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FREQUENCY RECOVERY RESOLUTION ENHANCEMENT
USING GENERALIZED REWEIGHTED NONCONVEX
RELAXATION

Lama ZIEN ALABIDEEN?, Oumayma AL-DAKKAK?, Khaldoun KHORZOM?

In this paper, we investigate the problem of joint recovery of frequency-sparse
signals sharing common frequency components from the collection of their
compressed measurements. Unlike conventional arts in compressed sensing, the
frequencies are not assumed to lie on a grid and they are continuously valued in the
normalized domain [0 1]. As an extension to the atomic norm minimization (ANM)
approach, which states that the frequencies can be recovered only if they are
sufficiently separated, we propose a relaxation framework based on Schatten p-norm.
This framework is formulated in an iterative weighted minimization approach and
solved efficiently via a computationally tractable semidefinite program. Finally,
numerical experiments are carried out to illustrate the effectiveness of the proposed
approach and its advantages over similarly recent recovery techniques in term of
frequency resolution and computational complexity.
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1. Introduction

Extracting frequencies from a mixture of super positioned complex
exponentials is an opening problem in statistical signal processing. It arises in many
applications ranging from communications, radar, array processing to astronomy
and seismology. Many methods have been proposed for frequency recovery [1].
The most prominent approaches are grid-based sparse methods which have been in
the scope of researches mainly after the development of compressed sensing (CS)
concept [2,3]. Principally, it refers to a technique of reconstructing a high
dimensional signal from far fewer samples. In this kind of methods, the continuous
frequency domain is discretized/gridded into a finite set of grid points. Thus, in
order to recover the signal, it must be sparse in a prior known basis, like Discrete
Fourier Transform basis; however, no physical field is sparse in a such basis.
Consequently, it suffers from basis mismatch problem due to the discretization
requirement [4,5]. Many subsequent approaches have been suggested to mitigate
this problem [6-8], most of them are still based on gridding the frequency domain.

The gridless or continuous compressed sensing (CCS) method form the
most recent class, mainly proposed after the invention of the theory of super-
resolution by Cande’s and Fernandes-Granda [9]. This method guarantees fine
details recovery of a sparse frequency spectrum from coarse time-domain samples,
and bypasses the issues arising from discretization by working directly on the
continuous parameter space. Chandrasekaran et al [10] introduced the gridless
convex optimization for noiseless full data case based on the atomic norm (or the
total variation norm) technique, which can be reformulated as semidefinite
programming (SDP) and solved in a polynomial time. They proved that the
frequencies could be recovered with infinite accuracy given a set of N regularly
spaced samples whenever the frequency components are mutually separated by at
least Ay > %

Motivated by the previous CCS aspects, Tang et al. [11] extended the
theoretical results to the case of compressive samples with K frequency
components, where K << N. They showed that a number of M = O(Klog K log N)
random samples are sufficient for high probability recovery via ANM under the
same previous frequency separation condition.

Recently, many researchers [12-15] investigated the theoretical guarantee
of multiple measurement-vector (MMV) in CCS, and provided boosted results
verified using extended atomic norm approaches. In this context, Z. Yang and L.
Xie [16] proposed a solution based on reweighted atomic norm minimization
(RAM) for continuous dictionary, that is able to resolve frequencies with minimum

separation as A¢ > % for K < 20, and realized the best enhancement in resolution
till this paper.
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In this paper, we propose a high resolution gridless sparse approach for joint
sparse frequency recovery (JSFR). Our work is inspired by the confident impact of
the recent works [12-16] on the optimization relaxation together with MMV to
enhance sparsity and resolution. Under this scope, we present a novel Schatten p-
norm optimization framework derived to solve the objective function using more
efficient sparse metric. We show that the new approach can be solved using a
computationally tractable SDP. In fact, the idea of reweighted optimization in the
case of sparsity enhancement is not new [16-20]. However, this paper introduces,
for the first time, the implementation of ANM using a nonconvex approximation
for the main rank function based on Schatten-p norm for JSFR. Numerical results
are then provided showing the successful frequency recovery with superior
resolution and faster convergence than RAM, under the same technical settings as
in [16].

The rest of the paper is organized as follows. Section 2 introduces
preliminary mathematical background needed for the problem formulation. Section
3 presents a novel sparse metric for frequency recovery and introduces our approach
with theoretical analysis and computational implementation study. Section 4
provides extensive numerical simulations to demonstrate the performance
enhancement. Finally, the drawn conclusion and the future aspects are discussed in
Section 5. Throughout the paper, bold letters are reserved for matrices and vectors.
The transpose is denoted by (.)T, and the complex conjugate or Hermitian is
denoted by (). tr(.) and rank(.) represent matrix trace and rank respectively.
For an integer N, [N]:={1,..,N}. |l.llo, Il.ll, and ||. ||z refer tol,, [, and
Forbenius4 norms respectively, and A > 0 means that A is positive semidefinite
matrix.

2. Problem Formulation

We study the super-resolution problem of JSFR. Hence, we consider L
discrete signals stacked in a full data matrix Y € CV*. The observed samples of the
above matrix are modeled by Y indexed by Q c [N] = {1, ..., N}, where the size
of Q refers to the size of the partial measurements M. The (n, 1) indexes the n"
entry of the [** measurement vector (snapshot), which is given by:

Yni = Xn=q Qe 2™k, (1)

Wherei =+/—1 , f, € [0,1] represents the k™ normalized frequency, and K is the
number of frequency components, which is supposed to be small and unknown,
ay, € C is the complex amplitude of the k™ component at measurement! €
{1, ....L}. From array processing view, the measurement matrix Yg represents the
output of M sparse linear antenna (SLA) over L measurements (L > 1), and each
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frequency component refers to individual source. It is worth mentioning, that
when L = 1, which is known as single measurement vector (SMV), the problem is
reduced to line spectrum estimation.

Recall that in JSFR the goal is to recover the whole set of frequency
components F = {f;, ..., fx } shared among the measurement vectors given in Yq,.
For that reason, we seek for the maximally sparse candidate that is composed of the

frequency components. To state it properly, let a()=[1,&27,.... 27N-0f 1T ecNx1
denotes the atom with frequency f € [0,1], and ay = [akq, Az, .., Ay, | € CH*E
represents the complex amplitude of the k" component through L measurements,
it follows that (1) can be written as:

Y = Yioia(fi) o = Yiko1 ska(fi) @x, 2)

Where s, = |||l = 0, and ¢, = ? with ||o,ll, = 1. It is evident that, if the
k

frequencies in F are distinct, Y will be a linear combination of a number of atoms
from the continuous dictionary A, which is defined for spectrally-sparse signals as
[10]:

A:={a(f,9) =a(fe:f €[01] llgll, =1} ©)

As a result, the objective of our problem is reduced to look for the atomic
decomposition of Y with smallest number of atoms, where the atomic [, norm offers
the proper description of this problem, and defined as [11,12]:

IY[|a0 = fiknsfk{K:Y = Yr_1a(fi, 0i)si: alfi, 9x) € A, 5 = 0} (4)

According to [13, Theorem 2], |[Y]|4 0 can be characterized as following
constrained rank minimization problem (RMP):

I¥lla0 = min rank(T(w)), (5)
: X YH
>
subject to Y T(u) > 0.

Where T(u) € CV*N is Hermitian Toeplitz positive semidefinite (PSD) matrix
with vector u being its first row. It can be viewed as the covariance matrix of the
full data Y, which is consistent with the observed data Y °?5¢""¢%.

Consequently, for partially observed signal matrix Yo °?5¢"7¢% € CM*L with
the same linear combination form as in (2), and in the absence of noise the RMP in
(5) can be expressed as:

g(nl}g rank(T(u)), (6)
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subject to >0, and Yq = Yq°P5emved,

[Y T()

Where Y, forms the rows of Y indexed by Q.

2.1 Atomic Norm Relaxation in Review
Since RMP in (6) is nonconvex and NP-hard to compute. One way to avoid
the nonconvexity is by using convex relaxation through replacing ||Y]|5 o by the
atomic [; norm or briefly atomic norm, which is defined as the gauge function of
conv(A), the convex hull* of A [10]:

Y|l = inf{t > 0:Y € t.conv(A)}, (7)

filflsi{2k=1||5k||2 Y =YK a(fy, or)sk:a(fy, ox) € A, s = 0},

Y| o is @ norm and has the following efficient computation SDP
formulation [11-13].

IYlla = mm—(tr(T(u))+tr(X)) (8)
subject to § T‘EH) 0.

Subsequently, (6) can be casted as the following SDP:

min — (tr(T(w) + tr<x>>, 9)

subject to > 0, and Yo = Yo 225¢™"¢% |

[Y T()

The frequencies composing Y are embedded in T(u). Hence, whenever an
optimizer of u is found the frequencies can be recovered from the Vandermonde
decomposition of T(u) [13,15,22], which states that any PSD Toeplitz matrix can
be decomposed as:

T(w) = Xi-1 pe a(fi)a” (fi) = VIOPVA(S). (10)

Where V(f) = [a(f1),a(f2), ...,a(fx)], and P = diag(pyp,, ...,px) Withp,>0.
Generally, the above decomposition is unique if K < N which is fulfilled in JSFR.
But to assure that the true frequencies are uniquely obtained, the optimizer of (9)
must be global and distinctive.

4 The convex hull of A is defined as the set of all convex combinations of points in A.



86 Lama Zien Alabideen, Oumayma AL-Dakkak, Khaldoun Khorzom

As we have seen, atomic norm is computationally beneficial compared to
atomic [, norm, but it is constrained by the resolution limit due to the relaxation. In
spirit of low rank representation (LRR) as a powerful formulation of our problem
due to its strong ability in exploring low-dimensional structures embedded in data,
(9) can be interpreted as recovery of low rank matrix T(u) by relaxing the pseudo
rank norm in (6) using the trace or nuclear norm for a PSD matrix. In this context,
relaxation in (9) can be achieved in various ways using the promising properties of
low rank matrix recovery (LRMR) techniques.

3. Joint Spares Frequency Recovery with Schatten p-Norm

Motivated by applying LRMR techniques to CCS, we propose a new
optimization framework to recover low-rank matrix for JSFR problem with
Schatten p-norm minimization relaxation, which can be used to solve problems in
both (6) and (9). Schatten p-norm generalizes the nuclear norm minimization
(NNM), and gives a better approximation to the original RMP.

3.1 Schatten p-Norm Minimization
In this paper, we are interested in the nonconvex Schatten p-norm as a
surrogate of rank function. Let ||. || » be the Schatten p-norm of the matrix Y € CV*£,
which is defined as the 1,, norm of its singular values o (Y), i.e.
1

1

I¥ll, = (Sen®™ a0 = (V2 withp € (01]. (1)

Recently, Schatten p-norm has received a significant amount of attention
from researchers in various domains [21, 23-26] due to its exceptional properties
that make it a good choice for rank function approximation. Firstly, it equals to
nuclear norm when p = 1. Hence, nuclear norm is a special case of Schatten p-
norm. Secondly, if p tends to zero, then ||Y]|, - rank(Y), which indicates that
Schatten p-norm can find a low-rank solution when p has a small value [23].
Moreover, [24, 26-28] approved that it will guarantee a more accurate signal
recovery while requiring only a weaker restricted isometry property. As well, [29]
verified theoretically that Schatten p-norm requires significantly fewer
measurements than NNM, and empirically shows superior performance over
conventional NNM in many problems.

3.2 Reweighted Iterative Algorithm via Schatten p-Norm
To avoid the non-differentiability of (11), it can be rewritten as follows [25]:
1

Yl = (Zrs 2 (o (0) + )P ). (12)
Where & > 0 is a smoothing parameter. Consequently, we propose the following
sparse metric:
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0, (¥) = min([I TWI} + tr(X)), (13)
subjectto T(u) = 0.

Our iterative algorithm is developed here. Since (13) is not a cost function
of a convex optimization problem, we have to linearize it. Thus, we use Taylor
expansion for Schatten p-norm term. In the I iteration, the expansion will be as
follows:

(or (Tl (w) +6)° +

P _ L
Gty ? e —o(T@). a4

Where {0, = 0}Y are descendingly sorted singular values of T(u). Notice
that T!(u) is fixed, so the associated terms can be removed from the optimization
problem.

Additionally, we use the following identity knowing that T(u) is a PSD
matrix [16]:

tr(YAT(u)7Y) = mxin(tr(X)), (15)
: X YH
subject to [Y T(u)] >0.
As a result, (13) can be reformulated as follows:
Q,(Y) = min <||w’T(u)|| + tr(YHT(u)-1Y)>, (16)
u *
subjectto T(u) = 0.

Where [|[W'T(w)||, = tr(W'T(u)) = X}, (Wro,(T(w))) is the nuclear norm of
the weighted matrix W'T(u), and W' = Ddiag(w{,wi,...,w})D! is the
reweighting matrix whose elements w}, = = are updated based on the

14
(ok(THW)+$)
latest solution of the problem, and D is obtained using the eigen decomposition of
T(u), so that DD" = 1.

Obviously, the first term of the proposed sparse metric in (16) is reduced to
weighted NNM (WNNM) model [26,29-30], which improves the flexibility of the
original NNM problem by assigning different weights to different singular values,
namely the success of this model depends on the appropriate setting of the weights.
However, since WNNM is not convex in general, it is difficult to analyze the
convergence of the approach. Theoretically, no efficient algorithms can guarantee
the global optimizer. To work around this, we observe that {o;}) are nonnegative
monotonically decreasing, then the non-descending order of the resultant weights
with respect to singular values will be kept throughout the reweighting process, and
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hence, we always expect to shrink less the larger singular values and keep the major
and faithful information of the underneath data. In this context and according to
[27], S. Gu et al verified that WNNM converges weakly to the solution if the
weights are non-descendingly ordered through a weighted soft-thresholding
operator.

Consequently, as Schatten p-norm is concave in general, then at each
iteration its value decreases rapidly greater than the decrease of its tangent plane
which is approximately equal to the Taylor expansion in (14). It follows that by
iteratively solving (16), the objective function in (13) monotonically decreases and
converges to a local minimum.

Recall the definitions of both weighted continuous dictionary, and weighted
atomic norm as in (17) and (18) respectively [16].

Aw={au(f) = w(Na(f): f € 0] )
I¥llao = inf {Semay:¥ = Soralfdse, (18)

Or equally,
¥l = min (X e (WT () + —= tr(YET(u) 1Y) 19
Aw = min | = tr(WT(W) + s7=tr u , (19
subjectto T(u) = 0.

Obviously, by comparing(16) and (19) we can regenerate our problem as
RAM by simply implying our weighting matrix to (19) with W!=
L pdiag(w!, wt, ..., wL)D! at | iteration, and w(f) = —————— by applyin
N g( 1 2 N) f \/m y pp y g
[16, Theorem 3]. Therefore, we call our approach a modified RAM (MRAM). In
contrast to [16], MRAM defines the reweighting strategy based on iteratively
updated singular value decomposition (SVD) of T(u) matrix. Although, computing
SVD can be expensive, but by using techniques such as randomized algorithms
[19], which tend to compute the top k singular vectors and singular values of T(u),
the cost of computing weighting matrix can be significantly saved. In RAM the
weighting function was chosen more sophisticatedly according to the inverse of
(T(u) + &I) matrix, where € > 0.

3.3 Enhancing Resolution and Sparsity
By using the proposed sparse metric Q,,(Y), we can cast (9) to the following
optimization problem:

myin Q,(Y), (20)
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subjectto  Yq = Yqo0Pse7ve,
Or equally,
min (”W’T(u)” + tr(X)), (21)
u, *
X YH

subject to > 0, and Yq = Yq°25¢e,

Y T(u)

To illustrate the sparsity property and the promising resolution enhancement
of the new metric, we present the properties of Q,,(Y) in comparison with the log-
det sparse metric used in [16]. Since @, (Y) puts penalty on Zgliq(N'L)(ak(T(u)) +
&)P, we plot the function f,(0) = (o + £)P with p = 0.5, and h(o) = In|o + ¢|
function which prompts the log-det heuristic in Fig.1 for different values for &
together with [y, and I; norms, where f,,(o) and h(o) are translated and scaled by
the same factor as in [16]. Contrary to h(o) curves, f,,(o) gets close to the [, norm
for large & while it approaches the [, norm as & — 0. However, it converges faster
toward [, whenever p — 0 as illustrated in Fig.2.

I, norm [, norm
Y Y
08 ...405‘ ............. P s
) ) : //Qb -
= = ° QD
(_5 (_5 06 D7 LTI LI TP T i,
> > N :
s s ’ :
I T 2 I, norm
02 T A . ...........................
O H
0 0.5 1
singular value o singular value o
Fig. 1 The sparsity property of f, (o) for Fig. 2 The sparsity property of f,(c) with
p=0.5 (dot curve) and h(o) for different &=1, for different values of p.

values of €.

Hence, we assume that the Q,(Y) bridges [, and [;, and consequently
IY]| 40 and [[Y]| 4 when ¢ diverges from +oo to 0 with 0 < p < 1. This approach is
expected to enhance sparsity and resolution with boosted properties than log-det
based sparse metric used in [16]. To validate the convergence of (21), we know that
fp (o) is a concave function in o, thus the sum of £, (o) with the trace function is a
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concave-convex optimization problem. As a popular solution to this problem we
refer to locally convergent maximization-minimization (MM) algorithm [20],
which guarantees the monotonically decreasing of the objective function in (21)
and its converges to a local minimum. This result coincides with the convergence
analysis mentioned in subsection 3.2.

3.4 Efficient Computational Implementations with SDP

Fortunately, as shown in the previous subsections, atomic norm and its
weighted version admit SDP formulations, which imply efficient computation using
off-the-shelf standard SDP solvers such as SDPT3 [32]. Intuitively, the
straightforward implementation is based on the primal SDP formulation. However,
according to related literature [11, 15-16], frequency recovery can be done more
efficiently through solving dual optimization problem than the primal one. Thus,
we cast our analysis and implementation to the dual problem of (21), which can be
formulated by standard Lagrangian analysis [10]. We derive the dual problem
depending on the dual polynomial, due to its characteristics in frequency recovery
problem [11]. Firstly, we define the dual atomic norm |[|x|[} ., as follows:

Ixla0 = max (x,y)r = maX(w(f)IaH(f)XI) (22)

lly IIA w—1

Where, (, )g denotes the real part of the inner product. Inspired by [15], we consider
the dual problem of (21) as follows:

max(xg, y§*e ") (23)

subjectto |x]|},, < 1,and xgc = 0.

Where, Q€ is the complement set of Q. As a result, the problem is reduced to the
following inequality:

la" (x| <™ (f) = Ja (f) Wa(f)) forall f € Q. (24)

In order to characterize (24) as SDP, we reformulate it by using the
properties of trigonometric polynomials [33]. Since W is a Hermitian PSD matrix-

it can easily be proven- and a()=[1,¢'7. ..., 1" then w=2(f) is a Hermitian
nonnegative trigonometric polynomial defined as follows:

w™2(f) = a”(f) Wa(f)) = tr(a(f)a" (HW). (25)
By applying [33, Theorem 2.3], we have:

w2 f) = tl‘((Zk__(N 1) Oye anf) W) Zk— (N-1) tr(0, W) et2mk], (26)
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Where 0, denotes an NxN elementary Toeplitz matrix with ones on the k™ diagonal
and zeros elsewhere. Now, if the inequality (24) is satisfied then by carrying out
[33, Theorem 4.24], there exists a matrix Z € CVN*N > 0 realizing

H
LI( XZ] 20 and tr(0,Z) =tr(OxW), k=1,..,N—-1, (27)

Where | is L x L identity matrix. By using the relation between the inner product
and matrix trace, the dual problem in (23) can be successfully formulated as the
following SDP:

mXaZX ;ﬁ(tr(xgyabserved)) (28)

subject to (27), and xgc = 0,

Where R indicates the real part of the argument.

As in [11], once (28) is solved, the frequencies can be localized by
identifying the locations where the dual polynomial |a” (f)x| exceeds | w™1(f)].
Note that the optimizer to (21) is given for free via duality when we solve (28). It
Is worth noting that, in each iteration we indeed reconstruct T(u) matrix which
presents the data covariance of Y after removing correlations among the sources
according to [16]. Hence, the set of frequencies can be recovered via either
characterization of the dual polynomial, or by using conventional covariance-based
subspace methods of spectrum estimation such as MUSIC [34] and ESPRIT [35].

3.5 Complexity Analysis:

In this subsection, we mainly compare the computational complexity of
MRAM and RAM. If we consider the dominant part, i.e., the computation of
weighting function. The upper bound of the overall cost for calculating W in
MRAM is O((N + L)*) floating-point operations (flops) due to SVD
decomposition, thus it consumes up to O((N + L)) flops to compute the inverse
of (T(u) + &I) in RAM. Moreover, we should mention that in general ANM, RAM
and MRAM are all based on CVX toolbox [36], where the interior-point method
(IPM) such as SDPT3 is implemented to solve the SDP, which requires
0((n + L*»)2(N + L)?>) flops per iteration for both RAM and MRAM, and as total
complexity for ANM at best, where n denotes the number of variables [32, 37].
Hence, the overall computational complexity per iteration to extract T(u) for both
RAM and MRAM equals to O((N + L)3 + (n + L?)2(N + L)?®), and the total
complexity equals the complexity per iteration times the number of iterations in
each approaches plus the complexity of covariance-based algorithm to detect the
frequency components.

Although, the complexity of the proposed approach is equivalent to that of
RAM, however, empirical results show that the convergence of MRAM is faster
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and only several iterations are needed to converge. Therefore, the proposed method
performs better in practice. The execution efficiency can be further improved by
using alternating direction method of multipliers (ADMM), which requires
O((N + L)) flops per iteration, and in the case of L > M, this complexity can be
reduced to O((N + M)3) by applying the dimensionality reduction technique as
presented in [37], but the convergence is much slower than primal-dual IPM.

To demonstrate the effectiveness of our method, we perform extensive
numerical simulations in Section 4.

4. Performance Evaluation

In this section, we evaluate the performance of MRAM in noiseless cases.
In particular, we examine the effect of suggested sparse metric on JSFR. All
simulations are carried out using CVX of MATLAB v.14.a on a PC with Windows
7 system and a 3.3 GHz CPU.

Let N =64, and M = 30,5 in which the observed samples are selected
uniformly at random from each measurement vector. Suppose also that we collect
L (< M) snapshots of uncorrelated random complex amplitudes sinusoidal signals
sharing K = 5 spikes randomly located in the interval [0,1). When implementing
MRAM, we set the total number of iterations to 20, & = 1073,% and p = 0.25. In
each iteration p is divided by 2, unless p > 25 x 107°.

4.1 Constructed Dual Polynomial
In [15], it was shown that the reconstructed dual polynomial for ANM in
MMV model has a much better localization property than ANM in SMV. Thus, for
simplicity, we took L=1 to illustrate the superiority of MRAM dual polynomial
characteristics over ANM one. Fig.3 shows the reconstructed dual polynomial of
ANM and MRAM results for randomly generated spectrally sparse signals with
f = 10.1,0.1047,0.2,0.2156,0.3]. Note that the first two frequencies are

mutually separated by only about % (the best resolution of [16]), while the third

and fourth ones are separated by% (the best resolution of [15]).

We notice that when the frequency separation condition is violated, ANM
localization degrades significantly, while MRAM has superior ability to
discriminate the frequencies under the same separation settings.

5 We choose the value of M according to [11]; M =~ O(Klog K log N).
®We use a small value of ¢ due to the reverse relation between the weight and £, (4).
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Fig. 3 The reconstructed dual polynomial for: (a) MRAM with true amplitudes, (b) ANM.

4.2 Comparison with Existing Approaches
The following experiment examines the performance of MRAM in
reconstructing the frequency spectrum from M picked samples. For better
evaluation we implement both MRAM and RAM via SDPT3 solver and compare
their performances under the same settings as in 4.1 subsection except for L=5 and
f = [0.1,0.104,0.1094, 0.2, 0.5]. Here the first three frequencies are separated by

only % Whereas, the frequencies for each implementation are considered to be

successfully recovered if the root mean squared error (RMSE) is less than 107°.
We plot the simulation results in Fig.4.

The first and third subfigures present the recovered frequencies by using
MRAM and RAM respectively, whereas the second and fourth rows plot the
weighting functions used during the iterations for MRAM and RAM respectively.
Following the reweighting process of MRAM, all the frequencies in this example
are correctly recovered from the second iteration and the algorithm tightly
converges. While RAM takes three iterations to recover the frequencies properly.
This is in agreement with [16] results.

Note that the first iteration in both RAM and MRAM coincide with ANM
for constant weighting function. The frequency recovery is coarse; the first three
spikes are positioned but cannot precisely be determined. By applying the
weighting functions, the five spikes are identified by MRAM from the second
iteration, while it needs three iterations to localize precisely via RAM.
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Fig. 4 The recovered frequencies and the associated reweighting functions for MRAM (2 iterations) in (a) and
(b), and RAM (3 iterations) in (d) and (c) respectively.

We further compare the MRAM against RAM, and ANM in frequency
estimation using the obtained real part of Toeplitz covariance matrix T(u). This is
done by applying rootMUSIC method with a model order estimated iteratively, and
under the same prior settings.

Fig.5 shows the power of MRAM in recovering frequency accurately over
RAM and ANM. Notice that RAM and MRAM plots are performed for the same
number of iterations.
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Fig. 5 Frequency estimation using different approaches: (a) ANM, (b) RAM, (c) MRAM.

4.3 Resolution Enhancement
In the third simulation, we show a simple example that provides some
evidence for resolution boost of MRAM. Under the same settings, with f = [0.1,
0.1016, 0.2, 0.3, 0.3016], where the frequency separations between the first

frequency pair and the last pair are only A= % The simulation results are shown

in Fig.6. The first row of subfigures presents the recovered frequencies by MRAM
under the proposed frequency separation challenge, while the second row displays
the weighting functions used during the iterations. As shown in Fig.6, although the
spikes violate the separation conditions of the latest studies in this domain [15, 16],
all the frequencies are determined properly in the first three iterations of MRAM.

Again, remarkable improvement is obtained by the proposed MRAM compared to
RAM and ANM.
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Fig. 6 The recovered frequencies and the associated reweighting functions throughout three first iterations for
0.1
MRAM with A= o
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4.4 Sparsity-Separation Phase Transition

For further clarification, in the following simulation we study the sparse
recovery capabilities of MRAM in terms of sparsity separation phase transition’.
Particularly, we fix N =32, M =15. We examine the phase transition of
frequency recovery for various pairs of (K,Af). For each pair, we randomly
generate K frequencies such that they are mutually separated by at least Ar. We
randomly generate the amplitudes independently and identically from a standard
complex normal distribution. Consequently, the frequency recovery is processed
using MRAM, whereas the recovery is considered successful if the relative MSE of
frequency recovery are less than 10712, Fig.7 shows the success rates of MRAM
with L=1 in (a) and L=5 in (b). The grayscale images present the success rates,
where white and black indicate complete success and complete failure, respectively.

L=1 L=5
10

Sparsity level k
Sparsity level k

1 1
0.05 0.2 0.4 0.6 0.8 1 0.05 0.2 0.4 0.6 0.8 1
Separation parameter Separation parameter

Fig. 7 Sparsity-separation phase transition of MRAM with: (a) L=1, and (b) L=5

Obviously, as L increases the recovered frequencies get more accurate,
specifically at close-located frequencies. Practically, under the current simulation
settings the successful rate exceeds 95% whenever K <8 and frequency
separation Ag > (:V—l Regardless of the sparsity level, A; of MRAM is about 3 times

weaker than the condition in [16], and about 10 times less than the condition in [15].

Moreover, the performance intuitively improves, as more samples per measurement
vector are offered.

5. Conclusions

In this paper, we propose a generalized gridless sparse approach for joint
sparse frequency recovery model. We present a novel Schatten p-norm optimization

7 Phase transition diagrams are two-dimensional figures, mainly, the y-axis represents the
sparsity, and the x-axis denotes the separation parameters. It provides information about the success
of applying compressive measurements under certain conditions.
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framework derived to resolve the objective of ANM efficiently via SDP. The
effectiveness of the proposed approach is further demonstrated through numerical
examples. The simulations results illustrated the excellence of the frequency
recovery with superior resolution, and faster convergence, when compared with
state-of-the-art approaches. In future studies, we will try different computationally
efficient algorithms for matrix rank minimization to push forward the recovery
resolution accuracy. In addition, we look forward to examining our approach under
noisy measurements scenarios.
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