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GENERAL IMPLICIT SUBGRADIENT EXTRAGRADIENT METHODS

FOR MONOTONE BILEVEL EQUILIBRIUM PROBLEMS
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In this paper, we introduce the general implicit subgradient extragradient method

for solving the monotone bilevel equilibrium problem (MBEP) with a general system of

variational inclusions (GSVI) and a common fixed-point problem of finitely many non-
expansive mappings and a strictly pseudocontractive mapping (CFPP) constraints. The

strong convergence result for the proposed algorithm is established under the monotonic-
ity assumption of the cost bifunctions with Lipschitz-type continuous conditions recently

presented by Mastroeni in the auxiliary problem principle, and also applied for find-

ing a common solution of variational inequality, variational inclusion and fixed-point
problems.
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1. Introduction

Let (H, ‖ · ‖) be a real Hilbert space with the inner product 〈·, ·〉. Given a nonempty,
closed and convex set C ⊂ H. We denote by Fix(Γ ) the fixed-point set of a self-mapping
Γ on C. The mapping Γ : C → C is said to be strictly pseudocontractive if ∃ξ ∈ [0, 1) s.t.
‖Γu − Γv‖2 ≤ ‖u − v‖2 + ξ‖(I − Γ )u − (I − Γ )v‖2 ∀u, v ∈ C. Let A be a self-mapping
on H. Consider the classical variational inequality problem (VIP) of finding u∗ ∈ C such
that 〈Au∗, v − u∗〉 ≥ 0 ∀v ∈ C. We denote by VI(C,A) the solution set of the VIP. The
extragradient method invented first by Korpelevich [19] in 1976 has become one of the most
effective methods for solving the VIP. It was shown in [19] that, if VI(C,A) 6= ∅, this method
converges weakly to a solution of the VIP. The literature on the VIP is vast and Korpelevich’s
extragradient method has received great attention given by many authors, who improved it
via various techniques; see e.g., [2, 6–8, 11–13, 15, 20, 31, 35, 38]. In particular, Censor et
al. [11] modified Korpelevich’s extragradient method and first introduced the subgradient
extragradient method, in which the second projection onto C is replaced by a projection
onto a half-space:  vk = PC(uk − τAuk),

Ck = {v ∈ H : 〈uk − τAuk − vk, v − vk〉 ≤ 0},
uk+1 = PCk(uk − τAvk), ∀k ≥ 0.

Suppose that A1, A2 : H → H are single-valued mappings and let B1, B2 : C → 2H are
multi-valued mappings with Bju 6= ∅ ∀u ∈ C, j = 1, 2. The general system of variational
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inclusions (GSVI) is to find (u∗, v∗) ∈ C × C satisfying{
0 ∈ λ1(A1v

∗ +B1u
∗) + u∗ − v∗,

0 ∈ λ2(A2u
∗ +B2v

∗) + v∗ − u∗.
(1)

In particular, if A1 = A2 = A, B1 = B2 = B and u∗ = v∗, then problem (1) reduces to the
variational inclusion (VI) ([9]). It is known that problem (1) has been transformed into a
fixed point problem in the following way.

Lemma 1.1 ([10]). Let B1, B2 : C → 2H be two maximal monotone operators. Then
for given u∗, v∗ ∈ C, (u∗, v∗) is a solution of problem (1.1) if and only if u∗ ∈ Fix(G),

where Fix(G) is the fixed-point set of the mapping G := JB1

λ1
(I − λ1A1)JB2

λ2
(I − λ2A2), and

v∗ = JB2

λ2
(I − λ2A2)u∗.

Furthermore, suppose that the mappings A1, A2 : C → H are inverse-strongly mono-
tone and the mapping Γ : C → C is asymptotically nonexpansive with a sequence {θk}.
Very recently, via a modified extragradient approach, Cai et al. [5] suggested a viscosity
implicit rule for finding an element in the common solution set Ω of variational inequalities
for Ai, i = 1, 2 and the fixed-point problem of Γ , i.e., for any given u1 ∈ C, {uk} is the
sequence generated by

pk = sku
k + (1− sk)qk,

vk = PC(pk − λ2A2p
k),

qk = PC(vk − λ1A1v
k),

uk+1 = PC [βkf(uk) + (I − βkρF )Γ kqk],

(2)

where {βk}, {sk} ⊂ (0, 1] are such that
(i) limk→∞ βk = 0,

∑∞
k=1 βk =∞ and

∑∞
k=1 |βk+1 − βk| <∞;

(ii) limk→∞
θk
βk

= 0;

(iii) 0 < ε ≤ sk ≤ 1 and
∑∞
k=1 |sk+1 − sk| <∞;

(iv)
∑∞
k=1 ‖Γ k+1qk − Γ kqk‖ <∞.

They proved the strong convergence of {uk} to an element u∗ ∈ Ω , which solves the
VIP: 〈(ρF − f)u∗, v − u∗〉 ≥ 0 ∀v ∈ Ω .

Very recently, Ceng et al. [8] suggested a modified inertial subgradient extragradient
method for finding a common solution of the VIP with pseudomonotone and Lipschitz
continuous mapping A : H → H and the common fixed-point problem (CFPP) of finitely
many nonexpansive mappings {Γi}Ni=1 on H. Under some suitable conditions, they proved
strong convergence of the constructed sequence to a common solution of the VIP and CFPP.

Suppose that Φ : H×H→ R∪ {+∞} is a bifunction such that Φ(x, x) = 0, ∀x ∈ C.
The equilibrium problem (shortly, EP(C,Φ)) is to find û ∈ C such that

Φ(û, v) ≥ 0, ∀v ∈ C. (3)

The solution set of EP(C,Φ) is denoted by Sol(C,Φ). It is worth mentioning that the EP (3)
is a unified model of several problems, namely, variational inequality problems ([14, 40, 45,
47–50, 53, 54, 56, 57]), optimization problems ([24]), saddle point problems, complementarity
problems, fixed point problems ([25, 27–30, 33, 34, 39, 52]), Nash equilibrium problems
([22, 26]), split problems ([16, 17, 23, 32, 41, 43, 44, 46, 51, 55]). Many algorithms have been
suggested and studied for solving the EP (3) and its extended versions; see [2, 6, 7, 9, 13,
26, 36, 42] and references therein. Very recently, Anh and An [2] introduced the monotone
bilevel equilibrium problem (MBEP) with the fixed-point problem (FPP) constraint, i.e., a
strongly monotone equilibrium problem EP(Ω ,Ψ) over the common solution set Ω of another
monotone equilibrium problem EP(C,Φ) and the fixed-point problem of a K-demicontractive
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mapping Γ :

Find u∗ ∈ Ω such that Ψ(u∗, v) ≥ 0, ∀v ∈ Ω , (4)

where Ψ : C ×C → R ∪ {+∞} such that Ψ(u, u) = 0, ∀u ∈ C and Ω = Sol(C,Φ) ∩ Fix(Γ ).
Choose the parameter sequences {λk} and {βk} such that

{λk} ⊂ (a, b) ⊂ (0,min{ 1
2c1
, 1

2c2
}), limk→∞ λk = λ,

βk ↓ 0, 2βkη − β2
kS

2 < 1,
∑∞
k=0 βk = +∞,

0 < τ < min{η, S}, 0 < βk < min{ 1
τ ,

2η−2τ
S2−τ2 ,

2η
S2 },

(5)

where S is a constant associated with Ψ. The following modified subgradient extragradient
method is proposed in [2] for finding a unique element of Sol(Ω ,Ψ).

Algorithm 1.1. Choose an initial point u0 ∈ C and {αk} ⊂ [α, ᾱ] ⊂ (0, 1 − K). The
parameter sequences {λk} and {βk} satisfy the conditions (5). Compute uk+1 (k ≥ 0) as
follows:
Step 1. Compute vk = argmin{λkΦ(uk, v)+ 1

2‖v−u
k‖2 : v ∈ C} and pk = argmin{λkΦ(vk, p)

+ 1
2‖p − u

k‖2 : p ∈ Ck}, where Ck = {y ∈ H : 〈uk − λkwk − vk, y − vk〉 ≤ 0} and wk ∈
∂2Φ(uk, vk).
Step 2. Compute qk = (1 − αk)pk + αkΓpk and uk+1 = argmin{βkΨ(qk, q) + 1

2‖q − q
k‖2 :

q ∈ C}. Set k := k + 1 and return to Step 1.

In this paper, we introduce the general implicit subgradient extragradient method
for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP
constraints, i.e., a strongly monotone equilibrium problem over the common solution set of
another monotone equilibrium problem, the GSVI and the CFPP. The strong convergence
result for the proposed algorithm is established under the monotonicity assumption of the
cost bifunctions with Lipschitz-type continuous conditions recently presented by Mastroeni
in the auxiliary problem principle. Our results improve and extend the corresponding results
announced by some others, e.g., Cai et al. [5], Anh and An [2], and Ceng et al. [8].

2. Preliminaries

Assume that C is a nonempty closed convex subset of a real Hilbert space H. Given
a sequence {yk} ⊂ H, we denote by yk → y (resp., yk ⇀ y) the strong (resp., weak)
convergence of {yk} to y. A bifunction Ψ : C × C → R is said to be

(i) η-strongly monotone, if Ψ(y, z) + Ψ(z, y) ≤ −η‖y − z‖2,∀y, z ∈ C;
(ii) monotone, if Ψ(y, z) + Ψ(z, y) ≤ 0,∀y, z ∈ C;
(iii) Lipschitz-type continuous with constants c1, c2 > 0, if Ψ(y, z) + Ψ(z, w) ≥

Ψ(y, w)− c1‖y − z‖2 − c2‖z − w‖2,∀y, z, w ∈ C.
Also, recall that a mapping F : C → H is said to be
(i) L-Lipschitz continuous or L-Lipschitzian if ∃L > 0 s.t. ‖Fy − Fz‖ ≤ L‖y −

z‖, ∀y, z ∈ C;
(ii) monotone if 〈Fy − Fz, y − z〉 ≥ 0, ∀y, z ∈ C;
(iii) pseudomonotone if 〈Fz, y − z〉 ≥ 0⇒ 〈Fy, y − z〉 ≥ 0, ∀y, z ∈ C;
(iv) η-strongly monotone if ∃η > 0 s.t. 〈Fy − Fz, y − z〉 ≥ η‖y − z‖2, ∀y, z ∈ C;
(v) α-inverse-strongly monotone if ∃α > 0 s.t. 〈Fy−Fz, y−z〉 ≥ α‖Fy−Fz‖2, ∀y, z ∈

C.
For each point z ∈ H, we know that there exists a unique nearest point in C, denoted

by PCz, such that ‖z − PCz‖ ≤ ‖z − y‖, ∀y ∈ C. The mapping PC is said to be the metric
projection of H onto C.

Lemma 2.1 ([18]). The following hold:
(i) 〈y − z, PCy − PCz〉 ≥ ‖PCy − PCz‖2, ∀y, z ∈ H;
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(ii) 〈z − PCz, y − PCz〉 ≤ 0, ∀z ∈ H, y ∈ C;
(iii) ‖z − y‖2 ≥ ‖z − PCz‖2 + ‖y − PCz‖2, ∀z ∈ H, y ∈ C;
(iv) ‖z − y‖2 = ‖z‖2 − ‖y‖2 − 2〈z − y, y〉, ∀y, z ∈ H;
(v) ‖sy + (1− s)z‖2 = s‖y‖2 + (1− s)‖z‖2 − s(1− s)‖y − z‖2, ∀y, z ∈ H, s ∈ [0, 1].

Recall that the mapping Γ : C → C is a ξ-strict pseudocontraction for some ξ ∈ [0, 1)

if and only if the inequality holds 〈Γy−Γz, y−z〉 ≤ ‖y−z‖2− 1−ξ
2 ‖(I−Γ )y−(I−Γ )z‖2 ∀y, z ∈

C. From [1] we know that if Γ is a ξ-strictly pseudocontractive mapping, then Γ satisfies

Lipschitz condition ‖Γy − Γz‖ ≤ 1+ξ
1−ξ‖y − z‖ ∀y, z ∈ C.

Lemma 2.2. Let Γ : C → C be a ξ-strictly pseudocontractive mapping. Let γ and δ be
two nonnegative real numbers. Assume (γ + δ)ξ ≤ γ. Then ‖γ(y − z) + δ(Γy − Γz)‖ ≤
(γ + δ)‖y − z‖, ∀y, z ∈ C.

Let B : C → 2H be a set-valued operator with Bx 6= ∅ ∀x ∈ C. B is said to be
monotone if for each x, y ∈ C, one has 〈u− v, x− y〉 ≥ 0 ∀u ∈ Bx, v ∈ By. Also, B is said
to be maximal monotone if (I + λB)C = H for all λ > 0. For a monotone operator B, we
define the mapping JBλ : (I + λB)C → C by JBλ = (I + λB)−1 for each λ > 0. Such JBλ is
called the resolvent of B for λ > 0.

Proposition 2.1 ([20]). Let B : C → 2H be a maximal monotone operator. Then the
following statements hold:

(i) the resolvent identity: JBλ x = JBµ (µλx+ (1− µ
λ )JBλ x) ∀λ, µ > 0, x ∈ H;

(ii) if JBλ is a resolvent of B for λ > 0, then JBλ is a firmly nonexpansive mapping
with Fix(JBλ ) = B−10, where B−10 = {x ∈ C : 0 ∈ Bx}.

Let A : H → H be an α-inverse-strongly monotone mapping and B : C → 2H be a
maximal monotone operator. In the sequel, we will use the notation Tλ := JBλ (I − λA) =
(I + λB)−1(I − λA),∀λ > 0.

Proposition 2.2 ([20]). It is well known that (i) Fix(Tλ) = (A + B)−10, ∀λ > 0 and (ii)
‖y − Tλy‖ ≤ 2‖y − Try‖ for 0 < λ ≤ r and y ∈ C.

Lemma 2.3. Let the mapping A : H → H be α-inverse-strongly monotone. Then, for a
given λ ≥ 0, ‖(I − λA)u− (I − λA)v‖2 ≤ ‖u− v‖2 − λ(2α− λ)‖Au− Av‖2. In particular,
if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.

Utilizing Proposition 2.1 (ii) and Lemma 2.3, we immediately obtain the following result.

Lemma 2.4. Let B1, B2 : C → 2H be two maximal monotone operators. Let the mappings
A1, A2 : H → H be α-inverse-strongly monotone and β-inverse-strongly monotone, respec-
tively. Let the mapping G : H → C be defined as G := JB1

λ1
(I − λ1A1)JB2

λ2
(I − λ2A2). If

0 ≤ λ1 ≤ 2α and 0 ≤ λ2 ≤ 2β, then G : H→ C is nonexpansive.

Lemma 2.5 ([11]). Let A : C → H be pseudomonotone and continuous. Given a point
x ∈ C. Then 〈Ax, y − x〉 ≥ 0, ∀y ∈ C ⇔ 〈Ay, y − x〉 ≥ 0, ∀y ∈ C.

Lemma 2.6 ([1]). Let Γ : C → C be a ξ-strict pseudocontraction. Then I−Γ is demiclosed
at zero, i.e., if {zn} is a sequence in C such that zn ⇀ z ∈ C and (I − Γ )zn → 0, then
(I − Γ )z = 0, where I is the identity mapping of H.

Lemma 2.7 ([21]). Let {Tk} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {Tkj} of {Tk} which satisfies Tkj < Tkj+1 for
each integer j ≥ 1. Define the sequence {τ(k)}k≥k0 of integers as follows:

τ(k) = max{j ≤ k : Tj < Tj+1},
where integer k0 ≥ 1 such that {j ≤ k0 : Tj < Tj+1} 6= ∅. Then, the following hold:

(i) τ(k0) ≤ τ(k0 + 1) ≤ · · · and τ(k)→∞;
(ii) Tτ(k) ≤ Tτ(k)+1 and Tk ≤ Tτ(k)+1, ∀k ≥ k0.
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On the other hand, the normal cone NC(u) of C at u ∈ C is defined as NC(u) = {w ∈
H : 〈w, v− u〉 ≤ 0, ∀v ∈ C}. The subdifferential of a convex function g : C → R∪ {+∞} at
u ∈ C is defined by ∂g(u) = {w ∈ H : g(v)− g(u) ≥ 〈w, v − u〉, ∀v ∈ C}.

In this paper, we are devoted to finding a solution x∗ ∈ Sol(Ω ,Ψ) of the problem

EP(Ω ,Ψ), where Ω =
⋂N
i=0 Fix(Γi) ∩ Fix(G) ∩ Sol(C,Φ) with Γ0 := Γ . We assume always

that the following hold: (i) Γi is a nonexpansive self-mapping on H for i = 1, ..., N and
Γ : H → H is a ξ-strictly pseudocontractive mapping with ξ ∈ [0, 1); (ii) B1, B2 : C →
2H are two maximal monotone operators, and A1, A2 : H → H are α-inverse-strongly
monotone and β-inverse-strongly monotone, respectively; (iii) G : H → C is defined as

G := JB1

λ1
(I − λ1A1)JB2

λ2
(I − λ2A2) where 0 < λ1 < 2α and 0 < λ2 < 2β. Choose the

sequences {εk}, {βk}, {γk}, {δk} in (0, 1), and positive sequences {αk}, {sk} such that
(H1) βk + γk + δk = 1 ∀k ≥ 1, 0 < lim infk→∞ δk and (γk + δk)ξ ≤ γk;
(H2) lim supk→∞ βk < 1 and 0 < lim infk→∞ εk ≤ lim supk→∞ εk < 1;
(H3)

∑∞
k=1 sk =∞, limk→∞ sk = 0, and 2skν − s2

kS
2 < 1;

(H4) {αk} ⊂ (a, b) ⊂ (0,min{ 1
2c1
, 1

2c2
}) and limk→∞ αk = α̃;

(H5) 0 < λ < min{ν, S} and 0 < sk < min{ 1
λ ,

2ν−2λ
S2−λ2 ,

2ν
S2 }.

In terms of Xu and Kim [37], we write Γk := ΓkmodN for integer k ≥ 1 with the mod
function taking values in the set {1, 2, ..., N}, i.e., if k = jN + q for some integers j ≥ 0 and
0 ≤ q < N , then Γk = ΓN if q = 0 and Γk = Γq if 0 < q < N .

Algorithm 2.1. Given x1 ∈ H and ζ ∈ (0, 1) arbitrarily. The sequences {εk}, {βk}, {γk},
{δk} in (0, 1), and positive sequences {αk}, {sk} satisfy the conditions (H1)-(H5). Calculate
xk+1 as follows:
Step 1. Compute {

ūk = εkx
k + (1− εk)(ζΓkū

k + (1− ζ)Gūk),

v̄k = JB2

λ2
(ūk − λ2A2ū

k).

Step 2. Compute{
q̄k = JB1

λ1
(v̄k − λ1A1v̄

k),

yk = argmin{αkΦ(q̄k, y) + 1
2‖y − q̄

k‖2 : y ∈ C}.

Step 3. Choose w̄k ∈ ∂2Φ(q̄k, yk), and compute{
Ck = {v ∈ H : 〈q̄k − αkw̄k − yk, v − yk〉 ≤ 0},
zk = argmin{αkΦ(yk, z) + 1

2‖z − q̄
k‖2 : z ∈ Ck}.

Step 4. Compute
p̃k = βkz

k + γkGp̃
k + δkΓGp̃k,

p̄k = Gp̃k,

xk+1 = argmin{skΨ(p̄k, t) + 1
2‖t− p̄

k‖2 : t ∈ C}.
Set k := k + 1 and return to Step 1.

We need the following technical propositions.

Proposition 2.3 ([4]). Let C be a convex subset of a real Hilbert space H and g : C →
R ∪ {+∞} be subdifferentiable. Then, x̄ is a solution to the following convex minimiza-
tion problem min{g(x) : x ∈ C} if and only if 0 ∈ ∂g(x̄) + NC(x̄), where ∂g denotes the
subdifferential of g.

Proposition 2.4 ([3]). Let X and Y be two sets, G be a set-valued map from Y to X, and
W be a real valued function defined on X × Y . The marginal function M is defined by

M(y) = {x∗ ∈ G(y) : W (x∗, y) = sup{W (x, y) : x ∈ G(y)}}.
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If W and G are continuous, then M is upper semicontinuous.

Next, we assume that two bifunctions Ψ : C × C → R ∪ {+∞} and Φ : H ×H →
R ∪ {+∞} satisfy the following conditions where some notation is adopted from [2]:

AssΦ:
(Φ1) Ω =

⋂N
i=0 Fix(Γi) ∩ Fix(G) ∩ Sol(C,Φ) 6= ∅ with Γ0 := Γ .

(Φ2) Φ is monotone and Lipschitz-type continuous with constants c1, c2 > 0, and Φ
is weakly continuous, i.e., {xk ⇀ x̂ and yk ⇀ ŷ} ⇒ {Φ(xk, yk)→ Φ(x̂, ŷ)}.

AssΨ:
(Ψ1) Ψ is ν-strongly monotone and weakly continuous.

(Ψ2) There exist the mappings Ψ̄i : C×C → H and ψ̂i : C → H for each i ∈ {1, ...,m}
such that Ψ̄i(x, y) + Ψ̄i(y, x) = 0, ‖Ψ̄i(x, y)‖ ≤ L̄i‖x− y‖ and ‖ψ̂i(x)− ψ̂i(y)‖ ≤ L̂i‖x− y‖
for all x, y ∈ C, and Ψ(x, y) + Ψ(y, z) ≥ Ψ(x, z) +

∑m
i=1〈Ψ̄i(x, y), ψ̂i(y − z)〉, ∀x, y, z ∈ C.

(Ψ3) For any sequence {yk} ⊂ C such that yk → d, we have lim supk→∞
|Ψ(d,yk)|
‖yk−d‖ <

+∞.
It is easy to see that if the bifunction Ψ satisfies the condition AssΨ(Ψ2), then Ψ is

Lipschitz-type continuous with constants c1 = c2 = 1
2

∑m
i=1 L̄iL̂i.

3. Main results

In this section, utilizing the general implicit subgradient extragradient method, we
present convergence analysis of the iterative algorithm for solving the MBEP with the GSVI
and CFPP constraints, i.e., a strongly monotone equilibrium problem EP(Ω ,Ψ) over the
common solution set Ω of another monotone equilibrium problem EP(C,Φ), the general sys-
tem of variational inclusions (GSVI) and the CFPP of finitely many nonexpansive mappings

{Γi}Ni=1 and a strictly pseudocontractive mapping Γ , where Ω =
⋂N
i=0 Fix(Γi) ∩ Fix(G) ∩

Sol(C,Φ) with Γ0 := Γ .

Theorem 3.1. Assume that {xk} is the sequence constructed by Algorithm 2.1. Let the bi-
functions Ψ,Φ satisfy the assumptions AssΦ-AssΨ. Then, under the conditions (H1)-(H5),
the sequence {xk} converges strongly to the unique solution x∗ of the problem EP(Ω ,Ψ).

Proof. Choose an element p̄ ∈ Ω =
⋂N
i=0 Fix(Γi) ∩ Fix(G) ∩ Sol(C,Φ) arbitrarily, where

G = JB1

λ1
(I − λ1A1)JB2

λ2
(I − λ2A2) with 0 < λ1 < 2α and 0 < λ2 < 2β. We divide the proof

into several steps as follows:
Step 1. We show that the following inequality holds

‖zk − p̄‖2 ≤ ‖q̄k − p̄‖2 − (1− 2αkc1)‖yk − q̄k‖2 − (1− 2αkc2)‖zk − yk‖2, ∀k ≥ 1.

Indeed, by Proposition 2.3, we know that for yk = argmin{αkΦ(q̄k, y)+ 1
2‖y− q̄

k‖2 : y ∈ C},
there exists w̄k ∈ ∂2Φ(q̄k, yk) such that αkw̄

k + yk − q̄k ∈ −NC(yk), which hence yields

〈αkw̄k + yk − q̄k, x− yk〉 ≥ 0, ∀x ∈ C. (6)

From the definition of w̄k ∈ ∂2Φ(q̄k, yk), it follows that

αk[Φ(q̄k, x)− Φ(q̄k, yk)] ≥ 〈αkw̄k, x− yk〉, ∀x ∈ H. (7)

Adding (7) and (6), we get

αk[Φ(q̄k, x)− Φ(q̄k, yk)] + 〈yk − q̄k, x− yk〉 ≥ 0, ∀x ∈ C. (8)

It follows from zk ∈ Ck and the definition of Ck that 〈q̄k−αkw̄k−yk, v−yk〉 ≤ 0, and hence

αk〈w̄k, zk − yk〉 ≥ 〈q̄k − yk, zk − yk〉. (9)
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Putting x = zk in (7), we get αk[Φ(q̄k, zk) − Φ(q̄k, yk)] ≥ αk〈w̄k, zk − yk〉. Adding (9) and
the last inequality, we have

αk[Φ(q̄k, zk)− Φ(q̄k, yk)] ≥ 〈q̄k − yk, zk − yk〉. (10)

By Proposition 2.3, we know that for zk = argmin{αkΦ(yk, y) + 1
2‖y− q̄

k‖2 : y ∈ Ck}, there

exist h̄k ∈ ∂2Φ(yk, zk) and t̄k ∈ NCk(zk) such that αkh̄
k +zk− q̄k + t̄k = 0. So, we infer that

αk〈h̄k, y − zk〉 ≥ 〈q̄k − zk, y − zk〉 ∀y ∈ Ck, and Φ(yk, y)−Φ(yk, zk) ≥ 〈h̄k, y − zk〉,∀y ∈ H.
Putting y = p̄ ∈ C ⊂ Ck in two last inequalities and later adding them, we get

αk[Φ(yk, p̄)− Φ(yk, zk)] ≥ 〈q̄k − zk, p̄− zk〉.

By the monotonicity of Φ, p̄ ∈ Sol(C,Φ) and yk ∈ C, we get Φ(yk, p̄) ≤ −Φ(p̄, yk) ≤ 0.
Therefore, −αkΦ(yk, zk) ≥ 〈q̄k − zk, p̄ − zk〉. Combining this and the following Lipschitz-
type continuity of Φ

Φ(q̄k, yk) + Φ(yk, zk) ≥ Φ(q̄k, zk)− c1‖q̄k − yk‖2 − c2‖yk − zk‖2,

we obtain that

〈q̄k − zk, zk − p̄〉 ≥ αkΦ(yk, zk)
≥ αk[Φ(q̄k, zk)− Φ(q̄k, yk)]− αkc1‖q̄k − yk‖2 − αkc2‖yk − zk‖2.

This together with (10), implies that

〈q̄k − zk, zk − p̄〉 ≥ 〈q̄k − yk, zk − yk〉 − αkc1‖q̄k − yk‖2 − αkc2‖yk − zk‖2. (11)

Therefore, applying the equality

〈u, v〉 =
1

2
(‖u+ v‖2 − ‖u‖2 − ‖v‖2) ∀u, v ∈ H, (12)

for 〈q̄k − zk, zk − p̄〉 and 〈yk − q̄k, zk − yk〉 in (11), we obtain the desired result.
Step 2. We show that the following inequality holds

‖xk+1 − x‖2 ≤ ‖p̄k − x‖2 − ‖xk+1 − p̄k‖2 + 2sk[Ψ(p̄k, x)−Ψ(p̄k, xk+1)], ∀x ∈ C.

Indeed, since xk+1 = argmin{skΨ(p̄k, t)+ 1
2‖t−p̄

k‖2 : t ∈ C}, there exists m̄k ∈ ∂2Ψ(p̄k, xk+1)

such that 0 ∈ skm̄k + xk+1 − p̄k +NC(xk+1). By the definition of normal cone NC and the
subgradient m̄k, we get 〈skm̄k + xk+1 − p̄k, x− xk+1〉 ≥ 0,∀x ∈ C, and

sk[Ψ(p̄k, x)−Ψ(p̄k, xk+1)] ≥ 〈skm̄k, x− xk+1〉, ∀x ∈ C.

Adding two last inequalities, we get

2sk[Ψ(p̄k, x)−Ψ(p̄k, xk+1)] + 2〈xk+1 − p̄k, x− xk+1〉 ≥ 0, ∀x ∈ C. (13)

Putting u = xk+1 − p̄k and v = x− xk+1 in (12), we get

2sk[Ψ(xk+1, x)−Ψ(p̄k, xk+1)] + ‖p̄k − x‖2 − ‖xk+1 − p̄k‖2 − ‖xk+1 − x‖2 ≥ 0, ∀x ∈ C.

This attains the desired result.
Step 3. We show that if x∗ is a solution of the MBEP with the GSVI and CFPP con-

straints, then ‖xk+1−p̄k∗‖ ≤ ηk‖p̄k−x∗‖ ≤ (1−λsk)‖p̄k−x∗‖, where p̄k∗ = argmin{skΨ(x∗, v)+
1
2‖v−x

∗‖2 : v ∈ C}, ηk =
√

1− 2skν + s2
kS

2, 0 < λ < min{ν, S}, 0 < sk < min{ 1
λ ,

2ν−2λ
S2−λ2 },

and S =
∑m
i=1 L̄iL̂i. Indeed, put p̄k∗ = argmin{skΨ(x∗, v) + 1

2‖v − x
∗‖2 : v ∈ C}. By the

similar arguments to those of (13), we also get

sk[Ψ(x∗, x)−Ψ(x∗, p̄k∗)] + 〈p̄k∗ − x∗, x− p̄k∗〉 ≥ 0, ∀x ∈ C. (14)

Setting x = p̄k∗ ∈ C in (13) and x = xk+1 ∈ C in (14), respectively, we obtain that

sk[Ψ(p̄k, p̄k∗)−Ψ(p̄k, xk+1)] + 〈xk+1 − p̄k, p̄k∗ − xk+1〉 ≥ 0,
sk[Ψ(x∗, xk+1)−Ψ(x∗, p̄k∗)] + 〈p̄k∗ − x∗, xk+1 − p̄k∗〉 ≥ 0.
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Adding two last inequalities, we have

0 ≤ 2sk[Ψ(p̄k, p̄k∗)−Ψ(p̄k, xk+1) + Ψ(x∗, xk+1)−Ψ(x∗, p̄k∗)]

+ 2〈xk+1 − p̄k − p̄k∗ + x∗, p̄k∗ − xk+1〉

= 2sk[Ψ(p̄k, p̄k∗)−Ψ(p̄k, xk+1) + Ψ(x∗, xk+1)−Ψ(x∗, p̄k∗)] + ‖p̄k − x∗‖2

− ‖xk+1 − p̄k − p̄k∗ + x∗‖2 − ‖xk+1 − p̄k∗‖2,

(15)

where the last equality follows directly from (12).
Note that, under assumption AssΨ(Ψ2), it follows that

Ψ(p̄k, p̄k∗)−Ψ(x∗, p̄k∗) ≤ Ψ(p̄k, x∗)−
m∑
i=1

〈Ψ̄i(p̄
k, x∗), ψ̂i(x

∗ − p̄k∗)〉,

Ψ(x∗, xk+1)−Ψ(p̄k, xk+1) ≤ Ψ(x∗, p̄k)−
m∑
i=1

〈Ψ̄i(x
∗, p̄k), ψ̂i(p̄

k − xk+1)〉.

Therefore, we have

Ψ(p̄k, p̄k∗)−Ψ(p̄k, xk+1) + Ψ(x∗, xk+1)−Ψ(x∗, p̄k∗)

≤ Ψ(p̄k, x∗) + Ψ(x∗, p̄k)−
m∑
i=1

〈Ψ̄i(p̄
k, x∗), ψ̂i(x

∗ − p̄k∗)〉 −
m∑
i=1

〈Ψ̄i(x
∗, p̄k), ψ̂i(p̄

k − xk+1)〉.

Then, using AssΨ(Ψ2), and the strong monotonicity of Ψ in AssΨ(Ψ1) that Ψ(x, y) +
Ψ(y, x) ≤ −ν‖x− y‖2 ∀x, y ∈ C, we get

Ψ(p̄k, p̄k∗)−Ψ(p̄k, xk+1) + Ψ(x∗, xk+1)−Ψ(x∗, p̄k∗)

≤ −ν‖p̄k − x∗‖2 +

m∑
i=1

〈Ψ̄i(p̄
k, x∗), ψ̂i(p̄

k − xk+1)− ψ̂i(x∗ − p̄k∗)〉

≤ −ν‖p̄k − x∗‖2 +

m∑
i=1

L̄iL̂i‖p̄k − x∗‖‖p̄k − xk+1 − x∗ + p̄k∗‖

= −ν‖p̄k − x∗‖2 + S‖p̄k − x∗‖‖p̄k − xk+1 − x∗ + p̄k∗‖.

(16)

Combining (15) and (16), we get

0 ≤ (1− 2skν)‖p̄k − x∗‖2 + 2skS‖p̄k − x∗‖‖p̄k − xk+1 − x∗ + p̄k∗‖
−‖xk+1 − p̄k − p̄k∗ + x∗‖2 − ‖xk+1 − p̄k∗‖2

= (1− 2skν)‖p̄k − x∗‖2 − (‖xk+1 − p̄k − p̄k∗ + x∗‖ − skS‖p̄k − x∗‖)2

+s2
kS

2‖p̄k − x∗‖2 − ‖xk+1 − p̄k∗‖2
≤ (1− 2skν + s2

kS
2)‖p̄k − x∗‖2 − ‖xk+1 − p̄k∗‖2.

Note that 0 ≤ ηk =
√

1− 2skν + s2
kS

2 < 1− λsk. This ensures the desired result.

Step 4. We show that the sequence {xk} is bounded. Indeed, putting X := C,Y :=
[0, 1],G(s) := C,∀s ∈ Y , s := sk,W (x, s) := −sΨ(x∗, x) − 1

2‖x − x
∗‖2 ∀(x, s) ∈ X × Y , we

have that M(sk) = argmax{W (x, sk) : x ∈ C} = argmin{skΨ(x∗, x) + 1
2‖x − x

∗‖2 : x ∈
C} = {p̄k∗}. Note that M is continuous and limk→∞ p̄k∗ = x∗. Since Ψ is continuous on C,
we get limk→∞Ψ(x∗, p̄k∗) = Ψ(x∗, x∗) = 0. In terms of AssΨ(Ψ3), there exists a constant
M̄(x∗) > 0 such that |Ψ(x∗, p̄k∗)| ≤ M̄(x∗)‖p̄k∗ − x∗‖,∀k ≥ 1. Putting x = x∗ in (14) and
using Ψ(x∗, x∗) = 0, we get −skΨ(x∗, p̄k∗) + 〈p̄k∗ − x∗, x∗ − p̄k∗〉 ≥ 0, which hence yields

‖p̄k∗ − x∗‖2 ≤ sk[−Ψ(x∗, p̄k∗)] ≤ skM̄(x∗)‖p̄k∗ − x∗‖, ∀k ≥ 1.

This immediately implies that ‖p̄k∗ − x∗‖ ≤ skM̄(x∗),∀k ≥ 1. Also, according to Lemma 2.3
we know that I−λ1A1 and I−λ2A2 are nonexpansive mappings, where λ1 ∈ (0, 2α) and λ2 ∈
(0, 2β). Note that the mapping G : H→ C is defined as G := JB1

λ1
(I−λ1A1)JB2

λ2
(I−λ2A2).
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Hence, by Lemma 2.4, we know that G is nonexpansive. We write y∗ = JB2

λ2
(I − λ2A2)x∗.

Then, by Lemma 1.1, we get x∗ = JB1

λ1
(I − λ1A1)y∗ = Gx∗. Thus we observe that

‖ūk − x∗‖ ≤ εk‖xk − x∗‖+ (1− εk)[ζ‖Γkūk − x∗‖+ (1− ζ)‖Gūk − x∗‖]
≤ εk‖xk − x∗‖+ (1− εk)[ζ‖ūk − x∗‖+ (1− ζ)‖ūk − x∗‖]
= εk‖xk − x∗‖+ (1− εk)‖ūk − x∗‖,

which hence yields

‖ūk − x∗‖ ≤ ‖xk − x∗‖. (17)

Since v̄k = JB2

λ2
(I − λ2A2)ūk and q̄k = JB1

λ1
(I − λ1A1)v̄k, we have q̄k = Gūk. Thus we get

‖q̄k − x∗‖ = ‖Gūk − x∗‖ ≤ ‖ūk − x∗‖, which together with (17), yields

‖q̄k − x∗‖ ≤ ‖ūk − x∗‖ ≤ ‖xk − x∗‖.

This together with the result in Step 1, implies that

‖zk − x∗‖ ≤ ‖q̄k − x∗‖ ≤ ‖ūk − x∗‖ ≤ ‖xk − x∗‖, ∀k ≥ 1. (18)

Since Γ is ξ-strictly pseudocontractive such that (γn + δn)ξ ≤ γn, by Lemma 2.2 we have

‖p̃k − x∗‖ ≤ βk‖zk − x∗‖+ (1− βn)‖ 1
1−βn [γk(Gp̃k − x∗) + δk(ΓGp̃k − x∗)]‖

≤ βk‖zk − x∗‖+ (1− βn)‖Gp̃k − x∗‖
≤ βk‖zk − x∗‖+ (1− βn)‖p̃k − x∗‖,

which together with (18) and p̄k = Gp̃k, yields

‖p̄k − x∗‖ ≤ ‖p̃k − x∗‖ ≤ ‖zk − x∗‖ ≤ ‖q̄k − x∗‖ ≤ ‖ūk − x∗‖ ≤ ‖xk − x∗‖ ∀k ≥ 1. (19)

So it follows that

‖xk+1 − x∗‖ ≤ ‖xk+1 − p̄k∗‖+ ‖p̄k∗ − x∗‖ ≤ (1− λsk)‖p̄k − x∗‖+ ‖p̄k∗ − x∗‖

≤ (1− λsk)‖xk − x∗‖+ skM̄(x∗) ≤ max{‖xk − x∗‖, M̄(x∗)

λ
}.

(20)

By induction, we get ‖xk − x∗‖ ≤ max{‖x1 − x∗‖, M̄(x∗)
λ } ∀k ≥ 1. Thus, {xk} is bounded,

and so are the sequences {p̃k}, {p̄k}, {q̄k}, {yk}, {zk}, {ūk}, {v̄k}.
Step 5. We show that if xki ⇀ x̂, q̄ki − xki → 0 and q̄ki − yki → 0 for {ki} ⊂ {k},

then x̂ ∈ Sol(C,Φ). Indeed, noticing q̄ki − xki → 0 and q̄ki − yki → 0, we get

‖xki − yki‖ ≤ ‖xki − q̄ki‖+ ‖q̄ki − yki‖ → 0 (i→∞). (21)

So it follows from xki ⇀ x̂ that q̄ki ⇀ x̂ and yki ⇀ x̂. Since {yk} ⊂ C, yki ⇀ x̂ and C is
weakly closed, we know that x̂ ∈ C. By (8), we have

αkiΦ(q̄ki , x) ≥ αkiΦ(q̄ki , yki) + 〈yki − q̄ki , yki − x〉, ∀x ∈ C.

Taking the limit as i→∞ and using the assumptions that limk→∞ αk = α̃ > 0, Φ(x̂, x̂) = 0,
{yki} is bounded and Φ is weakly continuous, we obtain that α̃Φ(x̂, x) ≥ 0, ∀x ∈ C. This
implies that x̂ ∈ sol(C,Φ).

Step 6. We show that xk → x∗, a unique solution of the MBEP with the GSVI and
CFPP constraints. Indeed, set Tk = ‖xk − x∗‖2. Since Γ is ξ-strictly pseudocontractive
such that (γk + δk)ξ ≤ γk, using Lemma 2.2 and Lemma 2.1 (v) we obtain

‖p̃k − x∗‖2 = ‖βk(zk − x∗) + γk(Gp̃k − x∗) + δk(ΓGp̃k − x∗)‖2
≤ βk‖zk − x∗‖2 + (1− βk)‖Gp̃k − x∗‖2
−βk(1− βk)‖ 1

1−βk [γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖2
≤ βk‖zk − x∗‖2 + (1− βk)‖p̃k − x∗‖2
−βk(1− βk)‖ 1

1−βk [γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖2,
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which immediately leads to

‖p̃k − x∗‖2 ≤ ‖zk − x∗‖2 − (1− βk)‖ 1

1− βk
[γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖2. (22)

By the results in Steps 1 and 2 we deduce from (19) and (22) that

‖xk+1 − x∗‖2 ≤ ‖p̄k − x∗‖2 − ‖xk+1 − p̄k‖2 + 2sk[Ψ(p̄k, x∗)−Ψ(p̄k, xk+1)]

≤ ‖q̄k − x∗‖2 − (1− 2αkc1)‖yk − q̄k‖2 − (1− 2αkc2)‖zk − yk‖2

− (1− βk)‖ 1

1− βk
[γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖2 − ‖xk+1 − p̄k‖2

+ 2sk[Ψ(p̄k, x∗)−Ψ(p̄k, xk+1)]

≤ ‖xk − x∗‖2 − (1− 2αkc1)‖yk − q̄k‖2 − (1− 2αkc2)‖zk − yk‖2

− (1− βk)‖ 1

1− βk
[γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖2 − ‖xk+1 − p̄k‖2 + skK,

(23)

where supk≥1{2|Ψ(p̄k, x∗)−Ψ(p̄k, xk+1)|} ≤ K for some K > 0.
Finally, we show the convergence of {Tk} to zero by the following two cases: Case

1. Suppose that there exists an integer k0 ≥ 1 such that {Tk} is non-increasing. Then the
limit limk→∞ Tk = τ̄ < +∞ and Tk − Tk+1 → 0 (k →∞). From (23), we get

(1− 2αkc1)‖yk − q̄k‖2 + (1− 2αkc2)‖zk − yk‖2 + (1− βk)

× ‖ 1

1− βk
[γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖2 + ‖xk+1 − p̄k‖2 ≤ Tk − Tk+1 + skK,

(24)

Since sk → 0, Tk − Tk+1 → 0 and lim supk→∞ βk < 1, we obtain from {αk} ⊂ (a, b) ⊂
(0,min{ 1

2c1
, 1

2c2
}) that

lim
k→∞

‖ 1

1− βk
[γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖ = 0, (25)

and

lim
k→∞

‖yk − q̄k‖ = lim
k→∞

‖zk − yk‖ = lim
k→∞

‖xk+1 − p̄k‖ = 0. (26)

We now show that ‖ūk − q̄k‖ → 0 as k →∞. Indeed, we set y∗ = JB2

λ2
(x∗ − λ2A2x

∗). Note

that v̄k = JB2

λ2
(ūk − λ2A2ū

k) and q̄k = JB1

λ1
(v̄k − λ1A1v̄

k). Then q̄k = Gūk. By Proposition

2.1 (ii) and Lemma 2.3 we have

‖v̄k − y∗‖2 ≤ ‖ūk − x∗‖2 − λ2(2β − λ2)‖A2ū
k −A2x

∗‖2, (27)

and

‖q̄k − x∗‖2 ≤ ‖v̄k − y∗‖2 − λ1(2α− λ1)‖A1v̄
k −A1y

∗‖2. (28)

Substituting (27) for (28), by (19) we get

‖q̄k − x∗‖2 ≤ ‖xk − x∗‖2 − λ2(2β − λ2)‖A2ū
k −A2x

∗‖2 − λ1(2α− λ1)‖A1v̄
k −A1y

∗‖2. (29)

Also, substituting (29) for (23), we get

‖xk+1 − x∗‖2 ≤ ‖q̄k − x∗‖2 + skK
≤ ‖xk − x∗‖2 − λ2(2β − λ2)‖A2ū

k −A2x
∗‖2 − λ1(2α− λ1)‖A1v̄

k −A1y
∗‖2 + skK,

which immediately yields

λ2(2β − λ2)‖A2ū
k −A2x

∗‖2 + λ1(2α− λ1)‖A1v̄
k −A1y

∗‖2 ≤ Tk − Tk+1 + skK.

Since λ1 ∈ (0, 2α), λ2 ∈ (0, 2β), sk → 0 and Tk − Tk+1 → 0, we get

lim
k→∞

‖A2ū
k −A2x

∗‖ = 0 and lim
k→∞

‖A1v̄
k −A1y

∗‖ = 0. (30)
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On the other hand, from Lemma 2.1 (iv) and Proposition 2.1 (ii), we get

‖q̄k − x∗‖2 ≤ 〈v̄k − y∗, q̄k − x∗〉+ λ1〈A1y
∗ −A1v̄

k, q̄k − x∗〉
≤ 1

2 [‖v̄k − y∗‖2 + ‖q̄k − x∗‖2 − ‖v̄k − q̄k + x∗ − y∗‖2] + λ1‖A1y
∗ −A1v̄

k‖‖q̄k − x∗‖.
This ensures that

‖q̄k − x∗‖2 ≤ ‖v̄k − y∗‖2 − ‖v̄k − q̄k + x∗ − y∗‖2 + 2λ1‖A1y
∗ −A1v̄

k‖‖q̄k − x∗‖. (31)

Similarly, we get

‖v̄k − y∗‖2 ≤ ‖ūk − x∗‖2 − ‖ūk − v̄k + y∗ − x∗‖2 + 2λ2‖A2x
∗ −A2ū

k‖‖v̄k − y∗‖. (32)

Combining (31) and (32), by (19) we have

‖q̄k − x∗‖2 ≤ ‖xk − x∗‖2 − ‖ūk − v̄k + y∗ − x∗‖2 − ‖v̄k − q̄k + x∗ − y∗‖2

+ 2λ1‖A1y
∗ −A1v̄

k‖‖q̄k − x∗‖+ 2λ2‖A2x
∗ −A2ū

k‖‖v̄k − y∗‖.
(33)

Substituting (33) for (23), we get

‖xk+1 − x∗‖2 ≤ ‖q̄k − x∗‖2 + skK
≤ ‖xk − x∗‖2 − ‖ūk − v̄k + y∗ − x∗‖2 − ‖v̄k − q̄k + x∗ − y∗‖2
+2λ1‖A1y

∗ −A1v̄
k‖‖q̄k − x∗‖+ 2λ2‖A2x

∗ −A2ū
k‖‖v̄k − y∗‖+ skK.

This immediately leads to

‖ūk − v̄k + y∗ − x∗‖2 + ‖v̄k − q̄k + x∗ − y∗‖2
≤ Tk − Tk+1 + 2λ1‖A1y

∗ −A1v̄
k‖‖q̄k − x∗‖+ 2λ2‖A2x

∗ −A2ū
k‖‖v̄k − y∗‖+ skK.

Since sk → 0 and Tk − Tk+1 → 0, we deduce from (30) that

lim
k→∞

‖ūk − v̄k + y∗ − x∗‖ = 0 and lim
k→∞

+‖v̄k − q̄k + x∗ − y∗‖ = 0.

Thus,

‖ūk −Gūk‖ = ‖ūk − q̄k‖ ≤ ‖ūk − v̄k + y∗ − x∗‖+ ‖v̄k − q̄k + x∗ − y∗‖ → 0 (k →∞). (34)

Utilizing the similar arguments to those of (34), we obtain

lim
k→∞

‖p̃k −Gp̃k‖ = lim
k→∞

‖p̃k − p̄k‖ = 0.

Noticing ūk = εkx
k + (1 − εk)(ζΓkū

k + (1 − ζ)Gūk), we obtain from (19) and Lemma 2.1
(v) that

‖ūk − x∗‖2 = εk‖xk − x∗‖2 + (1− εk)[ζ‖Γkūk − x∗‖2 + (1− ζ)‖Gūk − x∗‖2
−ζ(1− ζ)‖Γkūk −Gūk‖2]− εk(1− εk)‖ζ(xk − Γkū

k) + (1− ζ)(xk −Gūk)‖2
≤ εk‖xk − x∗‖2 + (1− εk)[ζ‖ūk − x∗‖2 + (1− ζ)‖ūk − x∗‖2
−ζ(1− ζ)‖Γkūk −Gūk‖2]− εk(1− εk)‖ζ(xk − Γkū

k) + (1− ζ)(xk −Gūk)‖2
= εk‖xk − x∗‖2 + (1− εk)‖ūk − x∗‖2 − (1− εk)ζ(1− ζ)‖Γkūk −Gūk‖2
−εk(1− εk)‖ζ(xk − Γkū

k) + (1− ζ)(xk −Gūk)‖2,
which hence yields

‖ūk − x∗‖2 ≤ ‖xk − x∗‖2 − 1−εk
εk

ζ(1− ζ)‖Γkūk −Gūk‖2
−(1− εk)‖ζ(xk − Γkū

k) + (1− ζ)(xk −Gūk)‖2.
This together with (23) and (19), implies that

‖xk+1 − x∗‖2 ≤ ‖q̄k − x∗‖2 + skK ≤ ‖ūk − x∗‖2 + skK
≤ ‖xk − x∗‖2 − 1−εk

εk
ζ(1− ζ)‖Γkūk −Gūk‖2

−(1− εk)‖ζ(xk − Γkū
k) + (1− ζ)(xk −Gūk)‖2 + skK.

So it follows that
1− εk
εk

ζ(1−ζ)‖Γkūk−Gūk‖2+(1−εk)‖ζ(xk−Γkū
k)+(1−ζ)(xk−Gūk)‖2 ≤ Tk−Tk+1+skK.
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Since sk → 0, Tk − Tk+1 → 0, ζ ∈ (0, 1) and lim supk→∞ εk < 1, we get

lim
k→∞

‖Γkūk −Gūk‖ = 0 and lim
k→∞

‖ζ(xk − Γkū
k) + (1− ζ)(xk −Gūk)‖ = 0. (35)

Noticing ūk −Gūk = εk(xk −Gūk) + (1− εk)ζ(Γkū
k −Gūk), we have

εk‖xk −Gūk‖ ≤ ‖ūk −Gūk‖+ (1− εk)ζ‖Γkūk −Gūk‖
≤ ‖ūk −Gūk‖+ ‖Γkūk −Gūk‖.

From (34), (35) and 0 < lim infk→∞ εk, it follows that

lim
k→∞

‖xk −Gūk‖ = 0, (36)

which together with (35), implies that

‖ūk − xk‖ = (1− εk)‖ζ(Γkū
k − xk) + (1− ζ)(Gūk − xk)‖

≤ ‖ζ(Γkū
k −Gūk +Gūk − xk) + (1− ζ)(Gūk − xk)‖

≤ ‖Γkūk −Gūk‖+ ‖Gūk − xk‖ → 0 (k →∞).

(37)

Combining (36) and (37), we have

‖xk −Gxk‖ ≤ ‖xk −Gūk‖+ ‖Gūk −Gxk‖

≤ ‖xk −Gūk‖+ ‖ūk − xk‖ → 0 (k →∞).
(38)

Moreover, from (34), (35) and (37), we infer that

‖Γkūk − ūk‖ ≤ ‖Γkūk −Gūk‖+ ‖Gūk − ūk‖ → 0 (k →∞),

and hence

‖Γkxk − xk‖ ≤ ‖Γkxk − Γkū
k‖+ ‖Γkūk − ūk‖+ ‖ūk − xk‖

≤ 2‖xk − ūk‖+ ‖Γkūk − ūk‖ → 0 (k →∞).
(39)

In addition, from (25) and (26) it follows that

‖zk − p̃k‖ = (1− βk)‖ 1

1− βk
[γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖ → 0 (k →∞), (40)

and

‖zk − q̄k‖ ≤ ‖zk − yk‖+ ‖yk − q̄k‖ → 0 (k →∞), (41)

and hence

‖p̄k − q̄k‖ ≤ ‖p̄k − p̃k‖+ ‖p̃k − q̄k‖

≤ ‖p̄k − p̃k‖+ ‖p̃k − zk‖+ ‖zk − q̄k‖ → 0 (k →∞).
(42)

Thus, using (26), (36) and (42), we have

‖xk+1 − xk‖ ≤ ‖xk+1 − p̄k‖+ ‖p̄k − q̄k‖+ ‖q̄k − xk‖ → 0 (k →∞). (43)

Note that

‖q̄k −Gq̄k‖ = ‖Gūk −Gq̄k‖ ≤ ‖ūk − q̄k‖ → 0 (k →∞). (44)

So it follows from (34), (41) and (42) that

‖zk −Gp̃k‖ ≤ ‖zk − q̄k‖+ ‖q̄k −Gq̄k‖+ ‖Gq̄k −Gp̃k‖

≤ ‖zk − q̄k‖+ ‖q̄k − ūk‖+ ‖q̄k − p̃k‖ → 0 (k →∞).
(45)
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Since zk−p̃k = γk(zk−Gp̃k)+δk(zk−ΓGp̃k), we obtain from (40), (45) and 0 < lim infk→∞ δk
that

‖zk − ΓGp̃k‖ =
1

δk
‖zk − p̃k − γk(zk −Gp̃k)‖

≤ 1

δk
(‖zk − p̃k‖+ γk‖zk −Gp̃k‖)→ 0 (k →∞).

(46)

Note that
‖Gp̄k − p̄k‖ ≤ ‖Gp̄k −Gq̄k‖+ ‖Gq̄k − q̄k‖+ ‖q̄k − p̄k‖

≤ 2‖p̄k − q̄k‖+ ‖Gq̄k − q̄k‖.
So it follows from (40), (42), (44) and (46) that

‖p̄k − ΓGp̄k‖ ≤ ‖p̄k − zk‖+ ‖zk − ΓGp̄k‖
≤ ‖p̄k − p̃k‖+ ‖p̃k − zk‖+ ‖zk − ΓGp̃k‖+ ‖ΓGp̃k − ΓGp̄k‖
≤ 2

1−ξ‖p̄
k − p̃k‖+ ‖p̃k − zk‖+ ‖zk − ΓGp̃k‖,

and hence

‖p̄k − Γ p̄k‖ ≤ ‖p̄k − ΓGp̄k‖+ ‖ΓGp̄k − Γ p̄k‖

≤ 2

1− ξ
‖p̄k − p̃k‖+ ‖p̃k − zk‖+ ‖zk − ΓGp̃k‖+

1 + ξ

1− ξ
‖Gp̄k − p̄k‖

≤ 2

1− ξ
‖p̄k − p̃k‖+ ‖p̃k − zk‖+ ‖zk − ΓGp̃k‖+

1 + ξ

1− ξ
(2‖p̄k − q̄k‖+ ‖Gq̄k − q̄k‖)→ 0.

(47)

Meantime, it is easy to see from (26) and (43) that

‖xk − p̄k‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − p̄k‖ → 0 (k →∞). (48)

Next we show that limk→∞ ‖xk−x∗‖ = 0. In fact, since the sequences {p̄k} and {xk}
are bounded, we know that there exists a subsequence {p̄ki} of {p̄k} converging weakly to
x̂ ∈ C and satisfying the equality

lim inf
k→∞

[Ψ(x∗, p̄k) + Ψ(p̄k, xk+1)] = lim
i→∞

[Ψ(x∗, p̄ki) + Ψ(p̄ki , xki+1)]. (49)

From (26) and (48) it follows that xki ⇀ x̂ and xki+1 ⇀ x̂. Then, by the result in Step 5,
we deduce that x̂ ∈ Sol(C,Φ). We now show that limk→∞ ‖xk − Γjx

k‖ = 0 for j = 1, ..., N .
Note that for j = 1, ..., N ,

‖xk − Γk+jx
k‖ ≤ ‖xk − xk+j‖+ ‖xk+j − Γk+jx

k+j‖+ ‖Γk+jx
k+j − Γk+jx

k‖
≤ 2‖xk − xk+j‖+ ‖xk+j − Γk+jx

k+j‖.

Thus, from (39) and (43) we get limk→∞ ‖xk − Γk+jx
k‖ = 0 for j = 1, ..., N . This immedi-

ately implies that

lim
k→∞

‖xk − Γjx
k‖ = 0 for j = 1, ..., N. (50)

Also, by (47) and (48) we have

‖xk − Γxk‖ ≤ ‖xk − p̄k‖+ ‖p̄k − Γ p̄k‖+ ‖Γ p̄k − Γxk‖

≤ ‖xk − p̄k‖+ ‖p̄k − Γ p̄k‖+
1 + ξ

1− ξ
‖p̄k − xk‖

=
2

1− ξ
‖xk − p̄k‖+ ‖p̄k − Γ p̄k‖ → 0 (k →∞).

(51)

It is clear from (50) that xki − Γjx
ki → 0 for j = 1, ..., N . Note that Lemma 2.6

guarantees the demiclosedness of I−Γj at zero for j = 1, ..., N . So, we know that x̂ ∈ Fix(Γj).
Since j is an arbitrary element in the finite set {1, ..., N}, we get x̂ ∈ ∩Nj=1Fix(Γj). Also,
note that Lemma 2.6 guarantees the demiclosedness of both I −Γ and I −G at zero. Since
limk→∞ ‖xk − Γxk‖ = 0 (due to (51)), we infer from xki ⇀ x̂ that x̂ ∈ Fix(Γ ), which hence
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yields x̂ ∈
⋂N
j=0 Fix(Γj). Meantime, from xki ⇀ x̂ and xk−Gxk → 0 (due to (38)) it follows

that x̂ ∈ Fix(G). Consequently, x̂ ∈
⋂N
j=0 Fix(Γj) ∩ Fix(G) ∩ Sol(C,Φ) = Ω . In terms of

(49), we have

lim inf
k→∞

[Ψ(x∗, p̄k) + Ψ(p̄k, xk+1)] = Ψ(x∗, x̂) ≥ 0. (52)

Since Ψ is ν-strongly monotone, we have

lim sup
k→∞

[Ψ(x∗, p̄k) + Ψ(p̄k, x∗)] ≤ lim sup
k→∞

(−ν‖p̄k − x∗‖2) = −ντ̄ . (53)

Combining (52) and (53), we obtain

lim sup
k→∞

[Ψ(p̄k, x∗)−Ψ(p̄k, xk+1)]

= lim sup
k→∞

[Ψ(p̄k, x∗) + Ψ(x∗, p̄k)−Ψ(x∗, p̄k)−Ψ(p̄k, xk+1)]

≤ lim sup
k→∞

[Ψ(p̄k, x∗) + Ψ(x∗, p̄k)] + lim sup
k→∞

[−Ψ(x∗, p̄k)−Ψ(p̄k, xk+1)]

= lim sup
k→∞

[Ψ(p̄k, x∗) + Ψ(x∗, p̄k)]− lim inf
k→∞

[Ψ(x∗, p̄k) + Ψ(p̄k, xk+1)]

≤ −ντ̄ .

(54)

We now claim that τ̄ = 0. On the contrary, we assume τ̄ > 0. Without loss of
generality we may assume that ∃k0 ≥ 1 s.t.

Ψ(p̄k, x∗)−Ψ(p̄k, xk+1) ≤ −ντ̄
2
, ∀k ≥ k0, (55)

which together with (23), implies that for all k ≥ k0,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2αkc1)‖yk − q̄k‖2 − (1− 2αkc2)‖zk − yk‖2

− (1− βk)‖ 1

1− βk
[γk(zk −Gp̃k) + δk(zk − ΓGp̃k)]‖2 − ‖xk+1 − p̄k‖2

+ 2sk[Ψ(p̄k, x∗)−Ψ(p̄k, xk+1)]

≤ ‖xk − x∗‖2 + 2sk[Ψ(p̄k, x∗)−Ψ(p̄k, xk+1)].

(56)

So it follows that for all k ≥ k0,

Tk − Tk0 ≤ −ντ̄
k−1∑
j=k0

sj . (57)

Since
∑∞
j=1 sj =∞ and limk→∞ Tk = τ̄ , taking the limit in (57) as k →∞ we get

−∞ < τ̄ − Tk0 = lim
k→∞

(Tk − Tk0) ≤ lim
k→∞

[−ντ̄
k−1∑
j=k0

sj ] = −∞.

This reaches a contradiction. Therefore, limk→∞ Tk = 0 and hence {xk} converges strongly
to the unique solution x∗ of the problem EP(Ω ,Ψ).

Case 2. Suppose that ∃{Tkj} ⊂ {Tk} s.t. Tkj < Tkj+1 ∀j ∈ N, where N is the set of
all positive integers. Define the mapping τ : N→ N by τ(k) := max{j ≤ k : Tj < Tj+1}. By
Lemma 2.7, we get

Tτ(k) ≤ Tτ(k)+1 and Tk ≤ Tτ(k)+1. (58)

Utilizing the same inferences as in (26) and (43), we can obtain that

lim
k→∞

‖xτ(k)+1 − p̄τ(k)‖ = lim
k→∞

‖q̄τ(k) − yτ(k)‖ = lim
k→∞

‖yτ(k) − zτ(k)‖ = 0, (59)
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and

lim
k→∞

‖xτ(k)+1 − xτ(k)‖ = 0. (60)

Since {p̄k} is bounded, there exists a subsequence of {p̄τ(k)} converging weakly to x̂. Without
loss of generality, we may assume that p̄τ(k) ⇀ x̂. Then, utilizing the same inferences as in

Case 1, we can obtain that x̂ ∈ Ω =
⋂N
i=0 Fix(Γi)∩Fix(G)∩Sol(C,Φ). From p̄τ(k) ⇀ x̂ and

(59), we get xτ(k)+1 ⇀ x̂. Using the condition {αk} ⊂ (a, b) ⊂ (0,min{ 1
2c1
, 1

2c2
}), we have

1− 2ατ(k)c1 > 0 and 1− 2ατ(k)c2 > 0. So it follows from (23) that

2sτ(k)[Ψ(p̄τ(k), xτ(k)+1)−Ψ(p̄τ(k), x∗)] ≤ Tτ(k) − Tτ(k)+1 − ‖xτ(k)+1 − p̄τ(k)‖2
−(1− 2ατ(k)c1)‖yτ(k) − q̄τ(k)‖2 − (1− 2ατ(k)c2)‖zτ(k) − yτ(k)‖2
−(1− βτ(k))‖ 1

1−βτ(k)
[γτ(k)(z

τ(k) −Gp̃τ(k)) + δτ(k)(z
τ(k) − ΓGp̃τ(k))]‖2 ≤ 0,

which hence leads to

Ψ(p̄τ(k), xτ(k)+1)−Ψ(p̄τ(k), x∗) ≤ 0. (61)

Since Ψ is ν-strongly monotone on C, we get

ν‖p̄τ(k) − x∗‖2 ≤ −Ψ(p̄τ(k), x∗)−Ψ(x∗, p̄τ(k)). (62)

Combining (61) and (62), we deduce from AssΨ(Ψ1) and x̂ ∈ Ω that

νlim sup
k→∞

‖p̄τ(k) − x∗‖2 ≤ lim sup
k→∞

[−Ψ(p̄τ(k), xτ(k)+1)−Ψ(x∗, p̄τ(k))]

= −Ψ(x̂, x̂)−Ψ(x∗, x̂) ≤ 0.

Hence, lim supk→∞ ‖xτ(k) − x∗‖2 ≤ 0. Thus, we get limk→∞ ‖xτ(k) − x∗‖2 = 0. From (60),
we get

‖xτ(k)+1 − x∗‖2 − ‖xτ(k) − x∗‖2 = 2〈xτ(k)+1 − xτ(k), xτ(k) − x∗〉+ ‖xτ(k)+1 − xτ(k)‖2
≤ 2‖xτ(k)+1 − xτ(k)‖‖xτ(k) − x∗‖+ ‖xτ(k)+1 − xτ(k)‖2.

Owing to Tk ≤ Tτ(k)+1, we get

‖xk − x∗‖2 ≤ ‖xτ(k)+1 − x∗‖2
≤ ‖xτ(k) − x∗‖2 + 2‖xτ(k)+1 − xτ(k)‖‖xτ(k) − x∗‖+ ‖xτ(k)+1 − xτ(k)‖2.

So it follows from (60) that xk → x∗ as k →∞. This completes the proof. �

4. Concluding remarks

In a real Hilbert space, let the GSVI and CFPP represent a general system of varia-
tional inclusions and a common fixed-point problem of finitely many nonexpansive mappings
and a strictly pseudocontractive mapping, respectively. In this article, we have suggested
a new iterative algorithm with the general implicit subgradient extragradient technique
for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP
constraints, i.e., a strongly monotone equilibrium problem over the common solution set
of another monotone equilibrium problem, the GSVI and the CFPP. The strong conver-
gence result for the proposed algorithm to solve such a MBEP with the GSVI and CFPP
constraints is established under some suitable assumptions. Furthermore, in the proposed
method, the second minimization problem over a closed convex set is replaced by the sub-
gradient projection onto some constructible half-space, and a new approach for solving the
GSVI and CFPP via Mann implicit iterations is provided.
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