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PEDESTRIAN AND OBJECT DETECTION USING LEARNED
CONVOLUTIONAL FILTERS

Anamaria RADOI' , Dan Alexandru STOICHESCU?

Object detection is still a very active field in Computer Vision. Until now, part
based models proved to be one of the most interesting and successful approaches
in object and pedestrian detection. The method applies a machine learning ap-
proach not to the input images themselves, but to histograms of gradients. How-
ever, its performances are still limited when compared to what humans can do.
The purpose of the present paper is to show that sparse representations can be
successfully used in object detection. The main advantage of using this method is
related to the possibility of learning only those filters that are able to express the
most frequent patterns that appear in the analyzed images. The experiments are
carried out on two widely used datasets, namely VOC2007 and INRIA Person.

Keywords: learned filterbanks, stochastic gradient descent, pedestrian detection,
object detection, Histogram of Oriented Gradients.

1. Introduction

Object detection is a major challenge for many areas of research, starting
from medicine and going to applications such as street surveillance or video appli-
cations. In general, this is a difficult task to accomplish as the variability in terms
of objects’ position, color, illumination, deformation and viewpoint have a great
influence over the rate of object detection.

One of the most successful approaches in object detection is the method
presented in [1], that uses grammars of models to build an hierarchic structure in
order to obtain a better description of the objects to be detected. To be more precise,
the mixture of smaller models is built based on a hierarchic histogram of gradients
model for each analyzed images. The filters for the base model and for all the com-
ponents are trained in order to build the respective model, whilst the responses to
these filters are computed at different resolutions in the feature pyramid. However,
if the responses are computed for only a fixed number of orientations (i.e., as shown
in [1]), we are not able to determine the most representative ones to express the
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main characteristics of the image. For this reason, in this paper, we propose to learn
these orientations directly from the images under test via dictionary learning tech-
niques, and, afterwards, we show that building an accurate object detector starting
from these representations is possible.

Closely related to the present approach used for orientation learning, [2] and
[3] deals with a method for dictionary learning by solving an optimization problem.
The results presented in [2] show that sparsity might not be helpful for classification,
but it is important when learning the dictionary of filters.

The present paper has two main directions of research. The first direction is
related to finding the dictionaries needed for the feature extraction part in the object
detection flowchart. In this regard, we show that the learned filters are gradient
filters or average filters. The second direction of our study analyses the possibility
of replacing the histograms of gradients with histograms of the responses to other
directional filters, while maintaining a similar rate of detection as in [1]. We would
like also to reduce the dimensionality of the feature arrays so that the performance
and the speed of the algorithm is increased.

The flowchart considered for object recognition is summarized below:

(1) feature extraction based on sparse representations;

(2) design of the part-based model;

(3) classification using discriminative learning with latent variables (L-SVM).
Each of these parts are detailed in the next sections. The experiments are carried
out on two difficult datasets, namely VOC2007 dataset for object detection ([4]) and
INRIA Person dataset for human detection ([5]).

The rest of the paper is organized as follows. Section 2 reviews the part
based model presented in [1] for pedestrian detection. Section 3 presents the pro-
posed approach for the feature extraction part, whilst the experimental results are
reported in Section 4. Section 5 concludes the paper.

2. Part Based Model for Object Detection

Pedestrian detection, or, more general, object detection, are two fields in
computer vision under intensive development nowadays. The approach presented in
[1] is built upon a framework based on pictorial structures that represent objects by a
collection of oriented (or, better to say, deformed) sub-parts so that the constitutive
model gives the best approximate of the objects of study. In order to generalize
deformable part models, a hierarchy of sub-parts is formed, meaning that each sub-
part can be further expressed by another collection of deformable sub-parts. This
is done mainly in order to obtain a better representation of the object, but also
to provide an additional flexibility in catching the variation in poses of the object.
More precisely, the approach builds a dictionary of sub-parts of objects to be further
combined in a grammar-like model that forms the searched object in the analyzed
images.
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As a particularity, it is worth to mention that simple models outperform
complex models, where simple representations will give in most cases better results.
One of the reasons can be the fact that complex models can be more difficult to train
and usually they make use of much more latent information.

The starting point for [1] is the construction of Histogram of Oriented Gra-
dients (HoG) proposed by Dalal and Triggs in [5]. The local descriptors are taken
on a dense grid basis and, for each patch (or, “cell”) of the dense grid, the fea-
tures are extracted using standard orientation (or, edge detection) filters. In order
to avoid the variance to illumination, a normalization over neighboring patches is
performed, whilst the features are used for training a set of filters at different scales
and positions.

One of the most difficult problems dealt in [1] is training a model starting
just from a partly labeled training data. To be more precise, one has literally access
only to the bounding boxes around the objects of interest together with the corre-
sponding labels, but not to the labels regarding the parts that build a model. The
algorithm used for training the model is L-SVM (Latent Support Vector Machine),
which makes use of latent variables as side information regarding the objects as, for
example, position or scale.

In this section, we briefly review the construction of the algorithm presented
in [1], that consists of three steps, namely HoG extraction, part-based models, and
L-SVM. We start with the second step as this is the nucleus of the entire construc-
tion.

2.1. Part-based Model Design

Designing the models, as presented in [1], is equivalent to finding the coeffi-
cients of some linear filters applied to the feature map extracted from each image. A
feature map associates to each entry, a d-dimensional feature vector. Thus, the filter
is just a rectangular window defined by an array of d-dimensional weight vectors.
In order to define a hierarchy-type model to be applied on a multi-scale
feature map a set of filters have to be found. A model with n parts is defined by a
(n+2)-tuple (Fy, Py, P>, ...,P,,b), where:
e Fy is the root filter
e P,....P, are the part filters whose resolution is double than the resolution of
the root filter. Each P, is given by the 3-tuple (F;,v;,d;), where F; is the filter for
the i part defined by the anchor position v; relative to the root position and the
quadratic deformation cost, specified by the 4-dimensional bi-variate column
vector d;.
e b is abias.
The total score resulted from applying the set of filters is given by the score
of all filters (root and part). The deformation cost depends on the relative distance
between the position of the root filter and the position of each part filter, whilst the
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bias term represents just a correction added to the result. So, we can write:

SCOre((XOJOalO), (-xhylull)a sy (xl’hynyln)) -

Oy,
n 1 T 5;
Z<E7q)<xlaylall)>_zdl 531 +b (1)
i=0 i=1 521

where (x;,;,1;) specifies the coordinates of the point (x;,y;) atlevel ;, (dy,, 6y,) =
(xiyi) — (2(x0,y0) +vi).

2.2. Histogram of Oriented Gradients (HoG)

As mentioned before, the construction presented in [1] starts from comput-
ing the gradients on horizontal (Ox) and vertical (Oy) of the image by a simple

filtering with [ -1 0 1 } and [ -1 0 1 ]T. Afterwards, one can extract the
orientation 0(x,y) € {kn/9 : k =0...17} and the magnitude r(x,y) of the intensity
gradient for each pixel and build a map with the indexes of the best orientations
for each pixel. Two types of orientations can be depicted: contrast-sensitive (18
orientations) and contrast-insensitive (9 orientations, where each orientation is a
weighted sum over the two orientations {+k7m/9 : k =0...8})

Thus, the features array is made of m x n feature vectors corresponding for
each block of the image, where m and n are the number of horizontal, respectively
vertical, blocks. Each feature vector is a histogram of orientations and, additionally,
4 normalizations over neighboring blocks for each orientation.

Considering a 108-dimensional (27 orientations X 4 normalizations) his-
togram is redundant and time consuming. [1] shows that it is possible to trans-
form the product into a sum (27 orientations + 4 normalizations), forming a 31-
dimensional feature vector in the following way:

- summing over all normalizations around each block, by making distinction be-
tween contrast-sensitive features for 6 (x,y) € {kw/9:k=0...17} and contrast-
insensitive features for 0 (x,y) € {kx/9:k=0...8};

- summing over all orientations for each type of normalization;

- 0-valued bit to form an 32-bit feature vector.

Fig. 1 explains how the HoG-based features are extracted over an example
taken directly from one of the studied datasets.

2.3. L-SVM

Continuing the work in [1], L-SVM (Latent-Support Vector Machine) is
used for training and testing the models. As mentioned in the beginning of this
chapter, training the models having access to a weakly-labelled data is a difficult
task to accomplish.
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Fig. 1. HoG-based feature extraction for object detection

Similar to SVM, we use N examples xi,...,xy along with their correspon-
dent labels [y, ...,ly, where [; € {—1,+1} represents the absence/presence of the
searched object. The task is to minimize the function:

N
Lp(B) =1/2[|B|*+C Y. max(0, 1 — ;Fg(x;)), )
i=1
where
_ T,
Fg(x) = Zglzeg)ﬁ D(x,2), (3)

is the score associated to each item x. Here z is the latent (hidden) variable, Z(x)
is the valid set of latent values, ®(x,z) is the feature vector and f is the filter that
contains actually the model parameters.

This function is convex for negative examples (/; = —1) because the maxi-
mum over convex functions is also convex. Because of this property, the L-SVM is
called to be semi-convex. The function becomes convex over all examples (positive
and negative) if there exists only one latent value z, in which case the function Fj is
a linear function in f3.

3. Proposed Approach: Learning Filters for Sparse Representations

As mentioned in the first section, the first step in object recognition is feature
extraction. [1] considers HoG features, but the computation of these feature maps
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uses only a fixed number of orientations for the gradients, that, in addition, might
not be the ones that offer the best representations of the images under test.

Similar to [1], in this section we try to implement a new method of extracting
the features. Sparse representations were considered to be desirable for category
recognition and for medical image segmentation [6]. A recent method for learning
separable filters directly from the dataset of images is presented in [2] and [7].
Moreover, [2] shows that imposing sparsity for classification is compulsory when
learning filters, but, by contrary, it is not required for classification.

3.1. Learning convolutional filters for sparse representations

In the following, we present a variant for learning convolutional filters. Let
{fih< j<n be N 2-D filters and x; the set of images from which the filter-bank
is learned. Finding a set of separable filters can be regarded as an minimization
problem of the following type:

N N
min )’ (Hxi—fo*r,-’ll%M):Ilr{||1>, )
el j=1 j=1
where * represents the convolution operator, {tl’ } j=1...n 1s the set of extracted coef-
ficients during filter learning and A is a regularization parameter.

This problem is solved via a stochastic gradient descent algorithm, in several
steps. With the initialized filters (the first one is set to be uniform and the rest are
random), the coefficients tiJ are computed directly by:

tj-zfj*x,-, VZ,VJ )

Inserting the found coefficients, the minimization is done over the filters using the
gradient descent algorithm. New coefficients are computed in the same way as it
was mentioned before and the procedure is continued until a convergence condition
or the maximum number of steps are met. The algorithm is detailed below.
Require: n patches {x;}i=1._ »
Ensure: Learned convolutional filters [f;] .,

1: Randomly choose apatchx;, i=1,...,n 7

2: Initialize randomly [ f j} i=1..p
3: Maximum number of iterations Count,;,,
4: Maximum number of reconstruction steps Rec x
5: for k=1,...,County,, do
6:  Randomly choose a patch x;, i=1,...,n
7. forall j=1,...,Pdo
8: t;'- < f] * X;
9: end for
10: forl=1,...,Recyq, do
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11: Residual; :xi—Zj):]fj*t;

12: forall j=1,...,Pdo

13: Update ¢ =t} — 1, [2(f; * Residual;) + 1|
14: end for

15:  end for

16: forall j=1,...,Pdo

17: Update f; = f; —an(Residuali*tj.)

18:  end for

19: end for

20: return [fl'}jzl,..,,P

In order to remove the dependencies between the images in the analysed
dataset and to speed up the convergence, the images are whitened before. The
whitening filters can be easily deduced by finding the eigenvectors and eigenvalues
of the covariance matrix, C. The eigenvalue decomposition of C is nothing but
C = EAET, where E represents the matrix of eigenvectors in the decreasing order
of the eigenvalues and A is the matrix of eigenvalues in decreasing order. Therefore,
the whitening matrix can be written as W = EA'2ET,

3.2. Learning filters for VOC2007 and INRIA Person datasets

We apply the algorithm mentioned above to a set of 150 photos selected
randomly from the VOC 2007 database, and INRIA person database, respectively.
Examples of learned filters are presented in Fig. 2.
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(a) VOC: 27 filters (b) VOC: 11 filters (c) INRIA: 16 filters

Fig. 2. Examples of learned filterbanks from VOC2007 and INRIA person datasets.

For both learning algorithms, the following values for parameters were used:
A =0.02 and a gradient step size for the filters of 0.01 so that the minimization of
(4) is effective. The size of the 2-D filters is 7 x 7 pixels for which we obtain the
lowest mean error reconstruction.

As it can be easily observed in Fig. 2(a), the degree of redundancy is high for
a 27-dimensional filterbank, that is, many filters have the same orientation. Using a
smaller dimensionality for the filterbank (as in Fig. 2(b)) is argued by the decay of
the eigenvalues of the covariance matrix of the learned filters, represented in Fig. 3.
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Fig. 3. The decay of the eigenvalues of the covariance matrix of the learned filters.

Analyzing Fig. 2, among the filters that are learned and that form the fil-
terbank, most of them are gradient based filters along different directions. These
directions are, in fact, the ones that are the most representative for the analyzed
images—the filters are learned directly from the images.

The feature extraction procedure is straightforward and a scheme of the al-
gorithm is shown in Fig. 4.

The main steps of the feature extraction algorithm are detailed below.

(1) Convolutions with learned filters
The learned filters are applied on each image and on each channel (red, green, and
blue) of the RGB images. The maximum over the channels is kept for each pixel.
(2) Normalizations
In order to reduce the influence of the local variations in illumination and foreground-
background contrast, we perform a normalization over 4 neighboring blocks, con-
sidering that each block is of 8 x8 pixels. Denoting by M(i, j) the value of the
feature map for block (i, j), the normalizations for the block M (i, j) are the follow-
ing:
(i) = (IM G =1, j = DI+ MG j = DI+ MG = 1)1+ MG
(5.7) = (1M, = DIP+ MG+ 1, 5= DI+ G+ MG+ 1, DI
(i.7) = (MG = 1 )P+ MG )P+ MG+ DI+ MG =1+ D)2
(1.J) = (MG, )P+ MG+ 1 DI+ MG+ 12+ MG+ 1+ DI
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[ Initialize histogram array and feature map array }

}

Compute for each channel the responses to all filters and re-
tain the maximum in absolute value from the three channels
Y
Pooling the features: for each block 88 compute a his-
togram of responses to filters using linear interpolation
= (number of filters)*(blocks Ox)*(blocks Oy) histogram array )
\
Compute energy over all filters for future normalizations
— (blocks Ox)*(blocks Oy) energy array

¥

e Normalizations of the histogram for each block over 4 ad-
jacent blocks & add all 4 normalizations for each type of
filter

= (number of filters)*(blocks Ox)*(blocks Oy)

e Add the responses of the filters for each block and for each

type of normalization
—> 4%*(blocks Ox)*(blocks Oy)

& J

|

[ Feature map: (number of filters + 4)*(blocks Ox)*(blocks Oy) }

Fig. 4. Scheme of the algorithm

(3) Linearity of subspaces
An interesting observation has to be made with respect to the normalizations and
filtering. As in [1], we can decompose the subspace on which we make the projec-
tions into the subspace spanned by the filters and the subspace of normalizations.
This can be done because the eigenvectors with highest eigenvalues have a special
form as it can be seen in Fig. 5 for learned filters and for the four normalizations
considered. The exemplification is done over the VOC2007 dataset, but the same
holds for the INRIA case.
Therefore, in order to further reduce the dimensionality of the feature vectors, we
can exploit the linearity characteristic of the subspace. We choose to add all the
normalizations for each block for each filter and, for each type of normalization, to
add the normalized values over all filter responses. The reduction in dimensionality
of the feature vectors corresponding for each 8x8 block is the following: from 44
features/8 x 8 block to 15 features/8 x 8 block for the object detection application in
the VOC2007 dataset, and from 64 features/8 x 8 block to 20 features/8 x 8 block for
the person detection application in the INRIA dataset.
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Fig. 5. Dimensionality reduction for the learned filterbank from the VOC2007 dataset.

4. Experimental Results in Object/Person Detection

In this section, we compare the results obtained for object/person detection
in two scenarios. The first scenario is based on the HoG features, whilst the second
one integrates the features extracted using the proposed algorithm in a newly formed
part-based model.

In the first scenario, the object detection method presented in [1] is applied
for the two considered databases (VOC2007 and INRIA) are presented in Fig. 6.

In second scenario, the features are extracted with the learned filterbanks
and, afterwards, they are inserted in the modified part-based model for object and
pedestrian detection. Fig. 7 presents the precision-recall curves along with the av-
erage precision accuracy for recognition.

The plots represent the precision-recall curves for the two applications taken
into consideration. The precision and recall measures are computed as below:

true positives
true positives + false positives
true positives

(6)

Precision =

Recall = (7)

true positives + false negatives
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Fig. 6. Precision-recall curves of the part based model & HoG features used for
object/person detection. In the parenthesis, the average precision for detection is
marked for each class.
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Fig. 7. Precision-recall curves of the part based model & Sparse Representations
used for object/person detection. In the parenthesis, the average precision for
detection is marked for each class.

5. Conclusions

We evaluated the proposed filtering technique of feature extraction on the
VOC2007 and INRIA databases, taking as reference the bicycle class. Compared
to Fig. 6, Fig. 7 shows similar results in terms of precision-recall. The meaningful
difference is the learning process of the part based models is faster as the vector of
features extracted per block is significantly smaller, and, thus, the part-based model
is easier to be learned. For example, in the case of 11 filters, the feature vector is
of dimension 11 +4 = 15/block compared to 32 features/block as in [1]. Moreover,
the decrease in the average precision is not significant in comparison to the decrease
in the dimensions of the feature vectors.

Among the advantages of using the learned orientation filters is that they are
learned directly from the analysed images. The most interesting aspect is that the
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learned filters are directional filters, which proves the effectiveness of the method
also for datasets that have a large degree of variability as the databases considered
in this paper. The best results for the filterbank learning part were obtained for
randomly selected images, which included objects from many classes, and not for
images containing a single type of object. These filters work better for the detection
part also because they could make a better distinction between different types of
orientations characteristic for each type of object.

Improvements can still be made by using richer methods that would describe
better each part of the object that is being modelled, but this would increase the
computational burst. Another way of getting better results would be to use a mixture
of filters where each subset of the filter is designed to be applicable only at a certain
scale.
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