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RELAXATION 
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In this paper, we investigate the problem of joint recovery of frequency-sparse 

signals sharing common frequency components from the collection of their 

compressed measurements. Unlike conventional arts in compressed sensing, the 

frequencies are not assumed to lie on a grid and they are continuously valued in the 

normalized domain [0 1]. As an extension to the atomic norm minimization (ANM) 

approach, which states that the frequencies can be recovered only if they are 

sufficiently separated, we propose a relaxation framework based on Schatten p-norm. 

This framework is formulated in an iterative weighted minimization approach and 

solved efficiently via a computationally tractable semidefinite program. Finally, 

numerical experiments are carried out to illustrate the effectiveness of the proposed 

approach and its advantages over similarly recent recovery techniques in term of 

frequency resolution and computational complexity. 
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1. Introduction 

Extracting frequencies from a mixture of super positioned complex 

exponentials is an opening problem in statistical signal processing. It arises in many 

applications ranging from communications, radar, array processing to astronomy 

and seismology. Many methods have been proposed for frequency recovery [1]. 

The most prominent approaches are grid-based sparse methods which have been in 

the scope of researches mainly after the development of compressed sensing (CS) 

concept [2,3]. Principally, it refers to a technique of reconstructing a high 

dimensional signal from far fewer samples. In this kind of methods, the continuous 

frequency domain is discretized/gridded into a finite set of grid points. Thus, in 

order to recover the signal, it must be sparse in a prior known basis, like Discrete 

Fourier Transform basis; however, no physical field is sparse in a such basis. 

Consequently, it suffers from basis mismatch problem due to the discretization 

requirement [4,5]. Many subsequent approaches have been suggested to mitigate 

this problem [6-8], most of them are still based on gridding the frequency domain.  

The gridless or continuous compressed sensing (CCS) method form the 

most recent class, mainly proposed after the invention of the theory of super-

resolution by Cande`s and Fernandes-Granda [9]. This method guarantees fine 

details recovery of a sparse frequency spectrum from coarse time-domain samples, 

and bypasses the issues arising from discretization by working directly on the 

continuous parameter space. Chandrasekaran et al [10] introduced the gridless 

convex optimization for noiseless full data case based on the atomic norm (or the 

total variation norm) technique, which can be reformulated as semidefinite 

programming (SDP) and solved in a polynomial time. They proved that the 

frequencies could be recovered with infinite accuracy given a set of N regularly 

spaced samples whenever the frequency components are mutually separated by at 

least  Δ𝑓 ≥
4

𝑁
. 

Motivated by the previous CCS aspects, Tang et al. [11] extended the 

theoretical results to the case of compressive samples with 𝐾 frequency 

components, where 𝐾 ≪ 𝑁. They showed that a number of 𝑀 = 𝑂(𝐾log 𝐾 log 𝑁) 

random samples are sufficient for high probability recovery via ANM under the 

same previous frequency separation condition. 

Recently, many researchers [12-15] investigated the theoretical guarantee 

of multiple measurement-vector (MMV) in CCS, and provided boosted results 

verified using extended atomic norm approaches. In this context, Z. Yang and L. 

Xie [16] proposed a solution based on reweighted atomic norm minimization 

(RAM) for continuous dictionary, that is able to resolve frequencies with minimum 

separation as Δ𝑓 ≥
0.3

𝑁
, for 𝐾 ≤ 20, and realized the best enhancement in resolution 

till this paper. 
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In this paper, we propose a high resolution gridless sparse approach for joint 

sparse frequency recovery (JSFR). Our work is inspired by the confident impact of 

the recent works [12-16] on the optimization relaxation together with MMV to 

enhance sparsity and resolution. Under this scope, we present a novel Schatten p-

norm optimization framework derived to solve the objective function using more 

efficient sparse metric. We show that the new approach can be solved using a 

computationally tractable SDP. In fact, the idea of reweighted optimization in the 

case of sparsity enhancement is not new [16-20]. However, this paper introduces, 

for the first time, the implementation of ANM using a nonconvex approximation 

for the main rank function based on Schatten-p norm for JSFR. Numerical results 

are then provided showing the successful frequency recovery with superior 

resolution and faster convergence than RAM, under the same technical settings as 

in [16]. 

The rest of the paper is organized as follows. Section 2 introduces 

preliminary mathematical background needed for the problem formulation. Section 

3 presents a novel sparse metric for frequency recovery and introduces our approach 

with theoretical analysis and computational implementation study. Section 4 

provides extensive numerical simulations to demonstrate the performance 

enhancement. Finally, the drawn conclusion and the future aspects are discussed in 

Section 5. Throughout the paper, bold letters are reserved for matrices and vectors. 

The transpose is denoted by (. )𝑇, and the complex conjugate or Hermitian is 

denoted by (. )𝐻. tr(. ) and rank(. ) represent matrix trace and rank respectively. 

For an integer 𝑁, [𝑁] ∶= {1, … , 𝑁}. ‖. ‖0, ‖. ‖2 and ‖. ‖𝐹 refer to 𝑙0, 𝑙2 and 

Forbeniusذ norms respectively, and 𝐴 ≥ 0 means that 𝐴 is positive semidefinite 

matrix. 

2. Problem Formulation 

We study the super-resolution problem of JSFR. Hence, we consider L 

discrete signals stacked in a full data matrix 𝐘 ∈ ℂ𝑁×𝐿. The observed samples of the 

above matrix are modeled by 𝐘𝛀 indexed by 𝛀 ⊂ [𝑁] = {1, … , 𝑁}, where the size 

of 𝛀 refers to the size of the partial measurements 𝑀. The (𝑛, 𝑙) indexes the 𝑛𝑡ℎ 
entry of the 𝑙𝑡ℎ  measurement vector (snapshot), which is given by: 

y𝑛𝑙 = ∑ α𝑘𝑙𝑒𝑖2𝜋𝑛𝑓𝑘𝐾
𝑘=1 ,                                            (1) 

Where i = √−1  , 𝑓𝑘 ∈ [0,1] represents the kth normalized frequency, and 𝐾 is the 

number of frequency components, which is supposed to be small and unknown, 

𝛼𝑘𝑙 ∈ ℂ is the complex amplitude of the kth component at measurement 𝑙 ∈
{1, … . 𝐿}. From array processing view, the measurement matrix 𝐘𝛀  represents the 

output of 𝑀 sparse linear antenna (SLA) over 𝐿 measurements (𝐿 > 1), and each 
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frequency component refers to individual source. It is worth mentioning, that 

when 𝐿 = 1, which is known as single measurement vector (SMV), the problem is 

reduced to line spectrum estimation.  

Recall that in JSFR the goal is to recover the whole set of frequency 

components 𝑭 = {𝑓1 , … , 𝑓𝐾 } shared among the measurement vectors given in 𝐘𝛀. 
For that reason, we seek for the maximally sparse candidate that is composed of the 

frequency components. To state it properly, let a(f)=[1,ei2πf,….,ei2π(N-1)f ]
T
∈ℂN×1 

denotes the atom with frequency 𝑓 ∈ [0,1], and 𝛂𝐤 = [𝛼𝑘1, 𝛼𝑘2, … . , 𝛼𝑘𝐿 ] ∈ ℂ1×𝐿 

represents the complex amplitude of the 𝑘𝑡ℎ  component through 𝐿 measurements, 

it follows that (1) can be written as: 

𝐘 = ∑ 𝐚(𝑓𝑘)𝛂𝑘
𝐾
𝑘=1 = ∑ 𝑠𝑘𝐚(𝑓𝑘)𝜑𝑘

𝐾
𝑘=1 ,                             (2) 

Where 𝑠𝑘 = ‖𝛂𝑘‖2 ≥ 0, and 𝜑𝑘 =
𝛼𝑘

𝑠𝑘
 with ‖𝜑𝑘‖2 = 1. It is evident that, if the 

frequencies in 𝑭 are distinct, 𝐘 will be a linear combination of a number of atoms 

from the continuous dictionary A, which is defined for spectrally-sparse signals as 

[10]:  

𝐀 ∶= {𝐚(𝑓, 𝜑) = 𝐚(𝑓)𝜑: 𝑓 ∈ [0,1], ‖𝜑‖2 = 1}.                         (3) 

As a result, the objective of our problem is reduced to look for the atomic 

decomposition of 𝐘 with smallest number of atoms, where the atomic 𝑙0 norm offers 

the proper description of this problem, and defined as [11,12]: 

‖𝐘‖𝐀,𝟎 = inf
𝑓𝑘,𝑠𝑘

{𝐾: 𝐘 = ∑ 𝐚(𝑓𝑘, 𝜑𝑘)𝑠𝑘: 𝐚(𝑓𝑘, 𝜑𝑘) ∈ 𝐀, 𝑠𝑘 ≥ 0𝐾
𝑘=1 }.          (4) 

According to [13, Theorem 2], ‖𝐘‖𝐀,𝟎 can be characterized as following 

constrained rank minimization problem (RMP): 

‖𝐘‖𝐀,𝟎 = min
𝐗,𝐮

rank(𝐓(𝐮)),                                                       (5) 

                                 subject to    [
𝐗 𝐘H

𝐘 𝐓(𝐮)
] ≥ 0. 

Where 𝐓(𝐮) ∈ ℂ𝑁×𝑁  is Hermitian Toeplitz positive semidefinite (PSD) matrix 

with vector u  being its first row. It can be viewed as the covariance matrix of the 

full data Y, which is consistent with the observed data 𝐘𝛀
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

Consequently, for partially observed signal matrix 𝐘𝛀
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∈ ℂ𝑀×𝐿  with 

the same linear combination form as in (2), and in the absence of noise the RMP in 

(5) can be expressed as: 

min
𝐗,𝐮,𝐘

rank(𝐓(𝐮)),                                                       (6) 
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                                 subject to    [
𝐗 𝐘H

𝐘 𝐓(𝐮)
] ≥ 0, and  𝐘𝛀 = 𝐘𝛀

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

Where 𝐘𝛀  forms the rows of Y indexed by Ω.  

 Atomic Norm Relaxation in Review 

Since RMP in (6) is nonconvex and NP-hard to compute. One way to avoid 

the nonconvexity is by using convex relaxation through replacing ‖𝐘‖𝐀,𝟎 by the 

atomic 𝑙1 norm or briefly atomic norm, which is defined as the gauge function of 

conv(A), the convex hull4 of A [10]: 

‖𝐘‖𝐀 = inf{𝑡 > 0: 𝐘 ∈ 𝑡. conv(𝐀)},                                                        (7) 

                         inf
𝑓𝑘,𝑠𝑘

{∑ ‖𝑠𝑘‖2𝑘=1 : 𝐘 = ∑ 𝐚(𝑓𝑘, 𝜑𝑘)𝑠𝑘: 𝐚(𝑓𝑘, 𝜑𝑘) ∈ 𝐀, 𝑠𝑘 ≥ 0𝐾
𝑘=1 }. 

‖𝐘‖𝐀 is a norm and has the following efficient computation SDP 

formulation [11-13]. 

‖𝐘‖𝐀 = min
𝐗,𝐮

1

2√𝑁
(tr(𝐓(𝐮)) + tr(𝐗))                                      (8) 

                                 subject to    [
𝐗 𝐘H

𝐘 𝐓(𝐮)
] ≥ 0. 

Subsequently, (6) can be casted as the following SDP:  

min
𝐗,𝐮,𝐘

1

2√𝑁
(tr(𝐓(𝐮)) + tr(𝐗)),                                     (9) 

                                 subject to    [
𝐗 𝐘H

𝐘 𝐓(𝐮)
] ≥ 0, and 𝐘𝛀 = 𝐘𝛀

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 . 

The frequencies composing Y are embedded in T(u). Hence, whenever an 

optimizer of u is found the frequencies can be recovered from the Vandermonde 

decomposition of T(u) [13,15,22], which states that any PSD Toeplitz matrix can 

be decomposed as: 

𝐓(𝐮) = ∑ 𝑝𝑘
𝐾
𝑘=1 𝐚(𝑓𝑘)𝐚𝐻(𝑓𝑘) = 𝐕(𝑓)𝐏𝐕𝐻(𝑓).                       (10) 

Where 𝐕(𝑓) = [𝐚(𝑓1), 𝐚(𝑓2), … , 𝐚(𝑓𝐾)], and 𝐏 = diag(𝑝1,𝑝2, … , 𝑝𝐾) with 0kp . 

Generally, the above decomposition is unique if NK  which is fulfilled in JSFR. 

But to assure that the true frequencies are uniquely obtained, the optimizer of (9) 

must be global and distinctive. 

                                                 
4 The convex hull of A is defined as the set of all convex combinations of points in A. 
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As we have seen, atomic norm is computationally beneficial compared to 

atomic 𝑙0 norm, but it is constrained by the resolution limit due to the relaxation. In 

spirit of low rank representation (LRR) as a powerful formulation of our problem 

due to its strong ability in exploring low-dimensional structures embedded in data, 

(9) can be interpreted as recovery of low rank matrix T(u) by relaxing the pseudo 

rank norm in (6) using the trace or nuclear norm for a PSD matrix. In this context, 

relaxation in (9) can be achieved in various ways using the promising properties of 

low rank matrix recovery (LRMR) techniques. 

3. Joint Spares Frequency Recovery with Schatten p-Norm 

Motivated by applying LRMR techniques to CCS, we propose a new 

optimization framework to recover low-rank matrix for JSFR problem with 

Schatten p-norm minimization relaxation, which can be used to solve problems in 

both (6) and (9). Schatten p-norm generalizes the nuclear norm minimization 

(NNM), and gives a better approximation to the original RMP. 

3.1 Schatten p-Norm Minimization 

In this paper, we are interested in the nonconvex Schatten p-norm as a 

surrogate of rank function. Let ‖. ‖𝑃 be the Schatten p-norm of the matrix 𝐘 ∈ ℂ𝑁×𝐿, 

which is defined as the 𝑙𝑝 norm of its singular values 𝜎𝑘(𝐘), i.e. 

‖𝐘‖𝑝 = (∑ 𝜎𝑘
𝑝(𝐘)

min (𝑁,𝐿)
𝑘=1 )

1

𝑝
= (tr((𝐘𝑇𝐘)

𝑝

2))

1

𝑝
 with 𝑝 ∈ (0,1].            (11) 

Recently, Schatten p-norm has received a significant amount of attention 

from researchers in various domains [21, 23-26] due to its exceptional properties 

that make it a good choice for rank function approximation. Firstly, it equals to 

nuclear norm when 𝑝 = 1. Hence, nuclear norm is a special case of Schatten p-

norm. Secondly, if 𝑝 tends to zero, then ‖𝐘‖𝑝 → rank(𝐘), which indicates that 

Schatten p-norm can find a low-rank solution when 𝑝 has a small value [23]. 

Moreover, [24, 26-28] approved that it will guarantee a more accurate signal 

recovery while requiring only a weaker restricted isometry property. As well, [29] 

verified theoretically that Schatten p-norm requires significantly fewer 

measurements than NNM, and empirically shows superior performance over 

conventional NNM in many problems. 

3.2 Reweighted Iterative Algorithm via Schatten p-Norm  

To avoid the non-differentiability of (11), it can be rewritten as follows [25]: 

‖𝐘‖𝑝 = (∑ (𝜎𝑘(𝐘) + 𝜉)𝑝min (𝑁,𝐿)
𝑘=1 )

1

𝑝
.                              (12) 

Where 𝜉 > 0 is a smoothing parameter. Consequently, we propose the following 

sparse metric: 
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𝒬𝑝(𝐘) = min
𝐮

(‖𝐓(𝐮)‖𝑝
𝑝 + tr(𝐗)),                                  (13) 

                                        subject to    𝐓(𝐮) ≥ 0. 

Our iterative algorithm is developed here. Since (13) is not a cost function 

of a convex optimization problem, we have to linearize it. Thus, we use Taylor 

expansion for Schatten p-norm term. In the lth iteration, the expansion will be as 

follows: 

(𝜎𝑘(𝐓𝒍(𝐮)) + 𝜉)
𝑝

+
𝑝

 (𝜎𝑘(𝐓𝒍(𝐮))+𝜉)
1−𝑝 (𝜎𝑘(𝐓(𝐮)) − 𝜎𝑘(𝐓𝒍(𝐮))).        (14) 

Where {𝜎𝑘 ≥ 0}1
𝑁 are descendingly sorted singular values of 𝐓(𝐮). Notice 

that 𝐓𝒍(𝐮) is fixed, so the associated terms can be removed from the optimization 

problem.  

Additionally, we use the following identity knowing that T(u) is a PSD 

matrix [16]: 

tr(𝐘𝐇𝐓(𝐮)−1𝐘) = min
𝐗

(tr(𝐗)),                                                     (15) 

                                         subject to    [
𝐗 𝐘H

𝐘 𝐓(𝐮)
] ≥ 0. 

As a result, (13) can be reformulated as follows:  

 𝒬𝑝(𝐘) = min
𝐮

(‖𝑾𝒍𝐓(𝐮)‖
⋆

+ tr(𝐘𝐇𝐓(𝐮)−1𝐘)),                    (16) 

                                subject to    𝐓(𝐮) ≥ 0. 

Where ‖𝑾𝒍𝐓(𝐮)‖
⋆

= tr(𝑾𝒍𝐓(𝐮)) = ∑ (𝑤𝑘
𝑙 𝜎𝑘(𝐓(𝐮)))𝑁

𝑘=1  is the nuclear norm of 

the weighted matrix 𝑾𝒍𝐓(𝐮), and  𝑾𝒍 = 𝐃diag(𝑤1
𝑙 , 𝑤2

𝑙 , … , 𝑤𝑁
𝑙 )𝐃H is the 

reweighting matrix whose elements 𝑤𝑘
𝑙 =

𝑝

 (𝜎𝑘(𝐓𝒍(𝐮))+𝜉)
1−𝑝 are updated based on the 

latest solution of the problem, and D is obtained using the eigen decomposition of 

𝐓(𝐮), so that 𝐃𝐃H = 𝑰. 

Obviously, the first term of the proposed sparse metric in (16) is reduced to 

weighted NNM (WNNM) model [26,29-30], which improves the flexibility of the 

original NNM problem by assigning different weights to different singular values, 

namely the success of this model depends on the appropriate setting of the weights. 

However, since WNNM is not convex in general, it is difficult to analyze the 

convergence of the approach. Theoretically, no efficient algorithms can guarantee 

the global optimizer. To work around this, we observe that {𝜎𝑘}1
𝑁 are nonnegative 

monotonically decreasing, then the non-descending order of the resultant weights 

with respect to singular values will be kept throughout the reweighting process, and 
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hence, we always expect to shrink less the larger singular values and keep the major 

and faithful information of the underneath data. In this context and according to 

[27], S. Gu et al verified that WNNM converges weakly to the solution if the 

weights are non-descendingly ordered through a weighted soft-thresholding 

operator. 

Consequently, as Schatten p-norm is concave in general, then at each 

iteration its value decreases rapidly greater than the decrease of its tangent plane 

which is approximately equal to the Taylor expansion in (14). It follows that by 

iteratively solving (16), the objective function in (13) monotonically decreases and 

converges to a local minimum. 

Recall the definitions of both weighted continuous dictionary, and weighted 

atomic norm as in (17) and (18) respectively [16]. 

𝐀𝝎 ∶= {𝐚𝝎(𝑓) = 𝜔(𝑓)𝐚(𝑓): 𝑓 ∈ [0,1]}.                             (17) 

‖𝐘‖A,ω = inf
𝑓𝑘,𝑠𝑘

{∑
‖𝑠𝑘‖2

𝜔(𝑓𝑘)𝑘=1 : 𝐘 = ∑ 𝐚(𝑓𝑘)𝑠𝑘
𝐾
𝑘=1 },                     (18) 

Or equally, 

‖𝐘‖A,ω = min
𝐮

(
√𝑁

2
tr(𝑾𝐓(𝐮)) +

1

2√𝑁
tr(𝐘𝐇𝐓(𝐮)−1𝐘)),        (19) 

                        subject to    𝐓(𝐮) ≥ 0. 

Obviously, by comparing(16) and (19) we can regenerate our problem as 

RAM by simply implying our weighting matrix to (19) with  𝑾𝒍 =
𝟏

𝑵
𝐃diag(𝑤1

𝑙 , 𝑤2
𝑙 , … , 𝑤𝑁

𝑙 )𝐃H at l iteration, and 𝜔(𝑓) =
1

√𝒂𝐻(𝑓) 𝑾𝒍𝒂(𝑓))

 by applying 

[16, Theorem 3]. Therefore, we call our approach a modified RAM (MRAM). In 

contrast to [16], MRAM defines the reweighting strategy based on iteratively 

updated singular value decomposition (SVD) of T(u) matrix. Although, computing 

SVD can be expensive, but by using techniques such as randomized algorithms 

[19], which tend to compute the top k singular vectors and singular values of T(u), 

the cost of computing weighting matrix can be significantly saved. In RAM the 

weighting function was chosen more sophisticatedly according to the inverse of 

(𝐓(𝐮) + 𝜀𝑰) matrix, where 𝜀 > 0. 
 

3.3 Enhancing Resolution and Sparsity 

By using the proposed sparse metric 𝒬𝑝(𝐘), we can cast (9) to the following 

optimization problem:  

min
𝐘

𝒬𝑝(𝐘),                                                              (20) 
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                                 subject to    𝐘𝛀 = 𝐘𝛀
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

Or equally, 

 min
𝐮,𝐘

(‖𝑾𝒍𝐓(𝐮)‖
⋆

+ tr(𝐗)),                                    (21) 

                                 subject to    [
𝐗 𝐘H

𝐘 𝐓(𝐮)
] ≥ 0, and 𝐘𝛀 = 𝐘𝛀

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 

To illustrate the sparsity property and the promising resolution enhancement 

of the new metric, we present the properties of 𝒬𝑝(𝐘) in comparison with the log-

det sparse metric used in [16]. Since 𝒬𝑝(𝐘) puts penalty on ∑ (𝜎𝑘(𝐓(𝐮)) +
min (𝑁,𝐿)
𝑘=1

𝜉)𝑝, we plot the function 𝑓𝑝(𝜎) = (𝜎 + 𝜉)𝑝 with p = 0.5, and ℎ(𝜎) = 𝑙𝑛|𝜎 + 𝜉| 

function which prompts the log-det heuristic in Fig.1 for different values for 𝜉 

together with  𝑙0, and  𝑙1 norms, where 𝑓𝑝(𝜎) and ℎ(𝜎) are translated and scaled by 

the same factor as in [16]. Contrary to ℎ(𝜎) curves, 𝑓𝑝(𝜎) gets close to the  𝑙0 norm 

for large 𝜉 while it approaches the 𝑙1 norm as  𝜉 ⟶ 0. However, it converges faster 

toward  𝑙0 whenever 𝑝 ⟶ 0 as illustrated in Fig.2.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 

Hence, we assume that the 𝒬𝑝(𝐘) bridges  𝑙0 and 𝑙1, and consequently 

‖𝐘‖𝐴,0 and ‖𝐘‖𝐴 when 𝜉 diverges from +∞ to 0 with 0 < 𝑝 ≤ 1. This approach is 

expected to enhance sparsity and resolution with boosted properties than log-det 

based sparse metric used in [16]. To validate the convergence of (21), we know that 

𝑓𝑝(𝜎) is a concave function in 𝜎, thus the sum of 𝑓𝑝(𝜎) with the trace function is a 

𝑙0 norm 

Fig. 1 The sparsity property of fp(σ) for 

p=0.5 (dot curve) and h(σ) for different 

values of ξ.  

Fig. 2 The sparsity property of fp(σ) with  

ξ=1, for different values of p. 
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concave-convex optimization problem. As a popular solution to this problem we 

refer to locally convergent maximization-minimization (MM) algorithm [20], 

which guarantees the monotonically decreasing of the objective function in (21) 

and its converges to a local minimum. This result coincides with the convergence 

analysis mentioned in subsection 3.2. 

3.4 Efficient Computational Implementations with SDP 

Fortunately, as shown in the previous subsections, atomic norm and its 

weighted version admit SDP formulations, which imply efficient computation using 

off-the-shelf standard SDP solvers such as SDPT3 [32]. Intuitively, the 

straightforward implementation is based on the primal SDP formulation. However, 

according to related literature [11, 15-16], frequency recovery can be done more 

efficiently through solving dual optimization problem than the primal one. Thus, 

we cast our analysis and implementation to the dual problem of (21), which can be 

formulated by standard Lagrangian analysis [10]. We derive the dual problem 

depending on the dual polynomial, due to its characteristics in frequency recovery 

problem [11]. Firstly, we define the dual atomic norm  ‖𝐱‖𝐴,𝜔
∗  as follows: 

‖𝐱‖𝐴,𝜔
∗ = max

‖𝐲‖𝐴,𝜔≤1
〈𝐱, 𝐲〉ℝ = max

𝑓
(𝜔(𝑓)|𝐚𝐻(𝑓)𝐱|).                        (22) 

Where, 〈, 〉ℝ denotes the real part of the inner product. Inspired by [15], we consider 

the dual problem of (21) as follows: 

max
𝐱

〈𝐱𝛀, 𝐲𝛀
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑〉ℝ                                              (23) 

                                  subject to   ‖𝐱‖𝐴,𝜔
∗ ≤ 1, and 𝐱𝛀𝒄 = 0. 

Where, 𝛀𝒄 is the complement set of  𝛀. As a result, the problem is reduced to the 

following inequality: 

|𝐚𝐻(𝑓)𝐱| ≤ 𝜔−1(𝑓) = √𝐚𝐻(𝑓) 𝑾𝐚(𝑓)) for all 𝑓 ∈ 𝛀.                     (24) 

In order to characterize (24) as SDP, we reformulate it by using the 

properties of trigonometric polynomials [33]. Since 𝑾 is a Hermitian PSD matrix- 

it can easily be proven- and a(f)=[1,ei2πf,….,ei2π(N-1)f ]
T
, then 𝜔−2(𝑓) is a Hermitian 

nonnegative trigonometric polynomial defined as follows: 

𝜔−2(𝑓) = 𝐚𝐻(𝑓) 𝑾𝐚(𝑓)) = tr(𝐚(𝑓)𝐚𝐻(𝑓)𝑾).                         (25) 

By applying [33, Theorem 2.3], we have:  

𝜔−2(𝑓) = tr((∑ 𝜣𝒌𝑒𝑖2𝜋𝑘𝑓)𝑁−1
𝑘=−(𝑁−1) 𝑾) = ∑ tr(𝜣𝒌𝑾)𝑁−1

𝑘=−(𝑁−1) 𝑒𝑖2𝜋𝑘𝑓,      (26) 
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Where 𝜣𝒌 denotes an N×N elementary Toeplitz matrix with ones on the kth diagonal 

and zeros elsewhere. Now, if the inequality (24) is satisfied then by carrying out 

[33, Theorem 4.24], there exists a matrix 𝐙 ∈ 𝐶𝑁×𝑁 ≥ 0 realizing 

[𝐈 𝐱H

𝐱 𝐙
] ≥ 𝟎    and    tr(𝜣𝒌𝐙) = tr(𝜣𝒌𝑾),      𝑘 = 1, … , 𝑁 − 1,           (27) 

Where I is 𝐿 × 𝐿 identity matrix. By using the relation between the inner product 

and matrix trace, the dual problem in (23) can be successfully formulated as the 

following SDP: 

max
𝐱,𝐙

ℜ(tr(𝐱𝛀
𝑯𝐲𝛀

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑))                                          (28) 

                                           subject to (27), and 𝐱𝛀𝒄 = 0, 

Where ℜ indicates the real part of the argument.  

As in [11], once (28) is solved, the frequencies can be localized by 

identifying the locations where the dual polynomial |𝐚𝐻(𝑓)𝐱| exceeds | 𝜔−1(𝑓)|. 
Note that the optimizer to (21) is given for free via duality when we solve (28). It 

is worth noting that, in each iteration we indeed reconstruct T(u) matrix which 

presents the data covariance of Y after removing correlations among the sources 

according to [16]. Hence, the set of frequencies can be recovered via either 

characterization of the dual polynomial, or by using conventional covariance-based 

subspace methods of spectrum estimation such as MUSIC [34] and ESPRIT [35].  

3.5 Complexity Analysis: 

In this subsection, we mainly compare the computational complexity of 

MRAM and RAM. If we consider the dominant part, i.e., the computation of 

weighting function. The upper bound of the overall cost for calculating 𝑾 in 

MRAM is 𝑂((𝑁 + 𝐿)3) floating-point operations (flops) due to SVD 

decomposition, thus it consumes up to 𝑂((𝑁 + 𝐿)3) flops to compute the inverse 

of (𝐓(𝐮) + 𝜀𝐈) in RAM. Moreover, we should mention that in general ANM, RAM 

and MRAM are all based on CVX toolbox [36], where the interior-point method 

(IPM) such as SDPT3 is implemented to solve the SDP, which requires 

𝑂((𝑛 + 𝐿2)2(𝑁 + 𝐿)2.5) flops per iteration for both RAM and MRAM, and as total 

complexity for ANM at best, where 𝑛 denotes the number of variables [32, 37]. 

Hence, the overall computational complexity per iteration to extract 𝐓(𝐮) for both 

RAM and MRAM equals to 𝑂((𝑁 + 𝐿)3 + (𝑛 + 𝐿2)2(𝑁 + 𝐿)2.5), and the total 

complexity equals the complexity per iteration times the number of iterations in 

each approaches plus the complexity of covariance-based algorithm to detect the 

frequency components. 

Although, the complexity of the proposed approach is equivalent to that of 

RAM, however, empirical results show that the convergence of MRAM is faster 
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and only several iterations are needed to converge. Therefore, the proposed method 

performs better in practice. The execution efficiency can be further improved by 

using alternating direction method of multipliers (ADMM), which requires 

𝑂((𝑁 + 𝐿)3) flops per iteration, and in the case of 𝐿 > 𝑀, this complexity can be 

reduced to 𝑂((𝑁 + 𝑀)3) by applying the dimensionality reduction technique as 

presented in [37], but the convergence is much slower than primal-dual IPM.  

To demonstrate the effectiveness of our method, we perform extensive 

numerical simulations in Section 4. 

4. Performance Evaluation 

In this section, we evaluate the performance of MRAM in noiseless cases. 

In particular, we examine the effect of suggested sparse metric on JSFR. All 

simulations are carried out using CVX of MATLAB v.14.a on a PC with Windows 

7 system and a 3.3 GHz CPU. 

Let 𝑁 = 64, and 𝑀 = 30, 5 in which the observed samples are selected 

uniformly at random from each measurement vector. Suppose also that we collect 

L (< 𝑀) snapshots of uncorrelated random complex amplitudes sinusoidal signals 

sharing 𝐾 = 5 spikes randomly located in the interval [0,1). When implementing 

MRAM, we set the total number of iterations to 20, 𝜉 = 10−3,6 and 𝑝 = 0.25. In 

each iteration 𝑝 is divided by 2, unless 𝑝 ≥ 25 × 10−5.  

4.1 Constructed Dual Polynomial 

In [15], it was shown that the reconstructed dual polynomial for ANM in 

MMV model has a much better localization property than ANM in SMV. Thus, for 

simplicity, we took L=1 to illustrate the superiority of MRAM dual polynomial 

characteristics over ANM one. Fig.3 shows the reconstructed dual polynomial of 

ANM and MRAM results for randomly generated spectrally sparse signals with 

𝑓 =  [0.1, 0.1047, 0.2, 0.2156, 0.3]. Note that the first two frequencies are 

mutually separated by only about 
0.3

𝑁
 (the best resolution of [16]), while the third 

and fourth ones are separated by 
1

𝑁
 (the best resolution of [15]).  

We notice that when the frequency separation condition is violated, ANM 

localization degrades significantly, while MRAM has superior ability to 

discriminate the frequencies under the same separation settings. 

                                                 
5 We choose the value of 𝑀 according to [11]; 𝑀 ≈ 𝑂(𝐾log 𝐾 log 𝑁). 
6 We use a small value of 𝜉 due to the reverse relation between the weight and 𝑓𝑝(𝜆). 
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Fig. 3 The reconstructed dual polynomial for: (a) MRAM with true amplitudes, (b) ANM. 

4.2 Comparison with Existing Approaches 

The following experiment examines the performance of MRAM in 

reconstructing the frequency spectrum from M picked samples. For better 

evaluation we implement both MRAM and RAM via SDPT3 solver and compare 

their performances under the same settings as in 4.1 subsection except for L=5 and 

𝑓 =  [0.1, 0.104, 0.1094, 0.2, 0.5]. Here the first three frequencies are separated by 

only 
0.3

𝑁
. Whereas, the frequencies for each implementation are considered to be 

successfully recovered if the root mean squared error (RMSE) is less than 10−6. 

We plot the simulation results in Fig.4. 

The first and third subfigures present the recovered frequencies by using 

MRAM and RAM respectively, whereas the second and fourth rows plot the 

weighting functions used during the iterations for MRAM and RAM respectively. 

Following the reweighting process of MRAM, all the frequencies in this example 

are correctly recovered from the second iteration and the algorithm tightly 

converges. While RAM takes three iterations to recover the frequencies properly. 

This is in agreement with [16] results. 

Note that the first iteration in both RAM and MRAM coincide with ANM 

for constant weighting function. The frequency recovery is coarse; the first three 

spikes are positioned but cannot precisely be determined. By applying the 

weighting functions, the five spikes are identified by MRAM from the second 

iteration, while it needs three iterations to localize precisely via RAM. 
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Fig. 4 The recovered frequencies and the associated reweighting functions for MRAM (2 iterations) in (a) and 

(b), and RAM (3 iterations) in (d) and (c) respectively. 

We further compare the MRAM against RAM, and ANM in frequency 

estimation using the obtained real part of Toeplitz covariance matrix T(u). This is 

done by applying rootMUSIC method with a model order estimated iteratively, and 

under the same prior settings. 

Fig.5 shows the power of MRAM in recovering frequency accurately over 

RAM and ANM. Notice that RAM and MRAM plots are performed for the same 

number of iterations. 
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Fig. 5 Frequency estimation using different approaches: (a) ANM, (b) RAM, (c) MRAM. 

4.3 Resolution Enhancement 

In the third simulation, we show a simple example that provides some 

evidence for resolution boost of MRAM. Under the same settings, with 𝑓 =  [0.1,
0.1016, 0.2, 0.3, 0.3016], where the frequency separations between the first 

frequency pair and the last pair are only ∆𝑓=
0.1

𝑁
. The simulation results are shown 

in Fig.6. The first row of subfigures presents the recovered frequencies by MRAM 

under the proposed frequency separation challenge, while the second row displays 

the weighting functions used during the iterations. As shown in Fig.6, although the 

spikes violate the separation conditions of the latest studies in this domain [15, 16], 

all the frequencies are determined properly in the first three iterations of MRAM. 

Again, remarkable improvement is obtained by the proposed MRAM compared to 

RAM and ANM. 

 
 

Fig. 6 The recovered frequencies and the associated reweighting functions throughout three first iterations for 

MRAM with ∆f=
0.1

N
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4.4 Sparsity-Separation Phase Transition 

For further clarification, in the following simulation we study the sparse 

recovery capabilities of MRAM in terms of sparsity separation phase transition7. 

Particularly, we fix 𝑁 = 32, 𝑀 = 15. We examine the phase transition of 

frequency recovery for various pairs of (𝐾, ∆𝑓). For each pair, we randomly 

generate K frequencies such that they are mutually separated by at least ∆𝑓. We 

randomly generate the amplitudes independently and identically from a standard 

complex normal distribution. Consequently, the frequency recovery is processed 

using MRAM, whereas the recovery is considered successful if the relative MSE of 

frequency recovery are less than 10−12. Fig.7 shows the success rates of MRAM 

with L=1 in (a) and L=5 in (b). The grayscale images present the success rates, 

where white and black indicate complete success and complete failure, respectively.  

 
Fig. 7 Sparsity-separation phase transition of MRAM with: (a) L=1, and (b) L=5 

Obviously, as L increases the recovered frequencies get more accurate, 

specifically at close-located frequencies. Practically, under the current simulation 

settings the successful rate exceeds 95% whenever 𝐾 ≤ 8 and frequency 

separation ∆𝑓≥
0.1

𝑁
. Regardless of the sparsity level,  ∆𝑓 of MRAM is about 3 times 

weaker than the condition in [16], and about 10 times less than the condition in [15]. 

Moreover, the performance intuitively improves, as more samples per measurement 

vector are offered. 

5. Conclusions 

In this paper, we propose a generalized gridless sparse approach for joint 

sparse frequency recovery model. We present a novel Schatten p-norm optimization 

                                                 
7 Phase transition diagrams are two-dimensional figures, mainly, the y-axis represents the 

sparsity, and the x-axis denotes the separation parameters. It provides information about the success 

of applying compressive measurements under certain conditions. 
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framework derived to resolve the objective of ANM efficiently via SDP. The 

effectiveness of the proposed approach is further demonstrated through numerical 

examples. The simulations results illustrated the excellence of the frequency 

recovery with superior resolution, and faster convergence, when compared with 

state-of-the-art approaches. In future studies, we will try different computationally 

efficient algorithms for matrix rank minimization to push forward the recovery 

resolution accuracy. In addition, we look forward to examining our approach under 

noisy measurements scenarios. 
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