

form (25). Denote Z = −1/2 〈Ex〉/〈Hy〉, where 〈Ex〉, 〈Hy〉 are evaluated, for the sake
of definiteness, at port 1. Then

b1 =

√
ε1 −

√
ε2 − Z0/Z√

ε1 +
√
ε2 + Z0/Z

a1 +
2 4
√
ε1ε2√

ε1 +
√
ε2 + Z0/Z

a2,

b2 =
2 4
√
ε1ε2√

ε1 +
√
ε2 + Z0/Z

a1 +

√
ε2 −

√
ε1 − Z0/Z√

ε1 +
√
ε2 + Z0/Z

a2.

(29)

Substituting Z = iX into (29) and using (22), (12), we obtain

S=
1√

ε1+
√
ε2−iZ0/X

(√
ε1−

√
ε2+iZ0/X 2 4

√
ε1ε2

2 4
√
ε1ε2

√
ε2−

√
ε1+iZ0/X

)
, (30a)

X=ωµ0
D

2π
lnsinα− π

ωε0(ε1+ε2)D

1

lncosα
, (30b)

where α =
πw

2D
, Z0 =

√
µ0/ε0 .

Electromagnetic wave propagation can be described using a transmission line equiv-
alent circuit model. Then Z is the normalized electrical impedance of the unit cell of the
patch-type FSS, X is the normalized electrical reactance, the first term in (30b) is inductive
reactance, the second one is capacitive reactance.

3. Numerical solution and comparison of the results

Let us estimate the approximation error of the formulae derived in this paper. For this
purpose, the absolute values of the reflection coefficient S11 and the transmission coefficient
S21 calculated by the analytical expression (30), have been compared with ones computed
numerically with high accuracy by 3D electromagnetic simulation with CST MWS. Note
that S21 = S12 and |S11| = |S22|. Figure 2 shows frequency dependencies of |S11|, |S21| of
the electromagnetic waves incident normally on the patch-type FSS with the fixed period D
and the variable relative width of the patch w/D.

The reflection coefficients increase and the transmission coefficients decrease with
increasing the relative width of the patch, as displayed in Figure 2.

Figure 3 shows frequency dependencies of |S11| of the electromagnetic waves incident
normally on the patch-type FSS with the fixed gap between the patches D − w and the
variable period D.
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Figure 2. Frequency dependencies of
the coefficients |S11|, |S21| for D=2 mm,
w/D = 0.7, 0.8, 0.9 and ε1 = 1, ε2 = 3.
Dashed lines correspond to the analytical
solution, solid lines represent a numerical
solution.
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Figure 3. Frequency dependencies of
the coefficient |S11| for D − w = 0.4,
D1 = 1 mm, D2 = 2 mm, D3 = 4 mm and
ε1 = 1, ε2 = 3. Dashed lines correspond to
the analytical solution, solid lines represent
a numerical solution.

The reflection coefficients increase with increasing the patch-type FSS period for the
fixed gap between the patches, as displayed in Figure 3.

Recall that the approximate analytical solution has been obtained under λ � D,
therefore, as expected, the approximation error for λ = 6D is smaller than for λ = 3D, as
shown in Figures 2, 3. Here λ is the wavelength in the second medium (ε2 = 3).

Table 1. Frequency and wavelength dependencies of the relative deviations δS11, δS21 for
D = 2 mm, w = 0.8D, ε1 = 1, ε2 = 3; here λ is for ε2 = 3.

Frequency [GHz] Wavelength [mm] δS11 δS21

2 86.5 4.1× 10−4 3.2× 10−5

4 43.3 1.4× 10−3 1.2× 10−4

6 28.8 2.7× 10−3 2.6× 10−4

8 21.6 3.8× 10−3 4.3× 10−4

10 17.3 4.5× 10−3 6.0× 10−4

12 14.4 4.7× 10−3 7.4× 10−4

14 12.4 4.3× 10−3 8.0× 10−4

16 10.8 3.4× 10−3 7.5× 10−4

Table 1 presents the estimation of the relative approximation error of the analytical
expressions for different frequencies. The relative deviations δS11, δS21 of the reflection and
transmission coefficients S11, S21 calculated by the analytical expression (30) from SCST

11 ,
SCST
21 obtained with CST MWS. The relative deviations δS11 and δS21 do not exceed 0.5 %

and 0.08 %, respectively, in the frequency range up to f̂ = 16 GHz, i.e. in the wavelength
range down to 10.8 mm (λ > 6D), as shown in Table 1.
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4. Conclusions

Thus, in this paper the simple, but quite accurate analytical expressions for the
elements of the scattering matrix have been derived under the quasi-static assumption for
the case of normal incidence of the plane electromagnetic waves on the square patch-type
FSS from both sides, which is placed at the interface between two dielectric media with the
different dielectric permittivities.

The comparison of frequency dependencies of the reflection and transmission coeffi-
cients calculated analytically by the derived formulae and computed numerically with high
accuracy by 3D electromagnetic simulation with CST MWS has shown good agreement be-
tween both approaches. Numerical results have demonstrated that the formulae obtained in
this paper are accurate enough for practical purposes in their applicability domain.

The derived analytical expressions can be used in design of multi-layer patch-type
FSS structures. They can help to analytically optimize the FSS structure parameters
and hence avoid extensive numerical simulations, and therefore reduce computational costs.
Desired reflective properties of such structures can be achieved by varying both the relative
width of the patch w/D and the FSS period D.
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