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CO-ROTATIONAL MAXWELL FLUID ANALYSIS IN HELICAL
SCREW RHEOMETER USING ADOMIAN DECOMPOSITION METHOD

M. Zeb', A. M. Siddiqui®, T. Haroon®

This paper considers a theoretical study on steady incompressible flow of co-
rotational Maxwell fluid in helical screw rheometer (HSR). The rheological
constitutive equation for co-rotational Maxwell fluid model gives the second order
nonlinear coupled differential equations which could not be solved explicitly. An
iterative procedure, Adomian decomposition method (ADM) is used to obtain the
analytical solution. Expressions for velocity components in & and Z —direction are
obtained. The volume flow rates are calculated for the azimuthal and axial
components of velocity field by introducing the effect of flights. The results have
been discussed with the help of graphs as well. We observe that the velocity profiles
are strongly depend on non-dimensional parameter ¢ , with the increase in & ,
progressive increase seen in the flow profiles. We also noted that the parabolicity of
flow profiles increase with increase in the magnitude of pressure gradients. Thus the
profound conclusion is that extrusion process depends on the involved non-
dimensional parameters.
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1. Introduction

The Helical Screw Rheometer (HSR) is used for rheological
measurements of fluid food suspensions. It contains a helical screw in a tight
fitting cylinder, with the inlet and outlet ports closed the inner screw. Rotation of
screw creates a pressure gradient along the axis of the screw. The geometry of an
HSR matches to a single screw extruder [1]. Extrusion process is widely used in
food processing i.e., cookie dough, sevai, pastas, breakfast cereals, french fries,
baby food, ready to eat snacks and dry pet food. Extrusion process also include
fluids like multi-grade oils, liquid detergents, paints, polymer solutions and
polymer melts, the injection molding process for polymeric materials, the
production of pharmaceutical products and processing of plastics [2, 3, 4].

During processing physical and chemical changes can occur so it is
desirable to monitor the process to achieve excellent output and quality control
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[5]. Bird et al.,[6] presented an asymptotic solution and arbitrary values of the
flow behavior index for the Power-Law fluid in a very thin annulus.

Booy [7] studied the influence of channel curvature on flow, pressure distribution,
and power requirements of screw pumps and melt extruders considering
Newtonian fluid. Tamura et al.,[1] also investigated the flow of Newtonian fluid
in Helical Screw Rheometer.

The classical Navier-Stokes equations have been proved inadequate to
describe complete characteristics of non-Newtonian fluids. To study these fluids
different new theories have been developed [8], and different models are proposed
[6, 8]. In the present work an attempt has been made to study co-rotational
Maxwell fluid in Helical Screw Rheometer (HSR). We have choosen the
cylindrical coordinate system (r,&,z) which seems to be a more natural choice

due to the geometry of HSR. The expressions for the v and w—component of
velocity profiles are obtained from the solution of developed second order
nonlinear coupled differential equations by using Adomian decomposition method
with new modification suggested by Wazwaz [9]. Volume flow rates are
calculated by introducing the effect of flights. The behavior of the velocity
profiles are presented through graphs and discussed.

The paper is organized as follows. Section 2 contains the governing
equations of the fluid model. In Section 3 the problem under consideration is
formulated and, the governing equation of the problem is solved using Adomian
decomposition method. In Section 4 discussion about the behavior of the velocity
profiles is given. Section 5 contains conclusion.

2 Basic Equations

The basic equations, governing the motion of an isothermal, homogeneous
and incompressible co-rotational Maxwell fluid are:

divv =0, 1)
p%=pf—VP+V.S, (2)

where p is the constant fluid density, V is the velocity vector, f is the body
force per unit mass, P denotes the dynamic pressure and the operator % denotes

D(x) _ 0

the material time derivative defined as, o - a(>x<) +(V -V)(*),

S is the extra stress tensor which for co-rotational Maxwell fluid model is
defined as

\%
smis%zl(ms +SA) = 7A,, 3)

here n, and A, are zero shear viscosity and relaxation time, respectively. The
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upper contravariant convected derivative designed by V over S is defined as
v_DS
=—=_!(grad V)'S+S(grad V)!,
S, l(grad V)'S +S(grad V)

and
A, =(grad V)+(grad V)",
is the first Rivlin-Ericksen tensor.

3 Problem Formulation

Steady, laminar, isothermal, flow of an incompressible co-rotational
Maxwell fluid is considered in Helical screw rheometer (HSR). The screw
channel is assumed to be bounded by the barrel and screw root surfaces and by the
two sides of a helical flight as shown in Fig.1. The geometry is approximated as a
shallow infinite channel, by assuming the width B of the channel large compared

with the depth h i.e., %« 1. Further more side effects can be ignored. Here we

choose the cylindrical coordinate system (r,#,z) which is more suitable choice

for the flow analysis in HSR. A congruent velocity distribution is assumed at
parallel cross sections through the channel. The viscosity of the fluid is assumed
to be constant. The outer barrel of radius r, is assumed to be stationary and the

screw root of radius r, rotates with angular velocity Q [7, 10].

Fig.1 Geometry of helical screw rheometer
The boundary conditions are

v = Qr, w=0, at r=r,
_ _ _ (4)
v = 0, w=0, at r=r,.
The flow is assumed fully developed in the ¢ and the z—directions so that,
V =[0,v(r),w(r)] S =5(r), (5)

where u,v and w are radial, azimuthal and axial velocity components,

respectively. On substituting these assumptions in equation (3), we obtain non-
zero components of extra stress tensor, S as,
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_ dv v) (dw)’
Sy = —Uo%{(a—ﬂ J{WJ }M, (6)

dv v dw
S, =S, =n|—-—— M, S = =n,—M, 7
re o Uo(dr rj rz r 770 dr ( )
dv v dw)’
S, = ——— | M, S,, = — | M, 8
00 Uoﬂq[dr rj 77021( dr] (8)
dw(dv v

S, =S = — ——=— M, 9

o 20 = o dr (dr rj 9

where M = ! (10)

a6

For highly viscous fluids the effect of acceleration of fluid and body forces
can be ignored [12]. Equation (2) for creeping flow of an incompressible fluid can
be written as, 0=—gradP +div S. (11)

A number of simplifications became possible by assuming infinite aspect

ratio %« 1 and the congruent velocity distributions at parallel cross sections.

Velocities are tangential to cylindrical surfaces in the limiting case of infinite
aspect ratio. The pressure in the channel does not change with radius for very

shallow channels, therefore g—P =0 [12].
r

In view of our assumptions equation (1) is satisfied identically and
substitution of the calculated components of extra tress tensor given in equations
(6)-(9) in the component form of equation (11) give

(dv vjz (dwjz (dv vjz
- + N -
lir dr r dr 1 dr r ~0
r dr 2 2 r 2 2 '
R EEH K = e
dar r dr dr r dr
(12)
i
1d dar r 10P
0 zd_ re 2 2 :_E’ (13)
SR
dar r dr




Co-rotational Maxwell fluid analysis [...] rheometer using adomian decomposition method 225

dw
11 dr _oP

——Ir —
®rdr 2 2 0z
AT

dr r dr

The equations (13) and (14), imply that P = P(8,z), since the left hand sides of
equations (13) and (14) are functions of r alone and P = P(r), this implies

(14)

Ui

%zconstant and Z—P=constant.0ur concentration is on torsional and axial
Z

flow, so we will consider only equations (13) and (14).
Introducing non-dimensional parameters,

. T ._Z ._ v ._ W . P
r=—, z7=—, v=—, wW=—, P'= ,
r n Qr, Qr, 7,2

in equations (13) and (14), after dropping “*” and the integrating with respect to
T, we get
2 2
S8 aealel S (2] 0o
drr r r drr dr
2 2
d—W:[Kzr +&j 1+adr? i(xj +(d—WJ . (16)
dr r drr dr

where C, and C, are constant of integration and & = (Wi)*, where Wi =2Q is
the Weissenberg number raised in non-dimensionlization and assume that

K=+ P and k, =1
200 2 0z
The associated non-dimensional boundary conditions are
v = 1, w=0, at r=1,

(17)
v = 0, w =0, at r=92,

where 5= 251,
I’1

The resultant equations (15) and (16) are coupled first order nonlinear
ordinary differential equations, the exact solution seems to be difficult. In the next
section we use Adomian decomposition method (ADM) to obtain the approximate
solution with the help of symbolic computation software Wolfram Mathematica 7.

According to the ADM the nonlinear ordinary differential equation can be
written in operator formas Lu+Ru+Nu=g,

where L is the higher order linear differential operator which is assumed to be
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invertible and R is a linear linear differential operator of order less than L, N is
. . d

nonlinear operator and gis a source term. In our problem L:d—, Lt :j()dr,
r

w5 (2] 2
SRR ERIEG)
g:(m%}, g:(m%

ADM suggest that the unkown functions v and wbe expressed as v = Zvn ,
n=0

=|<

szwn and the nonlinear term Nucan be explore in the form of ADM
n=0

polynomials A ’sas N (Zun] =>A.
n=0

n=0
Adomian decomposition method simplifies the developed equations (15)
and (16) in components form along with the boundary conditions in the following
way.
3.1 Zeroth component Solution
Zeroth component problem

C
=C rJrrL‘l(ﬁ ﬂj (18)
rr
-1 CZO
w,=C,+L [KZHT'J, (19)
along with the boundary conditions
v, = 1, w, =0, at r=1,
(20)
v, = 0, w, =0, at r=o,
give
— Nl
Vv, = Klrln(r)—T+ N,r, (21)
=M,(r*=1)+ M, In(r), (22)

Equations (21) and (22) are the solutions for linearly viscous fluid [12].
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3.2 First component Solution
First component problem

C ~
= rL‘l(%J +arl*(Ay), (23)
-1 C21 -1
=L = +al™(B,) (24)
together with boundary conditions

v, = 0, w, =0, at r=1,
(25)

v, = 0, w, =0, at r=o,

where A, and B, are Adomian polynomials in v, and w,, given as

C(Ky Cio)) o d (%)) ()’
& ‘(T*?Hr (o) (%) } 9
B, =(K2r+%j{r{i[v—°j} +(%J2} (27)
r drir dr

Equations (23) and (24) result in the solution

+ N, N, N, 1 N
Vv, = —2 4 (Ng——2) =+ Ngrin(r) +—2r® = Ngr |, 28
1 ( or° 43 +( )r 6 In(r) 2 g) (28)
M, M, M, , M,
W, = —3 ——2 4+ (Mg +My)In(r +—Sr24+ Tty M 29
h 0{ art or? ( 5)In(r) > 2 j (29)

3.3 Second Order Solution
The second component problem

4C ~
v, =1L 1(%}@& Y(A) (30)
4(C ~
WZ:L1($j+aL1(Bl), (31)

with the boundary conditions

v, = 0, w, =0, at r=1,

v, = 0, w, =0, at r=o.
containing Adomian polynomials A and B, in v, v,, w, and w,, given as

A = £+C_ or? d (VOJ d (VljJrz%%
r re dr dr dr dr

(32)
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{ diTD (e j} (39
o=t far S| 2 4G T}
S]]} 2

- N N N N 3
Vv, =@ ——0 1 18 U N rinr+
2 ( 10r° 8r’ e6r° 4r® 2r B
N17r5 NlS( 1)
4+ 1 == |+ Nr |, 35
e L (35)
- M M M M M..r> M.,.r*
— 2 10 11 12 13 15 16
W, =a’| - - - +M,, Inr+———4+ 25
2 ( gr® 6r® 4r* 2r2 M 4
6
+M17r —Mlglnr+M19j, (36)
where N,, M, i=1,--,19, j=1,---,19 are constant coefficients.
Since the ADM solution can be accumulated as
v=>V,,  and w=>w,. (37)
n=0 n=0

Thus the ADM solution for the azimuthal and axial velocity components up to
second iteration, after substituting in (37) become
N ~( N N 1
v=Krin(r)——2+N,r+a| ——2——2 + (N, - 5—+N rin(r
1()r 2(65“( )rﬁ()

10r° 8r" 6r° 4r* 2r

Nyr® Nir* N 1
+N15rlnr+%+%+7ls(r—ﬂ+ngr], (38)

w=M,(r’-1)+M, In(r)+&(—%—%+(M8+ M&.,)In(r)Jr%r2
r* 2r

M7 4 "'2[ MlO Mll M12 M13
+—r"+My |+a’| - — — - +M,Inr
4 9} grt  6r®  4r* 2r? H
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Mir? Mygrt Mpr®
2 4 6

3.4 Volume flow rate in @-direction
The volume flow rate in & —direction as given in [12] is

—MglInr+ Mlgj. (39)

Q, = 2z(r, tang)[_“ver. (40)
r=n
Volume flow rate (40) in non-dimensional form is
Q; = 2z5tan g v, (41)
where Q, = Qgg . Dropping “*” we get
Qr
=~ ~2
Q, = 2nstang|| 14 Mo, @ Nis g 52552 1n6)- L (2N, + N, — 28N,
4 4 4 2
~ 1 ~ ~ aN, a’N 1
+a2N14)In§+§(N2 —aNg +@°N,, 57 —1)+[ 5 +Tu](§_lj

~ ~2 ~ ~2

o @Na o Ny, (iz—lj+ oN; o Ny (54—1)
8 8 o 8 8
+522 %(i_lj_i_&(i_l]
80 ( o° 48 \ 5°

Nl7 6 N18 2
+—=L0" -1)-—21-0"+2Ino); |. 42

oo -1 ) (42)

3.5 Volume flow rate in z -direction
The volume flow rate in z -direction can be calculated as

Q, =2z( 2wrdr. (43)
I’:I’l
The dimensionless form of equation(43) can be written as
Q; = 2z wrdr, (44)

Q,
3
1

where Q, =

Now, dropping “*” we

Q,= 27;{%(1—252 +§4)+%(M2 +& (Mg +M,)+@ (My, —M,,))(1- 6% +25° In 5)

+%(dM3 +0?2M12)[%—1J—%In s(am, +0?2M13)+%(07M6 +@" M, )(5* 1)
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+2—14(£;2|\/|7 +a@* My )S° —1)—%(&M9 +a"M, J1-5%)

SRS TS

4 Results and Discussion

In this work we have considered steady flow of an incompressible co-
rotational Maxwell fluid through HSR. We obtained coupled second order
nonlinear ODEs. Its exact solutions seems to be difficult, approximate analytical
solutions are obtained with the help of ADM as this method gives convergent
solution in finite domain. Expressions for azimuthal v(r) and axial velocity w(r)
are calculated. The volume flow rates in @ and z—directions are also derived.
Here we discussed the effect of involved flow parameters on the velocity profiles
with the help of graphs. Figure 2(a) is plotted for the velocity v for different
values of fluid parameter « , steadily increase observed in the velocity from screw
toward barrel and the velocity attains maximum values in between the channel
which show shear thinning due to increases in the value of « . Figure 2(b) is
sketched for the velocity profile w for different values of « , the velocity profile
is seem to be parabolic in nature, and also attains maximum values at some points
in the channel. The behavior of velocity w shows that it is responsible to take the
fluid toward the exit. Figures 3(a) and 3(b) are shown for the velocity v for
different values of pressure gradients P, and P, respectively, it can be seen that

velocity v increases with the increase in pressure gradients. It is noticed that P,
resist the velocity v as graphs show the smaller magnitude of v for P,. Similarly
figures 4(a) and 4(b) are plotted for the velocity w for different values of P, and
P,. With the increase in the value of P, and P,, increase in the w is observed,
however the effect of P, is observed less on w which show P, try to resist the
flow in axial direction.
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Fig. 3: (a) V(r) for different values of P, keeping a=03, P,=-20and 6 =2.(b)

v(r) for different values of P, keeping & =0.3, P, =-2.0 and § = 2.
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Fig. 4: (2) W(r) for different values of P, keeping & = 0.3, P, =-2.0 and 5 = 2. (b)
w(r) for different values of P, keeping a =0.3, P,=-20and 6=2.

It is mensioned here the involved coeffeicients are not function of any parameters
like «, these coefficients are just constants depending on constant ratio
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5=">1 and constant pressure gradients i.e., K, = 1P and K, = lé—P. It is

r 200 2 0z
also mensioned here the ADM results in the convergent solution in the finite
domain. The problem given in (15) — (17) has finite domain from 0 to 1 so the
solutions with respect to ADM are convergent.

5 Conclusion

This paper considers a theoretical study on steady incompressible flow of
co-rotational Maxwell fluid in helical screw rheometer (HSR). The rheological
constitutive equation for co-rotational Maxwell fluid model gives the second order
nonlinear coupled differential equations which could not be solved explicitly. An
iterative procedure, Adomian decomposition method (ADM) is used to obtain the
analytical solution. It is to be mentioned here that the ADM gives convergent
solution in finite domain. Expressions for velocity components in - and
z —direction are obtained. The volume flow rates are calculated for the azimuthal
and axial components of velocity field by introducing the effect of flights. The
results have been discussed with the help of graphs as well. We observe that the
velocity profiles are strongly depend on non-dimensional parameter and pressure
gradients. Thus the profound conclusion is that extrusion process depends on the
involved non-dimensional parameters along with the other factors involved in
food processing.
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