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SOME REMARKABLE PROPERTIES OF THE MOMENTS OF
INERTIA FOR PLANAR STRUCTURES

Octavian Horatiu HERLING!, Mihai Valentin PREDOI > *

The principal central moments of inertia of certain plane figures can be
determined directly, by use of geometrical means only, based on some observations
made by the authors concerning the central ellipses of inertia. It can be shown that
the central ellipses of inertia of particular shapes such as the parallelogram, the
scalene triangle, or more unambiguously the rectangle and the ellipse itself, are
merely inscribed ellipses, downscaled with certain factors discovered by the authors
and presented herein.
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1. Introduction

The mechanical moments of inertia are well established and were used in
engineering applications for centuries. The basic formulas can be found in
classical textbooks as [1], [2] or [3] for moments of inertia of the cross-sections
see ref. [4]. The use of modern computers can be considered as a rapid solution
for the moments of inertia of complex shapes and apparently this topic is closed
for any research. However, many recent researches contradict this idea. Brlek et
al. in ref. [5] investigate the mass center and moments of inertia of discrete sets of
material points placed in a grid. Orasanu in ref. [6] proposes original
mathematical models of reduction of the elementary bodies to systems of material
points with the same inertia properties. Petrescu et al. [7] investigate the moment
of inertia of a flywheel. Ostanin and Sperl in ref. [8] referring to the unstable
rotation around the direction close to the body’s second principal axis, featuring a
well-known tennis-racket (also known as Garriott-Dzhanibekov) effect consisting
of a series of seemingly spontaneous 180 degrees flips, are investigating the
control of the nonspherical tensor of inertia (TOI) as a means to optimize and
stabilize the attitude control of a spacecraft. Jauch et al. in ref. [9] present a
parametric study, in which different parameters of a flywheel are varied in order
to find the maxima in energy density and specific energy. Eremeyev and
Elishakoff [10] discuss the classic rotary inertia notion and extend it for
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microstructured beams introducing new microinertia parameters as an additional
dynamic response to microstructure changes. Pellecchia et al. present in ref. [11] a
general methodology to evaluate the mass moments of two-dimensional domains
and axisymmetric solids made of functionally graded materials. Szant6 et al. in
ref. [12] presents a method for the simultaneous measurement of the moment of
inertia and braking torque of the rotor of electric motors.

2. Moments of inertia of planar structures

The mechanical moments of inertia and product of inertia about central axes (axes
with origin in the mass center) for common planar structures, assumed to be made
of homogeneous material of mass density p and of constant thickness /4, can be
deduced from their definitions [1], [2]:

]xC = ph .U(A)ysz ;]yC = ph .H(A) x*dA ;]xyC = ph .U(A) xydA' (1)

The surface integral covers the area 4 of the planar structure. The principal
moments of inertia represent the extreme (maximum and minimum) values of the
moments of inertia obtained for a particular inclination € of the principal axes.
About these axes, the product of inertia Jy, is cancelled, the maximum is denoted
by J; and the minimum J>. The orientation of the principal axes relative to the
initial axes is given by [2]:

tan(20) = 2o (2)

]yC Jxc

About the obtained principal axes, it can be defined the ellipse of inertia:

Jix? 4+ Jy? =C? (3)

in which C is a constant, to be determined in each case. Leaving aside the
common factor ph required for the mechanical moments of inertia, it will be
obtained the central moments of inertia of the cross-sections, which are commonly
used in the Strength of materials studies. We mention in the following the central
moments of inertia for some widely used planar structures, with 4 the area of the
respective planar structure:

a) Ellipse of semi-axes a along Ox and b along Oy (F1g 1 a):
nab?® b? a’h a® 4
]x_ 4 =A41 ]y_ 4 _AI;]xyzo ()
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Fig. 1 Ellipse centered in the xOy frame origin (a), Rectangle in first quadrant (b)

b) Ellipse of semi-axes a along Ox and b along Oy (Flg 1 a):
rab? b? wadh a’ 5
]x_ 4 =A4I ]y_ 4 _AI;]xyzo ()

c) Rectangle of edges b along Ox and % along Oy (Fig. 1 b):

bh3 h? hb3 b?
(6)

Jxce="7=A5 he=7,=45 Jxyc =0

d) Arbitrary scalene triangle of base b along Ox, height 4 along Oy and a is the
projection of the upper corner on the horizontal base (Fig. 2 a):

_bh3_Ah2 _bhbz—a(b—a)_AbZ—ab+a2
Jxc =35 =A1gi e = 36 B 18 ’ %
_ (2a—Db)bh* A(Za —b)h
e~ 72 - 36
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e) Parallelogram of edge b along the Ox axis and height 4, with a being the
Fig. 2 Arbitrary scalene triangle in first quadrant (a) , parallelogram in first quadrant (b)
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horizontal projection of the inclined edge of the parallelogram (Fig. 2 b):
Being less presented in textbooks, we deduce the moments of inertia for this
figure:

a. Moment of inertia about Cx axis is obtained using elementary strips of
length b and height dy:
o, _ bn® _ An?
Jxc = hY bdy = — =— (8)
b. Moment of inertia about Cy can be obtained in an original way, using the
same elementary strips b.dy which can be considered to be an infinitesimal

. . . . b3d .
rectangle with moment of inertia about its center: dJ,, = Ty Since the center

of this strip is moved relative to the Cy axis of the parallelogram by a distance
d= %y, one can use the Steiner’s theorem to transfer the moment of inertia of
the strip to the parallel axis Cy of the parallelogram:

hop3 2 hb
he=La(G+b(8) )y =R +a) =L@+ O

c. The product of inertia about the central axes, can be obtained using the
same elementary strips b.dy, which can be considered to be an infinitesimal
rectangle with product of inertia about its center dJ,, = 0. Use is made of the
Steiner’s theorem to transfer the product of inertia of the strip to the central
axes of the parallelogram:

abh? _ Aha

h
Jeye =[5 S2ytdy = - =22 (10)
2

12 12
3. Properties of scaled ellipses of inertia

In order to calculate the central and principal axial moments of inertia of a planar
lamina, one has to evaluate the following expressions [1,2]:

Jxc +7 1

]max,C =]1,C = % + E \/(jyc _]xc)z + 4]g%yc (11)
Jec + 1 1

mine = Joe =2E22E 2 (e ~ i)’ + 43c (12)

which lead to the central and principal radii of gyration given by:
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lic= _A y lac = A

]1,C ]Z,C (13)

z\AXis of maximum
¥ moment of inertia Axis of minimum
’ \ yo . X
A moment of inertia

Fig. 3 Typical ellipse of inertia layout for an arbitrary plane lamina

These resulting values can be used to determine the central principal ellipse of
inertia (Fig. 3):

2 2
X
Zun 20 _ g (14)
e lc

As stated in [1], the ellipse of inertia follows the geometry of the figure, in perfect
agreement with the fact that its major axis is taken along the secondary principal
axis of inertia, its minor axis being conversely taken along the principal axis of
inertia. Let us make a step forward and analyze the possibility of finding
geometric similarities between the ellipses of inertia of certain planar laminae and
their proper shapes.

a) The ellipse.
Unsurprisingly, the ellipse of inertia of this particular shape is nothing but a
downscaled ellipse completely similar to that of the contour of the lamina.
a) Lemma. Scaling down the area of the given ellipse by the factor K = 4,
(linear scaling factor of k = VK = 2), it can be obtained the inertia ellipse and its
moments of inertia.
Proof. Since the ellipse of inertia of an elliptic lamina is an ellipse with axes
downscaled by k = 2, we can write the following scaling equalities between the
semi-axes of the lamina and those of the ellipse of inertia:

b
H izzz- (15)

=l Q

i1=
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Substituting these semiaxes in (13), with A = wab, can be obtained J; ¢ and J, ¢ :
2 2

a b
]1C = l%A = Inab 5 ]ZC = l%A = Inab , (16)

in complete agreement with the integrals (5), proving thus this lemma.

Using this lemma can be directly expressed the principal central moments of
inertia of an ellipse without calculating the double integrals in (1).

scaled . rectangular
o . ellipse of :
! elliptic cllipse of . o tia dy=1 lamina
! lamina mnertia
y=1 \ /f _
ellipse of J/, -7 /‘ S~
inertia  h L g K N
2 / iZI \ \\
ittt \ c 7:17 =1I
/
=11 h \ ,
> AN i e
~ f—_-
*y */;

Fig. 4 Ellipse of inertia of an elliptic planar lamina (a). Ellipse of inertia of a rectangular lamina (b)

b) The rectangle.
Since any rectangle possesses an associated central ellipse tangent to the
midpoints of its sides, such a geometric shape is another candidate for our
method.
b) Lemma. Scaling down the area of the given rectangle by factor K = 3,
(linear scaling factor of k = VK = +/3), it can be obtained the inertia ellipse and
its moments of inertia.
Proof. By analogy with the ellipse, we scale down each half- side of the rectangle:
- i - i (17)
"ok T %k
and by inserting these semiaxes in the general relations (13), and using A = bh, it
can be immediately obtained:
b? b3h _ h? h3b (18)
Jic =g bh =15 5 Jac = gpbh =7

which are identical to the results (6) obtained by integration.
¢) The scalene triangle.
In case of an scalene triangle, the ellipse of inertia from Mechanics proves out to
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be similar to the Steiner inellipse also called midpoint ellipse of the corresponding
triangle (Fig. 5). The area 4 of a triangle can be expressed by the triangle’s sides
only (denoted s4, S5, S3) using the Heron’s formula:

A= x/p(p —51) (@ —5)(p—s3)

in which p = %(sl + s, + 53) is the semi-perimeter of the triangle.

(19)

triangular
lamina

Steiner
inellipse

ellipse of
inertia

Fig. 5 Ellipse of inertia of a triangular lamina

The midpoint ellipse (centered in C, tangent to the midpoints of the triangle’s
sides) is known to have semi-axes [13]:

1
alzg\/sf+s§+s§+2-z (20)
and
1
b1=g\/sf+s§+s32—2-2 21)

The term Z is equal to:

Z= \/Sf + 55 + 55 — (5152)% — (5253)% — (5153)? (22)
¢) Lemma By scaling down the semiaxes of the midpoint ellipse by a linear

scaling factor of k = /2 it can be obtained the inertia ellipse and the central
principal moments of inertia of the triangle. In fact, injecting in (11) and (12) the
central moments of inertia of the triangle (Fig. 5), one gets the central and
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principal moments of inertia of a triangle:
A
Ji2¢ = %[(az +b%2+h%?—ab) + \/(a2 + b%2 + h? — ab)? — 3b2h2] (23)

It remains to be proven that the midpoint ellipse leads by the given scaling, the
same central principal moments of inertia.

Proof. Equating the congruence between the scaled ellipse of inertia and the
Steiner inellipse, we get:

. _a . b
=2 b= (24)
Subsequently,
Jic J2c
K-7=af;1{-7=bf (25)

Substituting (20) and (21) in (25), the central principal moments of inertia J,. and
J>¢ are obtained:
hac = (st+s3+s3+2-2). (26)
In order to prove that the resulting formula (28) is confirming the classical
expression (23), one has to use the identities:
st = b?; s? =a® + h% s5 =a®?+ b% + h? — 2ab. (27)
Obviously s? + s7 + s2 = 2(a® + b> + h? — ab) and
7% = 4(a® + b%? + h? — ab)?
—3[b%(a? + h?) + (a® + b? + h?)(a? + b? + h? — 2ab)]
= (a? + b* + h? — ab)? — 3b?h?
which proves that the scaled midpoint ellipse represents indeed the principal
moments of inertia of the triangle. Thus, the above deduced expressions (28) for
the principal and central axial moments of inertia for a triangle provide a the more
practical approach based on the triangle’s edges.

d) The parallelogram

The parallelogram may be perceived as a plane compound figure comprised
of a middle rectangle and two right triangles. All of these shapes have been
proven to admit an inscribed ellipse similar to their ellipse of inertia. Thus, it is
not surprising that the parallelogram’s principal and central axial moments of
inertia may be determined by the proposed geometric method as well.
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Parallelogram- VoY scaled ellipse
like lamina 1 of inertia

ellipse of
inertia

Fig. 6 Ellipse of inertia of o parallelogram planar lamina

¢) Lemma The ellipse of inertia follows the obliquity of the parallelogram,
and when scaled by an area factor of K = 3, (linear scaling factor of k = VK =
V3), it becomes tangent to the midpoints of its sides providing the moments of
inertia of the parallelogram.

Proof. We can take advantage of this tangency by setting up Apollonius’
theorem (aZ + bZ = ¢? + d?, with a., b, — semi-major and semi-minor axes of the
ellipse, ¢, d — any two conjugate semidiameters) in a convenient form. Since by
definition the pairs of opposite sides in a parallelogram are respectively equal and
parallel, the segments M,M, and M;M; — equal to the sides L; and L, of the
parallelogram — shall be our conjugate diameters for the scaled ellipse of inertia
defined by major axis (k - 2i;) and minor axis (k - 2i,).

Providing these substitutions into Apollonius’ theorem, we have:
2 2
k- i)+ (k- i)? = (%) + (L2_2> (28)
In terms of J;- and J,:

IEEE:
Kl e (29)

hence obtaining a relationship for the sum of the principal and central axial
moments of inertia:

A
Jic +Joc = v (L5 +1%) (30)
in which we have taken into account that K = 3.

11
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On the other hand, the area of our scaled ellipse of inertia may be expressed in
terms of the conjugate semi-diameters and the angle between them. But the latter
in merely a, the defining scalene angle of the parallelogram: < (M,M,, M; M) =
% (L1, L,) = a. Equating this lesser known form with the typical area of the
ellipse, we get:

LiL
(ki) (k-i2)=n?17251na (31)

In terms of /;- and J,., taking into account that L, L, sin a represents the area 4 of

our parallelogram, we have:
A/ A
K. ]16]26 _ (32)
A 4
thus obtaining an expression for the product of the principal and central axial
moments of inertia:

A4

= — 33
JicJac = 47 (33)

We may now put together eq. (30) and (33) into a system of equations which
reduces to a quadratic equation of the form x* — Sx + P = 0, written according to
Vieta’s formulae for the sum and product of the roots. Solving, yields:

A A
Ji2c = >4 (Li+1H)+ o4 [(L7 + L35)? — 4A%] (34)
which offers the possibility for determining the principal and central axial
moments of inertia of a parallelogram directly in terms of its geometric defining
parameters: L, L, and a.
The deduced formula (34) must confirm the principal moments of inertia
obtained by the classical algorithm, inserting (7), (8) and (9) into (10) and (11),
with previous notations (Fig. 2b):

A A
Ji2¢ = ﬁ(a2 + b%+ h?) + ﬁ\/a‘* + b* + h* + 2a%b? — 2b%h?% + 2a2h%2  (395)

We may perceive the above algorithm providing formula (34) as a purely
geometrical alternative, in order to obtain expressions for J;- and J,.. Indeed,
since L5 = b%; L3 = a? + h?; A = bh once injected in the proposed formula (34)
lead to:

A A
e =5g (@ + b2 +h%) ——- Va* + b* + h* + 2a2b? — 2b2h? + 2a2h? (36)

This result proves the validity of the purely geometric proposed approach.
Based on the above lemmas, a general theorem can be stated:
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Theorem. For geometrical planar structures admitting an ellipse tangent to all
sides, it can be found a downscaling factor k£ allowing to deduce the central
principal moments of inertia from the semiaxes of this ellipse (see Table 1 below).
The proof was given by the presented lemmas for some of the most useful planar
structures.

Table 1.

Scaling factors for the Steiner’s inellipse providing the principal inertia ellipse

Inscribed ellipse
Planar - - -
structure | Linear scaling | Area scaling
factor k = VK factor K
ellipse 2 4
rectangle \3 3
triangle V2 2
parallelogram V3 3

6. Conclusions

The central and principal axial moments of inertia of plane figures commonly
used in Mechanics and Engineering may be determined directly, on the basis of
geometrical parameters and a scaling factor deduced in each case in the present
work.

The condition that the plane figures allow inscribed ellipses tangent to their
perimeter must be satisfied. The area of the planar surface, the scaling factor
between the ellipse of inertia and the inscribed ellipse, along with the specific
geometric properties of the latter provide an original mathematical alternative for
the classic double integral formulae established in handbooks.
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