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SOME REMARKABLE PROPERTIES OF THE MOMENTS OF 
INERTIA FOR PLANAR STRUCTURES 

Octavian Horațiu HERLING1, Mihai Valentin PREDOI 2, * 

The principal central moments of inertia of certain plane figures can be 
determined directly, by use of geometrical means only, based on some observations 
made by the authors concerning the central ellipses of inertia. It can be shown that 
the central ellipses of inertia of particular shapes such as the parallelogram, the 
scalene triangle, or more unambiguously the rectangle and the ellipse itself, are 
merely inscribed ellipses, downscaled with certain factors discovered by the authors 
and presented herein.  
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1. Introduction 

The mechanical moments of inertia are well established and were used in 
engineering applications for centuries. The basic formulas can be found in 
classical textbooks as [1], [2] or [3] for moments of inertia of the cross-sections 
see ref. [4]. The use of modern computers can be considered as a rapid solution 
for the moments of inertia of complex shapes and apparently this topic is closed 
for any research. However, many recent researches contradict this idea. Brlek et 
al. in ref. [5] investigate the mass center and moments of inertia of discrete sets of 
material points placed in a grid. Orășanu in ref. [6] proposes original 
mathematical models of reduction of the elementary bodies to systems of material 
points with the same inertia properties. Petrescu et al. [7] investigate the moment 
of inertia of a flywheel. Ostanin and Sperl in ref. [8] referring to the unstable 
rotation around the direction close to the body’s second principal axis, featuring a 
well-known tennis-racket (also known as Garriott-Dzhanibekov) effect consisting 
of a series of seemingly spontaneous 180 degrees flips, are investigating the 
control of the nonspherical tensor of inertia (TOI) as a means to optimize and 
stabilize the attitude control of a spacecraft. Jauch et al. in ref. [9] present a 
parametric study, in which different parameters of a flywheel are varied in order 
to find the maxima in energy density and specific energy. Eremeyev and 
Elishakoff [10] discuss the classic rotary inertia notion and extend it for 
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microstructured beams introducing new microinertia parameters as an additional 
dynamic response to microstructure changes. Pellecchia et al. present in ref. [11] a 
general methodology to evaluate the mass moments of two-dimensional domains 
and axisymmetric solids made of functionally graded materials. Szántó et al. in 
ref. [12] presents a method for the simultaneous measurement of the moment of 
inertia and braking torque of the rotor of electric motors.  

 

2. Moments of inertia of planar structures 

The mechanical moments of inertia and product of inertia about central axes (axes 
with origin in the mass center) for common planar structures, assumed to be made 
of homogeneous material of mass density ρ and of constant thickness h, can be 
deduced from their definitions [1] , [2]: 

 
𝐽𝐽𝑥𝑥𝑥𝑥 = 𝜌𝜌ℎ∬ 𝑦𝑦2𝑑𝑑𝑑𝑑(𝐴𝐴) ; 𝐽𝐽𝑦𝑦𝑦𝑦 = 𝜌𝜌ℎ∬ 𝑥𝑥2𝑑𝑑𝑑𝑑(𝐴𝐴) ; 𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜌𝜌ℎ∬ 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝐴𝐴) .   (1) 

 
The surface integral covers the area A of the planar structure. The principal 
moments of inertia represent the extreme (maximum and minimum) values of the 
moments of inertia obtained for a particular inclination θ of the principal axes. 
About these axes, the product of inertia Jxy is cancelled, the maximum is denoted 
by J1 and the minimum J2. The orientation of the principal axes relative to the 
initial axes is given by [2]: 
 

tan(2𝜃𝜃) = 2𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥
𝐽𝐽𝑦𝑦𝑦𝑦−𝐽𝐽𝑥𝑥𝑥𝑥

   (2) 
  
About the obtained principal axes, it can be defined the ellipse of inertia: 
 

𝐽𝐽1𝑥𝑥2 + 𝐽𝐽2𝑦𝑦2 = 𝐶𝐶2   (3) 
 
in which C is a constant, to be determined in each case. Leaving aside the 
common factor ρh required for the mechanical moments of inertia, it will be 
obtained the central moments of inertia of the cross-sections, which are commonly 
used in the Strength of materials studies. We mention in the following the central 
moments of inertia for some widely used planar structures, with A the area of the 
respective planar structure: 
 
a) Ellipse of semi-axes a along Ox and b along Oy (Fig. 1 a): 

𝐽𝐽𝑥𝑥 =
𝜋𝜋𝜋𝜋𝑏𝑏3

4
= 𝐴𝐴

𝑏𝑏2

4
;     𝐽𝐽𝑦𝑦 =

𝜋𝜋𝑎𝑎3𝑏𝑏
4

=  𝐴𝐴
𝑎𝑎2

4
 ; 𝐽𝐽𝑥𝑥𝑥𝑥 = 0 (4) 
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Fig. 1 Ellipse centered in the xOy frame origin (a), Rectangle in first quadrant (b) 

b) a) 

 
b) Ellipse of semi-axes a along Ox and b along Oy (Fig. 1 a): 

𝐽𝐽𝑥𝑥 =
𝜋𝜋𝜋𝜋𝑏𝑏3

4
= 𝐴𝐴

𝑏𝑏2

4
;     𝐽𝐽𝑦𝑦 =

𝜋𝜋𝑎𝑎3𝑏𝑏
4

=  𝐴𝐴
𝑎𝑎2

4
 ; 𝐽𝐽𝑥𝑥𝑥𝑥 = 0 (5) 

 
c) Rectangle of edges b along Ox and h along Oy (Fig. 1 b): 

 
𝐽𝐽𝑥𝑥𝑥𝑥 = 𝑏𝑏ℎ3

12
= 𝐴𝐴 ℎ2

12
;   𝐽𝐽𝑦𝑦𝑦𝑦 = ℎ𝑏𝑏3

12
= 𝐴𝐴 𝑏𝑏2

12
;  𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥 = 0   (6) 

 
d) Arbitrary scalene triangle of base b along Ox, height h along Oy and a is the 

projection of the upper corner on the horizontal base (Fig. 2 a): 
 

𝐽𝐽𝑥𝑥𝑥𝑥 =
𝑏𝑏ℎ3

36
= 𝐴𝐴

ℎ2

18
; 𝐽𝐽𝑦𝑦𝑦𝑦 = 𝑏𝑏ℎ

𝑏𝑏2 − 𝑎𝑎 (𝑏𝑏 − 𝑎𝑎)
36

= 𝐴𝐴
𝑏𝑏2 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎2

18
 ; 

𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥 =
(2𝑎𝑎 − 𝑏𝑏)𝑏𝑏ℎ2

72
= 𝐴𝐴

(2𝑎𝑎 − 𝑏𝑏)ℎ
36

 
(7) 

 
 
 
 
 
 
 
 
 
 
 
 

e) Parallelogram of edge b along the Ox axis and height h, with a being the 

a) b) 

Fig. 2 Arbitrary scalene triangle in first quadrant (a) , parallelogram in first quadrant (b) 



6                               Octavian Horațiu Herling, Mihai Valentin Predoi  

horizontal projection of the inclined edge of the parallelogram (Fig. 2 b): 
Being less presented in textbooks, we deduce the moments of inertia for this 
figure: 
a. Moment of inertia about Cx axis is obtained using elementary strips of 
length b and height dy: 

𝐽𝐽𝑥𝑥𝑥𝑥 =∫ 𝑦𝑦2𝑏𝑏𝑏𝑏𝑏𝑏
ℎ
2
−ℎ2

= 𝑏𝑏ℎ3

12
= 𝐴𝐴ℎ2

12
   (8) 

b. Moment of inertia about Cy can be obtained in an original way, using the 
same elementary strips b.dy which can be considered to be an infinitesimal 
rectangle with moment of inertia about its center: 𝑑𝑑𝑑𝑑𝑦𝑦 = 𝑏𝑏3𝑑𝑑𝑑𝑑

12
. Since the center 

of this strip is moved relative to the Cy axis of the parallelogram by a distance 
𝑑𝑑 = 𝑎𝑎

ℎ
𝑦𝑦, one can use the Steiner’s theorem to transfer the moment of inertia of 

the strip to the parallel axis Cy of the parallelogram: 
 

𝐽𝐽𝑦𝑦𝑦𝑦 =∫ �𝑏𝑏
3

12
+ 𝑏𝑏 �𝑎𝑎

ℎ
𝑦𝑦�

2
� 𝑑𝑑𝑑𝑑

ℎ
2
−ℎ2

= ℎ𝑏𝑏
12

(𝑏𝑏2 + 𝑎𝑎2) = 𝐴𝐴
12

(𝑏𝑏2 + 𝑎𝑎2)   (9) 

 
c. The product of inertia about the central axes, can be obtained using the 
same elementary strips b.dy, which can be considered to be an infinitesimal 
rectangle with product of inertia about its center 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0. Use is made of the 
Steiner’s theorem to transfer the product of inertia of the strip to the central 
axes of the parallelogram: 

𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥 =∫ 𝑎𝑎𝑎𝑎
ℎ
𝑦𝑦2𝑑𝑑𝑑𝑑

ℎ
2
−ℎ2

= 𝑎𝑎𝑎𝑎ℎ2

12
= 𝐴𝐴ℎ𝑎𝑎

12
  (10) 

3. Properties of scaled ellipses of inertia  

In order to calculate the central and principal axial moments of inertia of a planar 
lamina, one has to evaluate the following expressions [1,2]: 
 

𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶 = 𝐽𝐽1,𝐶𝐶 =
𝐽𝐽𝑥𝑥𝑥𝑥 + 𝐽𝐽𝑦𝑦𝑦𝑦

2
+

1
2

 ��𝐽𝐽𝑦𝑦𝑦𝑦 − 𝐽𝐽𝑥𝑥𝑥𝑥�
2

+ 4𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥2  (11) 

 

𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶 = 𝐽𝐽2,𝐶𝐶 =
𝐽𝐽𝑥𝑥𝑥𝑥 + 𝐼𝐼𝑦𝑦𝑦𝑦

2
−

1
2

 ��𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐽𝐽𝑥𝑥𝑥𝑥�
2

+ 4𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥2  (12) 

 
which lead to the central and principal radii of gyration given by: 
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𝑖𝑖1,𝐶𝐶 = �𝐽𝐽1,𝐶𝐶

𝐴𝐴
 ;  𝑖𝑖2,𝐶𝐶 = �𝐽𝐽2,𝐶𝐶

𝐴𝐴
 (13) 

 
These resulting values can be used to determine the central principal ellipse of 
inertia (Fig. 3): 

𝑥𝑥(𝐼𝐼𝐼𝐼)
2

𝑖𝑖2,𝐶𝐶
2 +

𝑦𝑦(𝐼𝐼)
2

𝑖𝑖1,𝐶𝐶
2 = 1 (14) 

 
As stated in [1], the ellipse of inertia follows the geometry of the figure, in perfect 
agreement with the fact that its major axis is taken along the secondary principal 
axis of inertia, its minor axis being conversely taken along the principal axis of 
inertia. Let us make a step forward and analyze the possibility of finding 
geometric similarities between the ellipses of inertia of certain planar laminae and 
their proper shapes. 
 

a) The ellipse.  
Unsurprisingly, the ellipse of inertia of this particular shape is nothing but a 
downscaled ellipse completely similar to that of the contour of the lamina.  
a) Lemma.  Scaling down the area of the given ellipse by the factor 𝐾𝐾 = 4, 
(linear scaling factor of 𝑘𝑘 = √𝐾𝐾 = 2), it can be obtained the inertia ellipse and its 
moments of inertia.  
Proof.  Since the ellipse of inertia of an elliptic lamina is an ellipse with axes 
downscaled by 𝑘𝑘 = 2, we can write the following scaling equalities between the 
semi-axes of the lamina and those of the ellipse of inertia: 
 

𝑖𝑖1 =
𝑎𝑎
𝑘𝑘

  ;    𝑖𝑖2 =
𝑏𝑏
𝑘𝑘

 . (15) 

 

𝐼𝐼𝐼𝐼 

Axis of minimum 
moment of inertia 

Axis of maximum 
moment of inertia 

Fig. 3 Typical ellipse of inertia layout for an arbitrary plane lamina 
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Substituting these semiaxes in (13), with 𝐴𝐴 = 𝜋𝜋𝜋𝜋𝜋𝜋,  can be obtained 𝐽𝐽1,𝐶𝐶 and 𝐽𝐽2,𝐶𝐶 : 

𝐽𝐽1𝐶𝐶 = 𝑖𝑖12𝐴𝐴 =
𝑎𝑎2

4
𝜋𝜋𝜋𝜋𝜋𝜋 ;  𝐽𝐽2𝐶𝐶 = 𝑖𝑖22𝐴𝐴 =

𝑏𝑏2

4
𝜋𝜋𝜋𝜋𝜋𝜋 , (16) 

in complete agreement with the integrals (5), proving thus this lemma.  
 
Using this lemma can be directly expressed the principal central moments of 
inertia of an ellipse without calculating the double integrals in (1). 

 
 

 
b) The rectangle. 

Since any rectangle possesses an associated central ellipse tangent to the 
midpoints of its sides, such a geometric shape is another candidate for our 
method. 
b) Lemma.  Scaling down the area of the given rectangle by factor 𝐾𝐾 = 3,  
(linear scaling factor of 𝑘𝑘 = √𝐾𝐾 = √3), it can be obtained the inertia ellipse and 
its moments of inertia.  
Proof. By analogy with the ellipse, we scale down each half- side of the rectangle: 

𝑖𝑖1 =
𝑏𝑏

2𝑘𝑘
  ;  𝑖𝑖2 =

ℎ
2𝑘𝑘

 (17) 

and by inserting these semiaxes in the general relations (13), and using 𝐴𝐴 = 𝑏𝑏ℎ,  it 
can be immediately obtained: 

𝐽𝐽1𝐶𝐶 =
𝑏𝑏2

4𝐾𝐾
𝑏𝑏ℎ =

𝑏𝑏3ℎ
12

  ;  𝐽𝐽2𝐶𝐶 =
ℎ2

4𝐾𝐾
𝑏𝑏ℎ =

ℎ3𝑏𝑏
12

 (18) 

 
which are identical to the results (6) obtained by integration. 

c) The scalene triangle. 
In case of an scalene triangle, the ellipse of inertia from Mechanics proves out to 

elliptic 
lamina 

ellipse of 
inertia 

𝑲𝑲 

Fig. 4 Ellipse of inertia of an elliptic planar lamina (a). Ellipse of inertia of a rectangular lamina (b) 

𝑏𝑏
2�  

 

𝑏𝑏
2�  

 

ℎ
2 

 

ℎ
2 

 
𝑖𝑖1 
 

𝑖𝑖2 

rectangular 
lamina ellipse of 

inertia 

scaled 
ellipse of 

inertia 

𝑲𝑲 
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be similar to the Steiner inellipse also called midpoint ellipse of the corresponding 
triangle (Fig. 5). The area A of a triangle can be expressed by the triangle’s sides 
only (denoted 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3) using the Heron’s formula: 

𝐴𝐴 =  �𝑝𝑝(𝑝𝑝 − 𝑠𝑠1)(𝑝𝑝 − 𝑠𝑠2)(𝑝𝑝 − 𝑠𝑠3) 
(19) 

 
in which 𝑝𝑝 = 1

2
(𝑠𝑠1 + 𝑠𝑠2 + 𝑠𝑠3) is the semi-perimeter of the triangle. 

 
 
 
The midpoint ellipse (centered in C, tangent to the midpoints of the triangle’s 
sides) is known to have semi-axes [13]: 

𝑎𝑎1 =
1
6
 �𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32 + 2 ⋅ 𝑍𝑍 (20) 

and 

𝑏𝑏1 =
1
6
 �𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32 − 2 ⋅ 𝑍𝑍 (21) 

The term Z is equal to: 

𝑍𝑍 = �𝑠𝑠14 + 𝑠𝑠24 + 𝑠𝑠34 − (𝑠𝑠1𝑠𝑠2)2 − (𝑠𝑠2𝑠𝑠3)2 − (𝑠𝑠1𝑠𝑠3)2 (22) 

c) Lemma By scaling down the semiaxes of the midpoint ellipse by a linear 
scaling factor of 𝑘𝑘 = √2 it can be obtained the inertia ellipse and the central 
principal moments of inertia of the triangle. In fact, injecting in (11) and (12) the 
central moments of inertia of the triangle (Fig. 5), one gets the central and 

Fig. 5 Ellipse of inertia of a triangular lamina 

𝐼𝐼 

𝐼𝐼𝐼𝐼 

triangular 
lamina 

Steiner 
inellipse 

ellipse of 
inertia 

𝑲𝑲 
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principal moments of inertia of a triangle: 

𝐽𝐽1,2𝐶𝐶 =
𝐴𝐴

36
�(𝑎𝑎2 + 𝑏𝑏2 + ℎ2 − 𝑎𝑎𝑎𝑎)  ± �(𝑎𝑎2 + 𝑏𝑏2 + ℎ2 − 𝑎𝑎𝑎𝑎)2 − 3𝑏𝑏2ℎ2� (23) 

It remains to be proven that the midpoint ellipse leads by the given scaling, the 
same central principal moments of inertia. 
 
Proof. Equating the congruence between the scaled ellipse of inertia and the 
Steiner inellipse, we get: 

𝑖𝑖1 =
𝑎𝑎1
𝑘𝑘

  ;    𝑖𝑖2 =
𝑏𝑏1
𝑘𝑘

  (24) 

Subsequently,  

𝐾𝐾 ⋅
𝐽𝐽1𝐶𝐶
𝐴𝐴

= 𝑎𝑎12  ;  𝐾𝐾 ⋅
𝐽𝐽2𝐶𝐶
𝐴𝐴

= 𝑏𝑏12 (25) 

Substituting (20) and (21) in (25), the central principal moments of inertia 𝐽𝐽1𝐶𝐶 and 
𝐽𝐽2𝐶𝐶  are obtained: 

𝐽𝐽1,2𝐶𝐶 = 𝐴𝐴
72

(𝑠𝑠12 + 𝑠𝑠22 + 𝑠𝑠32 ± 2 ⋅ 𝑍𝑍). (26) 
In order to prove that the resulting formula (28) is confirming the classical 
expression (23), one has to use the identities:   

𝑠𝑠12 = 𝑏𝑏2;  𝑠𝑠22 = 𝑎𝑎2 + ℎ2;  𝑠𝑠32 = 𝑎𝑎2 + 𝑏𝑏2 + ℎ2 − 2𝑎𝑎𝑎𝑎. (27) 
Obviously 𝑠𝑠12 +  𝑠𝑠22 +  𝑠𝑠32 = 2(𝑎𝑎2 + 𝑏𝑏2 + ℎ2 − 𝑎𝑎𝑎𝑎) and  

𝑍𝑍2 = 4(𝑎𝑎2 + 𝑏𝑏2 + ℎ2 − 𝑎𝑎𝑎𝑎)2
− 3[𝑏𝑏2(𝑎𝑎2 + ℎ2) + (𝑎𝑎2 + 𝑏𝑏2 + ℎ2)(𝑎𝑎2 + 𝑏𝑏2 + ℎ2 − 2𝑎𝑎𝑎𝑎)]
= (𝑎𝑎2 + 𝑏𝑏2 + ℎ2 − 𝑎𝑎𝑎𝑎)2 − 3𝑏𝑏2ℎ2 

which proves that the scaled midpoint ellipse represents indeed the principal 
moments of inertia of the triangle. Thus, the above deduced expressions (28) for 
the principal and central axial moments of inertia for a triangle provide a the more 
practical approach based on the triangle’s edges.  
 

d) The parallelogram 
 

The parallelogram may be perceived as a plane compound figure comprised 
of a middle rectangle and two right triangles. All of these shapes have been 
proven to admit an inscribed ellipse similar to their ellipse of inertia. Thus, it is 
not surprising that the parallelogram’s principal and central axial moments of 
inertia may be determined by the proposed geometric method as well. 



Some remarkable properties of the moments of inertia for planar structures                      11 

11 
 

 
c) Lemma The ellipse of inertia follows the obliquity of the parallelogram, 

and when scaled by an area factor of 𝐾𝐾 = 3, (linear scaling factor of 𝑘𝑘 = √𝐾𝐾 =
√3),  it becomes tangent to the midpoints of its sides providing the moments of 
inertia of the parallelogram. 

Proof. We can take advantage of this tangency by setting up Apollonius’ 
theorem (𝑎𝑎𝑒𝑒2 + 𝑏𝑏𝑒𝑒2 = 𝑐𝑐2 + 𝑑𝑑2, with ae, be – semi-major and semi-minor axes of the 
ellipse, c, d – any two conjugate semidiameters) in a convenient form. Since by 
definition the pairs of opposite sides in a parallelogram are respectively equal and 
parallel, the segments 𝑀𝑀4𝑀𝑀2 and 𝑀𝑀1𝑀𝑀3 – equal to the sides 𝐿𝐿1 and 𝐿𝐿2 of the 
parallelogram – shall be our conjugate diameters for the scaled ellipse of inertia 
defined by major axis (𝑘𝑘 ⋅ 2𝑖𝑖1) and minor axis (𝑘𝑘 ⋅ 2𝑖𝑖2).  
Providing these substitutions into Apollonius’ theorem, we have: 

(𝑘𝑘 ⋅ 𝑖𝑖1)2 + (𝑘𝑘 ⋅ 𝑖𝑖2)2 = �
𝐿𝐿1
2
�
2

+ �
𝐿𝐿2
2
�
2

 (28) 

In terms of 𝐽𝐽1𝐶𝐶 and 𝐽𝐽2𝐶𝐶: 

𝐾𝐾 ⋅
𝐽𝐽1𝐶𝐶
𝐴𝐴

+ 𝐾𝐾 ⋅
𝐽𝐽2𝐶𝐶
𝐴𝐴

=
𝐿𝐿12

4
+
𝐿𝐿22

4
 (29) 

hence obtaining a relationship for the sum of the principal and central axial 
moments of inertia: 

𝐽𝐽1𝐶𝐶 + 𝐽𝐽2𝐶𝐶 =
𝐴𝐴

12
⋅ (𝐿𝐿12 + 𝐿𝐿22) (30) 

in which we have taken into account that 𝐾𝐾 = 3.  

Parallelogram-
like lamina 

scaled ellipse  
of inertia 

ellipse of 
inertia 

𝐼𝐼 

𝐼𝐼𝐼𝐼 𝑲𝑲 

Fig. 6 Ellipse of inertia of o parallelogram planar lamina 
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On the other hand, the area of our scaled ellipse of inertia may be expressed in 
terms of the conjugate semi-diameters and the angle between them. But the latter 
in merely 𝛼𝛼, the defining scalene angle of the parallelogram: ∢ (𝑀𝑀4𝑀𝑀2,𝑀𝑀1𝑀𝑀3) =
∢ (𝐿𝐿1,𝐿𝐿2) = 𝛼𝛼. Equating this lesser known form with the typical area of the 
ellipse, we get: 

𝜋𝜋 (𝑘𝑘 ⋅ 𝑖𝑖1) (𝑘𝑘 ⋅ 𝑖𝑖2) = 𝜋𝜋
𝐿𝐿1
2
𝐿𝐿2
2

sin𝛼𝛼 (31) 

In terms of 𝐽𝐽1𝐶𝐶 and 𝐽𝐽2𝐶𝐶 , taking into account that 𝐿𝐿1𝐿𝐿2 sin 𝑎𝑎 represents the area A of 
our parallelogram, we have: 

𝐾𝐾 ⋅
�𝐽𝐽1𝐶𝐶 𝐽𝐽2𝐶𝐶

𝐴𝐴
=
𝐴𝐴
4

 (32) 

thus obtaining an expression for the product of the principal and central axial 
moments of inertia: 

𝐽𝐽1𝐶𝐶 𝐽𝐽2𝐶𝐶 =
𝐴𝐴4

144
 (33) 

 
We may now put together eq. (30) and (33) into a system of equations which 
reduces to a quadratic equation of the form 𝑥𝑥2 − 𝑆𝑆𝑆𝑆 + 𝑃𝑃 = 0, written according to 
Vièta’s formulae for the sum and product of the roots. Solving, yields:  
  

𝐽𝐽1,2𝐶𝐶 =
𝐴𝐴

24
⋅ (𝐿𝐿12 + 𝐿𝐿22) ±

𝐴𝐴
24

⋅ �[(𝐿𝐿12 + 𝐿𝐿22)2 − 4𝐴𝐴2] (34) 

 
which offers the possibility for determining the principal and central axial 
moments of inertia of a parallelogram directly in terms of its geometric defining 
parameters: 𝐿𝐿1, 𝐿𝐿2 and 𝑎𝑎.  

The deduced formula (34) must confirm the principal moments of inertia 
obtained by the classical algorithm, inserting (7), (8) and (9) into (10) and (11), 
with previous notations (Fig. 2b): 

𝐽𝐽1,2𝐶𝐶 =
𝐴𝐴

24
(𝑎𝑎2 + 𝑏𝑏2 + ℎ2) ±

𝐴𝐴
24

�𝑎𝑎4 + 𝑏𝑏4 + ℎ4 + 2𝑎𝑎2𝑏𝑏2 − 2𝑏𝑏2ℎ2 + 2𝑎𝑎2ℎ2 (35) 

We may perceive the above algorithm providing formula (34) as a purely 
geometrical alternative, in order to obtain expressions for 𝐽𝐽1𝐶𝐶 and 𝐽𝐽2𝐶𝐶 . Indeed, 
since 𝐿𝐿12 = 𝑏𝑏2;  𝐿𝐿22 = 𝑎𝑎2 + ℎ2;𝐴𝐴 = 𝑏𝑏ℎ once injected in the proposed formula (34) 
lead to: 

𝐽𝐽1,2𝐶𝐶 =
𝐴𝐴

24
⋅ (𝑎𝑎2 + 𝑏𝑏2 + ℎ2) −

𝐴𝐴
24

⋅ �𝑎𝑎4 + 𝑏𝑏4 + ℎ4 + 2𝑎𝑎2𝑏𝑏2 − 2𝑏𝑏2ℎ2 + 2𝑎𝑎2ℎ2 (36) 

This result proves the validity of the purely geometric proposed approach.  
Based on the above lemmas, a general theorem can be stated: 
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Theorem. For geometrical planar structures admitting an ellipse tangent to all 
sides, it can be found a downscaling factor k allowing to deduce the central 
principal moments of inertia from the semiaxes of this ellipse (see Table 1 below). 
The proof was given by the presented lemmas for some of the most useful planar 
structures. 
 

Table 1.  

Scaling factors for the Steiner’s inellipse providing the principal inertia ellipse 

Planar 
structure 

Inscribed ellipse 
Linear scaling 
factor 𝑘𝑘 = √𝐾𝐾 

Area scaling 
factor K 

ellipse 2 4 

rectangle √3 3 

triangle √2 2 

parallelogram √3 3 

 

6. Conclusions 

The central and principal axial moments of inertia of plane figures commonly 
used in Mechanics and Engineering may be determined directly, on the basis of 
geometrical parameters and a scaling factor deduced in each case in the present 
work.  
The condition that the plane figures allow inscribed ellipses tangent to their 
perimeter must be satisfied. The area of the planar surface, the scaling factor 
between the ellipse of inertia and the inscribed ellipse, along with the specific 
geometric properties of the latter provide an original mathematical alternative for 
the classic double integral formulae established in handbooks.   
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