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ON BIFLATNESS AND ¢-BIFLATNESS OF SOME BANACH ALGEBRAS

A. Sahami®

In this paper we continue our work in [20]. For a Banach algebra A with a
character ¢ € A(A), we discuss the relation of ¢-biflatness and left ¢p-amenability. We
show that if a Segal algebra S(G) (S(G)**) is ¢-biflat, then G is an amenable group.
Also we show that ¢-biflatness of a symmetric Segal algebra S(G) is equivalent with
amenability of G. We give the notion of bounded character biflat Banach algebras and
study its character spaces. We show that for a non-empty totally ordered set I with a
smallest element, upper triangular I X I-matriz algebra, say UPr(A) is biflat if and only
if A is biflat and I is singleton, provided that A(A) is non-empty and A has a right
tdentity. Also we give a class of non biflat Banach algebras.
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1. Introduction and Preliminaries

A Banach algebra A is amenable if for every bounded derivation D : A — X* there
exists an element zg in X* such that

D(@)=a-z0—x0-a (a€A),

for every Banach A—bimodule X, see [12]. A. Ya. Helemskii studied Banach algebras
through its homological properties. He introduced the concepts of biflat and biprojective
Banach algebras. Indeed, a Banach algebra A is called biflat(biprojective), if there exists a
bounded A-bimodule morphism p: A — (A®,A)*(p: A - A®,A) such that %" op (m40p)
is the canonical embedding of A into A**(is the identity map on A), respectively, where
T4 A®p A — Ais denoted for product morphism given by ma(a ® b) = ab (a,b € A).
In fact a Banach algebra A with a bounded approximate identity is biflat if and only if
A is amenable. Using this fact he showed that for a locally compact group G, L'(G) is
biflat(biprojective) if and only if G is an amenable (compact) group, respectively, see [7].

Recently a new notion of the amenability of Banach algebras related to its character
space has been introduced. Suppose that A is a Banach algebra and ¢ € A(A). A is called
left ¢-amenable, if for each continuous derivation D : A — X™* there exists zg in X* such
that

D(a) =a-zo — ¢(a)zy (a € A),

for every Banach A—bimodule X with a left action a - x = ¢(a)x which a € A and z € X.
Alaghmandan et. al. in [2] showed that a Segal algebra S(G) is left ¢—amenable if and only
if G is an amenable group. For more information about left ¢—amenability see [13], [10],
[15] and [16].

Motivated by these considerations, author with A. Pourabbas introduced some gener-
alizations of Helemskii’s concepts like ¢-biflatness and ¢-biprojectivity, where ¢ is a multi-
plicative linear functional on A. Indeed a Banach algebra A is called ¢-biflat (¢-biprojective)
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if there exists a bounded A-bimodule morphism p: A — (A®, A)*(p: A - A®, A) such
that

¢omi opla)=da) ($omaopla)=¢(a)) (a€A),

respectively. We showed for a locally compact group G, L'(G) is ¢-biflat if and only if G
is amenable. We also showed that for every locally compact group G, the Fourier algebra
A(QG) is ¢-biprojective if and only if G is discrete, see [20].

In this paper we give criterions to study the relation of left ¢-amenability and ¢-
biflatness. We show that a symmetric Segal algebra S(G) is ¢-biflat if and only if G is
amenable. We study ¢-biflatness of A** and we show that if S(G)** is biflat, then G is an
amenable group. We introduce the new class of character biflat Banach algebras and study
its maximal ideal space. Finally we investigate Helemskii-notion of biflatness for a class of
matrix algebras using ¢-biflatness and left ¢—amenability and we give a class of non-biflat
Banach algebras.

We remark some standard notations and definitions that we shall need in this paper.
Let A be a Banach algebra. If X is a Banach A-bimodule, then X* is also a Banach
A-bimodule via the following actions

(@-f)@) = fz-a), (f-a)@)=fla-z) (a€cAreX feX)

Throughout, the character space of A is denoted by A(A), that is, all non-zero multi-
plicative linear functionals on A. Let ¢ € A(A). Then ¢ has a unique extension o€ A(A*)
which is defined by ¢(F) = F(¢) for every F € A**,

Let A be a Banach algebra. The projective tensor product A ®, A is a Banach
A-bimodule via the following actions

a-(b®c)=ab®c, (b®c)-a=b®ca (a,b,cc A).

2. General results about ¢-biflatness of Banach algebras

A Banach algebra A is left(right) ¢-amenable if and only if there exists an element
m € A** such that am = ¢(a)m (ma = ¢(a)m) and ¢(m) = 1 for every a € A, respectively,
see [13, Theorem 1.1]. At the following Theorem we study the relation of ¢-biflatness and
left (right) ¢-amenability.

Theorem 2.1. Let A be a Banach algebra with a left(right) approzimate identity and let
¢ € A(A). If A is ¢-biflat, then A is left(right) ¢-amenable, respectively.

Proof. Let A be a ¢-biflat Banach algebra. Then there exists a bounded A-bimodule mor-
phism p: A — (A ®, A)** such that ¢ o 7% o p(a) = ¢(a) for every a € A. Put L = ker ¢.
Set g = (ida ® )™ o (ida®q)** op: A — (A®,C)**, where ¢: A — % is the quotient map
and ¢ : 24 — C is a character defined by ¢(a + L) = ¢(a) for every a € A. We see that g is
a bounded left A-module morphism. We show that g(I) = 0 for every [ € L. Since A has a
left approximate identity, AL = L. Then for each [ € L there exist sequences (a,,) C A and
(I,) € L such that a,l, — I. For b € L, define a map Ry, : A — L by Ry(a) = ab for every
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a € A. Since qo R;, =0, we have
g(l) = (ida ® ¢)™ o (ida @ )" (p(1))
— lim(ids © )" o (ida © 0)"* (p(auls)

(
(p(an) 'ln)

)
= lim(ida © ¢)™ o (ida @ ¢)™"
im(ida ® ¢)"" o (ida ® q)™" o (ida @ Ri,)" (p(an))
h ((ida ® ¢) 0 (ida ® q) © (ida ® Ry,))™" (p(an))
= lim((ida ® ¢) o (ida ® (g 0 R1,))™ (p(an)) = 0.

Therefore g induces a map §: 24 — (A ®, C)** which is defined by g(a + L) = g(a) for all
a € A. Tt is easy to see that g is a bounded left A-module morphism. Pick ag in A such that
¢(ap) = 1. We denote X : A®,C — A for a map which is specified by A(a® z) = az for every
a€ Aand z € C. Set m = \**og(ag+ L) € A**, we claim that am = ¢(a)m and ¢(m) =
for every a € A. Since A** is a left A-module morphism and also since aag+ L = ¢(a)ag + L,
we have

am = aX"* og(ap+ L) = N og(aag + L) = X" o g(¢p(a)ag + L)
= ¢(a)A™ o glao + L) (1)
= ¢(a)m
for every a € A. Since p(ag) € (A ®, A)**, by Goldestine’s theorem there exists a net (aq)
in A®, A such that a, v, plap). So
$(m) = m(¢) = [\** og(ag + L))(¢)
= [\ o glao)](¢)
= [\ o (ida @ ¢)"" o (ida ® q)" (p(a0))] ()
(Ao (ida ® §) o (ida ® q))"" (p(a0))](9)
= )™
=1

w* —lim(A o (ida ® ) o (ida ® q))*"(aa))](¢) (2)
m(Xo (ida ® ¢) o (ida ® q))** (aa)(9)

= lim(X o (ida ® ¢) o (ida ® q)(aa)(¢)

=lim¢o o (idy ® @) o (ida ® q)(as)

=lim¢poma(ay).
On the other hand since a,, N p(ag), the w*-continuity of 7%* implies that

Ta(ae) = 74 (aa) — 75 (p(ao)).
Thus

$(ma(aa)) = ma(aa)(¢) = 74 (aa)(9) = 74 (p(a0))(¢) = o mi (aa) = 1. (3)

We see that from (2) and (3), ¢(m) = 1. Combine this result with (1) implies that A is left
¢-amenable. Right case is similar to the left one. |

Example 2.1. Let A be a Banach algebra with dim(A) > 1 such that ab = ¢(b)a for every
a,b € A, where ¢ € A(A). Suppose conversely that A has a left approximate identity, say
(éa)wa- Suppose that ag is an element in A such that ¢(ag) = 1. We claim that lime, = ag.
To see this

ag = limeyap = lim ¢(ap)e, = lime,.
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It follows that ag is a left unit of A. Suppose that a is an arbitrary element of A. Then
a = apa = ¢(a)ag, for every a € A. It means that dim A = 1 which is a contradiction.

We claim that A is ¢-biflat. To see this let ag be an element in A such that ¢(ag) = 1.
Define p : A — (A®, A)** by p(a) = a ® a¢ for each a € A. One can easily see that p
is a bounded A-bimodule morphism and ¢ o 7%* o p(a) = ¢(a) for each a € A. Hence A is
¢-biflat.

We claim that A is not left ¢g-amenable. Suppose conversely that A is left ¢g-amenable.
Then by [13, Theorem 1.4] there exists a net (ay) in A such that

aay — ¢(a)an = 0 dlan) =1, (a € A). (4)

Suppose that ag is an element in A such that ¢(ag) = 1. Put ag in equation (4) one can see
that lima, = ap. Using (4) again follows that a = ¢(a)ag for every a € A. It implies that
dim A = 1 which is a contradiction.

Theorem 2.2. Let A be a Banach algebra with a left approzimate identity. If A** is ¢-biflat
then A is left ¢-amenable.

Proof. The proof is similar to the proof of Theorem 2.1 which for the sake of completeness
we give it here. Suppose that A** is ¢-biflat. Then there exists a A**-bimodule morphism
p: A = (A™ ®, A™)** such that ¢ o 7%i. o p(a) = d(a) a € A**. By restricting p
on A, we can assume that p : A — (A** @, A**)**. There exists a bounded linear map
P A @, A" — (A®, A)** such that for a,b € A and m € A** ®, A**, the following holds;

(i) Y(a®@b)=a®b,
(ii) ¥(m)-a=v¥(m-a), a-p(m)=1v(a-m),
(iii) 74" (¢ (m)) = ma+-(m),
see [8, Lemma 1.7]. Define
g — )\**** o (ZdA ®$)**** o (ZdA ®q)**** Ow** Op . A — A****,

where id4, g, A and (5 are same as in the proof of Theorem 2.1. It is easy to see that g is
a left A-module morphism and the restriction of g on L = ker ¢ is 0. Thus ¢ induces a left
A-module morphism g : 4 — A****. Pick ag € A such that ¢(0) = 1. Set m = g(ao + L).

It is easy to see that ¢(m) = 1 and am = ¢(a)m for every a € A. Suppose that e > 0 and
F ={ay,...,a,} € A*. Set

V ={(a1n — ¢(ar)n, ... arn — d(ar)n, d(n) —1)|n € A™, ||n|| < [[ml[}

T

c(J[a e c.

=1

By Goldestine’s theorem there exists a net (n,,) in A** such that n,, 2% m and [Inall < [Im]].
Thus (0,0, ...,0) is a w*-limit point of V. On the other hand since V is a convex set, the
weak topology and the norm topology are coincide on V. So (0,0, ...,0) is a || - ||-limit point
of V. Therefore there exists an element n ) in A** which satisfies

lainrg = d(aniroll < e |d(nme) =1l <e (5)
for every i € {1,2,...,7}. Observe that
A = {(F,¢) : F is a finite subset of A,e¢ > 0},
with the following order

(Fie) <(F',é) = FCF', e>¢
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is a directed set. Equation 5 follows that there exists a net bounded net (n(p.))(r,)ea in
A** such that

an(pe) — d)(a)n(F,e) — 07 Qg(n(F,e)) —1
for every a € A. By Alauglu’s theorem suppose that n = w* —limn g € A*™. It is easy to

see that an = ¢(a)n and ¢(n) = 1, for every a € A. It means that A is left ¢-amenable. [

Suppose that A is a Banach algebra and ¢ € A(A). A is called (approximately)
¢-inner amenable, if there exists a bounded (not necessarily bounded) net (aq ), in A such
that aa, — aga — 0 and ¢(a,) — 1, for every a € A, respectively. For more information
about ¢-inner amenability see [11].

Corollary 2.1. Let A be a Banach algebra with an approzimate identity and ¢ € A(A). If
A is ¢-biflat then A is ¢-inner amenable.

Proof. Since A is ¢-biflat with an approximate identity, Theorem 2.1 implies that A is left
and right ¢-amenable. Thus there exist bounded nets (mq)aer and (ng)ges in A such that
amq — ¢p(a)ma — 0, nga—¢la)ng — 0, ¢(my) = @(ng) =1, (a € A).

Define a? = mqng, it is easy to see that
aal —ala —0, ¢(a?) =1, (a € A).
Since (af)aer pes is a bounded net, A is ¢-inner amenable. O

Remark 2.1. For the previous Corollary, the existence of an approximate identity is neces-
sary which we can not remove it. To see this let A be the Banach algebra as in Example 2.1.
We showed that A is ¢-biflat, for some ¢ € A(A). Using the similar method which we used
in Example 2.1, one can show that A has an approximate identity if and only if dim A =1
and also A is ¢-inner amenable if and only if dim A = 1. So if dim A > 1, then A is ¢-biflat
but A does’nt have an approximate identity and A is not ¢-inner amenable.

We recall that a Banach algebra is approximately left(right) ¢-amenable if there exists
a not necessarily bounded net (mg ), in A such that
ame — ¢(a)ma — O, (maa - (j)(a)ma - 0)7 ¢(ma) — 13

and for each a € A, respectively. For more details see [1].

Proposition 2.1. Let A be a Banach algebra and ¢ € A(A). Suppose that A is a ¢-biflat
Banach algebra which is approzimately ¢-inner amenable. Then A is approximately left and
right ¢-amenable.

Proof. Since A is ¢-biflat, there exists a bounded A-bimodule morphism p: A — (A®, A)**
such that ¢ o %" o p(a) = ¢(a) for each a € A. Suppose that (aa)aes is a net in A which
satisfies aa, —ana — 0 and ¢(a,) — 1 for each a € A. Set n, = p(en). Since p is a bounded
A-bimodule morphism, we have

a-Ng —Ng-a=a-pleg) — pley) - a=plaay —aga) = 0 (a € A)
and R ~
pomy (na) = ¢omy oplea) = ¢(aa) — 1.
Let F' and I' be finite subsets of A and (A ®, A)*, respectively and also let € > 0 be an
arbitrary element. Take an element (T, F, ¢) in I such that

lana—na-all < 5 and  |domi(na) ~1/ < (a€ Fa>a(l,Fe),

where K = max{||f|||f € T'}. Since A is w*-dense in A**, there exists a net (mg(F’F’E))ﬂEJ in

a(T,Fe) w” o(T,Fe) w” (T, Fe)
B B

A®p, A such that m — No(1,F,e)- Therefore a-m — QN Fe), Mg :
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a Na(r,F,e) - @ for each a € F. Since w3 is a w*-continuous map, m4(m
T4 (N, Fe). Thus for each a € F and f € T, there exists 3(I', F,¢) in J such that for
every 8 > B(T, F,e) we have

a(F,F,e)) w
B

T',Fe € a(l,F,e €
la- mg( )(f) —a- na(F,F,e)(f)| < 3 |m5( ) a(f) —a- na(F,F,e)(f)l < 3
and also
€ 7 ,k €
|¢)O7TA(m,3(F F, )) ¢O7TA (na(F,F,e))| < g

It follows that

ja-mg ™I = mgT Y a(h) =

la - mg(F’F’E)(f) —a-ngr,reo(f) +a-nar reo(f) = nam,re - alf)
+nae.pe - a(f) = mg Tl a(f)] (6)
<la- mg(F’F’e)(f) —a- na(F,F,e)(f)\ + [la - No(T,F,e) — Ma(I,Fie) ~all[[£]

a(l',Fle € € €
+ Irar.re - a(f) = mg" " )'a(f)|<§+—+f=e

3 3
Also
|po m(mZ‘F’F’GU —1f=|¢o m(mZ(F’F’E)) — GO T N Fre) + GO TR Na(r ey — 1] < €
Set myr Fe) = ggff) Using the partial order

T,Fe)<(I',F,d)aTCI' FCF e>¢€
one can show that {(I', F, €)} is a directed set, where I and F’ are finite subsets of (A®, A)*
and A, respectively and also € > 0. So for the net (1 p.))(r,r,e), we have
a-m pe) — MY Fe) @ w, 0, (a€A)
and
poma(mr, re) — 1.
Using Mazur’s Lemma we can assume that

[l
a-mre —mrre-a——0, (a€A).

Suppose that L : A®, A — A is a map given by L(a ® b) = ¢(b)a (a,b € A). Clearly L is
a bounded linear map which satisfies

al(z) = L(a-z), L(z-a)=¢(a)L(x), ¢(L(z))=¢oma(z),
for every a € A,x € A®, A. It follows that
laL(mr.p.o) = (@) Lime poll < [[Lla-me o —mero-a)ll 20 (a€A)
and

d(L(mr pe))) = ¢ omalme re) — 1.

It means that A is approximately left ¢-amenable. Similarly we can show that A is approx-
imately right ¢-amenable. O
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3. Application to Segal algebras

Throughout this section G is a locally compact group. A linear subspace S(G) of
LY(G) is said to be a Segal algebra on G if it satisfies the following conditions
(i) S(G) is dense in L}(G),
(ii) S(G) with a norm || - |[s(g) is a Banach space and ||f||1 @) < |[flls(e) for every
fes(a),
(iii) for f € S(G) and y € G, we have L,(f) € S(G) the map y — L, (f) from G into S(G)
is continuous, where L, (f)(z) = f(y~'z),
(i) [[Ly(Dllse) = lIflls) for every f € S(G) and y € G.
It is well-known that S(G) always has a left approximate identity. A Segal algebra S(G) is
called symmetric, if for every f € S(G) and y € G, R, (f) € S(G) and the map y — R, (f) is
continuous. Also ||Ry(f)||s = ||f||s, for f € S(G) and y € G. We remind that a symmetric
Segal algebra is an ideal of L(G), for more information see [18].
For a Segal algebra S(G) it has been shown that

A(S(G)) = {050 |¢ € ALN(G))},

see [2, Lemma 2.2]. They showed for a locally compact group G, S(G) is left ¢-amenable
if and only if G is amenable [2, Corollary 3.4]. We will show that for a symmetric Segal
algebra S(G), ¢-biflatness is equivalent with amenability of G.

Corollary 3.1. If S(G) is ¢-biflat. Then G is amenable

Proof. Since every Segal algebra has a left approximate identity, by the Theorem 2.1, S(G)
is left ¢-amenable. Then [2, Corollary 3.4] implies that G is amenable. O

We show that the converse of Corollary 3.1 is valid for symmetric Segal algebras.
Proposition 3.1. Let G be a locally compact group, and S(G) be a symmetric Segal algebra
on G. Then for every ¢ € A(S(Q)) the followings are equivalent

(i) G is amenable,
(ii) S(G) is ¢-biflat,
(iii) S(G) is left p-amenable.

Proof. (i)=(ii) Let G be an amenable group. Then L!(G) is amenable. So there exists a
bounded net (my) in L*(G) ®, L*(G) such that a - mq —mq -a — 0 and 71 gy (ma)a — a
for every a € L'(G). It is easy to see that ¢ o wp1(g)(ma) — 1 for every ¢ € A(LY(G)). Fix
¢ € A(LY(G)). Define a map R : L'(G) ®, L'(G) — L'(G) by R(a ®b) = ¢(b)a and set
L: LYGQ) ®, LY(G) — L*(G) for a map which is specified by L(a ® b) = ¢(a)b for every
a,b € LY(Q). It is easy to see that L and R are bounded linear maps which satisfy

L(m-a) = L(m)*a, L(a-m)=¢(a)L(m) (ac€ L*(G),me LYG)®, Q)
and

R(a-m)=axR(m) R(m-a)=d(@)R(m) (a€L(G),m e L(G)&, L(G)).
Thus

L(ma) * a — ¢(a)L(ma) = L(ma -a —a-ma) =0,
similarly we have a x R(my) — ¢(a)R(my) — 0 for every a € L*(G). Since
poL=¢oR=dom(q),

it is easy to see that

¢ o L(ma) =¢o R(my) = ¢OWL1(G)(ma) — 1.
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Pick an element iy in S(G) such that ¢(ig) = 1. Set no, = R(my)io ® igL(m,) for every a.
Since L(m,) and R(m,) are bounded nets in L'(G) and since S(G) is an ideal of L}(G),
we see that (ny) is a bounded net in S(G) ®, S(G). Also

lla-ne —ng - a||S®pS =[la-nq — ¢(a)ng + ¢(a)ng —nq - CLHS®pS
=lla-ne — ¢(a)na|‘5®p5 +|[o(a)na —nq - aHS®pS — 0,
for each a € S(G). Also we have
¢ 0 Ts(G)(na) = S(R(ma) * i * L(ma)) = ¢(R(ma))d(L(ma)) — 1. (8)

Let N be a w*-cluster point of (n,) in (S(G) ®, S(G))**. Combining (7) and (8) with the
facts

(7)

a-naw—*>a-N, noé-aw—*>N~a7 WE’ZG)(na)w—*HTg’ZG)(N) (a € (S(@))

we have

a-N=N-a, ¢omgs(N)=1 (a€(S(G)).
Define amap p : S(G) — (S(G)®,S5(G))** by p(a) = a-N for every a € S(G). It is easy to see
that p is a bounded S(G)-bimodule morphism and gf;owg’zc) op(a) = &OW;?G) (a-N) = ¢(a),
so S(G) is ¢-biflat.
(ii)=(i) is clear by Corollary 3.1.
(iii)< (i) is clear by [2, Corollary 3.4]. O

Corollary 3.2. If S(G)** is o-biflat then G is amenable.

Proof. Since S(G) has a left approximate identity, by Theorem 2.2 ¢-biflatness of S(G)**
implies that S(G) is left ¢-amenable. Hence by [2, Corollary 3.4] G is an amenable group. O

Remark 3.1. The converse of previous Corollary is also true, whenever G is compact
group. To see this, let G be the dual group of G which consists of all non-zero continuous
homomorphism p : G — T. Since G is compact, G C L®(G) C L*(G). It is well-known
that every character ¢ € A(L'(G)) has the form ¢,(f) = [, p(z) f(x)dx, where dz is the

normalized Haar measure and p € G, for more details see [9, Theorem 23.7]. Clearly we
have

prf=rxp=0,Hp. do(f)lp)=1 (f€L(G)).
Note that by [2, Lemma 2.2], A(S(G)) is same as A(L'(G)). Now pick fo € S(G) which
¢,(fo) = 1. Since p* fo = fo*p = ¢p(fo)p = p, we have p € S(G). On the other hand
since p € S(G), two maps F' — Fp and F — pF are w*-continuous on S(G)**, we have

Fp=pF = ¢,(F)p for all F € S(G)**. Hence the map K : S(G)** — (S(G)** @ S(G)**)**
defined by K(F) = F - p® p is a bounded S(G)**-bimodule morphism which satisfies

Gp 0 M5y 0 K(F) = 0y(F) (F € S(G)™).
It follows that S(G)** is ¢,-biflat.

4. Bounded character biflat Banach algebras

Definition 4.1. Let A be a Banach algebra. A is called character biflat if for each ¢ € A(A)
there exists a bounded A-bimodule morphism py : A — (A ®, A)** such that
$omi opy(a) =d(a) (acA).

A is called bounded character biflat if A is character biflat and there exists C' > 0 such that
llpsll < C, for all ¢ € A(A).
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It is easy to see that every biflat Banach algebra is bounded character biflat but the
converse is not always true. At the following example we give a bounded character biflat
Banach algebra which is not biflat.

Example 4.1. Consider the semigroup N, with the semigroup operation mAn = min{m,n},
where m and n are in N. A(¢*(N,)) consists of the all functions ¢, : ¢}(N,) — C
defined by ¢,(> oy idi) = >, ; for every n € N, where §; is point mass at {i}.
See [3] for more details about the semigroup algebra ¢!(N,). Author with A. Pourab-
bas in [20, Example 5.3] showed that ¢*(N,) with respect to the ¢!(N,)-bimodule map
p1: H(NA) — (F1(NA))*™ given by pi(a) = a-6; ® 51 (a € £1(N,)) is ¢-biflat. Also for
each n > 1, set p, : 1(N,) = (1(Np) ®, £1(NA))** given by

pn(a) =a-6, — 6,1 @8, —0p_1 (a€l'(Ny)).
It is easy to see that
Gnomp(N,y © pola) = dla) (ac€ ?H(Np))

and ||p,|| < 4 for every n € N. Tt follows that ¢! (N,) is bounded character biflat. But ¢!(N,)
is not biflat Banach algebra. To see this suppose conversely that ¢!(N,) is biflat. Since
(8n)nen is a bounded approximate identity for ¢!(N,) see [3, Proposition 3.3.1], biflatness
of £1(N,) implies that ¢!(N,) is amenable. Then [5, Theorem 2] follows that Ey, the set of
idempotents of N5 must be finite but as we know {d,|n € N} is an infinite subset of E(Nx)
which is impossible.

Let A be a Banach algebra and A(A) be a non-empty set. A is called C-left ¢-
amenable, if there exists C' > 0 such that for each ¢ € A(A) and my € A** which satisfies

amg = ¢(a)myg, qz(m) =1

we have ||mg|| < C. A subset Y of a metric space (X, d) is called uniformly discrete if there
exists a € > 0 such that for each z,y in X, d(z,y) > e

Lemma 4.1. Let A be a Banach algebra with a bounded left approximate identity. If A is
bounded character biflat, then A(A) is a uniformly discrete subset of A*.

Proof. Suppose that A is bounded character biflat. Let ¢ € A(A) and p, be a bounded
A-bimodule morphism such that

$omy o pyla) = dla) (a € A),
which ||pe|| is bounded by some C' > 0. Suppose that (eq ) is a bounded left approximate
identity for A with bound K > 0. It is easy to see that a net (py(eq)) is a bounded net in
A** with bound CK. Using Alauglu’s Theorem, after passing to a subnet, we can assume
that py(eq) — F for some E in A** which ||E|| < CK. Now similar to the arguments as
in the proof of Theorem 2.1 set my = [\** o (ida ® ¢)** o (id4 ® ¢)**(E)]. Using the similar
method as in Theorem 1 and also Theorem 2 we can see that

amg = p(a)ymg — 0 d(mg) — 1 (a € A).

Hence m, is a left ¢-mean and also the net (mgy)gea(a) is a bounded net with bound MCK,
where M > 0. So A is left M CK-¢-amenable for all ¢ € A(A). Applying [4, Corollary 2.2]
one can see that A(A) is a uniformly discrete subset of A*. O

5. Application to biflatness of upper triangular Matrix algebras

In this section we study the biflatness of some matrix algebras via the notion of
¢-biflatness and right ¢-amenability.
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Proposition 5.1. Let A be a Banach algebra and ¢ € A(A). Suppose that I is a two-sided
closed ideal of A which ¢|; # 0. A is approxzimately left(right) ¢-amenable if and only if T
is approximately left(right) ¢|r-amenable, respectively.

Proof. For if part, suppose that A is approximately left ¢-amenable. Then there exists a
net (mey)qe in A such that am, — ¢(a)me — 0 and ¢(my) = 1 for all a € A. Pick ip € T
which ¢(ig) = 1. Set ny = mqlo, then (n,) is a net in I which
lina = ¢(1)nall = [limaio — d(i)maiol| < [lima — d(D)mallllioll = 0 (i € I)
and
P(na) = ¢(maio) = p(ma) = 1.
Hence I is approximately left ¢|;-amenable.

For converse, suppose that I is approximately left ¢|;-amenable. Then there exists a
net (mg) in I such that im, — ¢(i)mq — 0 and ¢(m,) =1 for all ¢ € I. Pick iy € I which
@(ip) = 1. Consider

llama — d(a)mal| = [lama — aigma + aigma — ¢(a)ma||
< [lama — aigma|| + [laioma — ¢(a)ma|
< [lma — tomallllal| + [laioma — ¢(aio)ma|l
—0 (a€A)

and ¢(m,) = 1. Then A is approximately left ¢-amenable.
The proof of right case is same as the left one. O

Let A be a Banach algebra and I be a totally ordered set. By UP;(A) we denote the
set of I x I upper triangular matrices which its entries come from A and

@i )ijerll = llaill < oo
igel
With matrix operations and || - || as a norm, UP;(A) becomes a Banach algebra. These

algebras are similar (in properties) to the /!— Munn algebras. Existence of bounded ap-
proximate identity for /! — Munn algebras has been studied in [6] by Esslamzadeh. Using
this approach Ramsden in [17] characterized biprojectivity and biflatness of some semigroup
algebras which are related to a class of ! — Munn algebras.

Lemma 5.1. Let A be a Banach algebra with a left (right) identity and I be a totally ordered
set. Then UP;(A) has a left (right) approzimate identity, respectively.

Proof. Tt is clear that U Pr(A) has left identity, whenever I is a finite set. Then suppose that
I is an infinite set. Put F(I) for the set of all finite subsets of T and 14 for a left identity
of A. Let b = (b ;)i jer be an arbitrary element of UP;(A). Then there exists an element
F € F(I) such that 3, ;7 g [|bij|| <e. Define er = (a;;)ijer with a;; = 14 whenever
i =7 € F, otherwise a; ; = 0.

lerb =0l =1 > bisll< D bisll<e
ijel—F ijel—F
It means UPr(A) has a left approximate identity. Right case is similar to the left one. O
Theorem 5.1. Let A be a Banach algebra with a right identity and A(A) # 0 and also let

(I, <) be a totally ordered set which has a smallest element. UPr(A) is biflat if and only if
A is biflat and I is singleton.
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Proof. Only if part is clear.

Suppose UPr(A) is biflat. Then UP;(A) is i-biflat for every ¢ € A(UPr(A4)). Let
ip € I be a smallest element of I with respect to < and ¢ € A(A). Define ¢;,((ai ;)i jer) =
O(aig.i0), for every (a; ;)i jer € UPr(A). It is easy to see that 1;, is a character on UP;(A).
Then UPr(A) is 1;,-biflat. Using previous Lemma and Theorem 2.1, one can see that
UP;(A) is right v;,-amenable. Let

J= {(am)me[ S UPI(A)|ai’j =0 for ¢#ig}.

Tt is easy to see that J is a closed ideal of UPr(A) and 1;,|; # 0. Thus by the right version
of [13, Lemma 3.1] we have J is right 1);,-amenable. Using the right version of [13, Theorem
1.4] there exists a bounded net (jo) in J such that

Jad = ¥e(i)ja = 0, g(ja) =1 (j€J). (9)
Suppose that I has at least two elements. We claim that |I| = 1. Suppose conversely that
O ao DY ao
0 0 --- 0
|[I| > 1. Let ag be an element in A such that ¢(ag) = 1. Set j = : : :
0o 0 --- 0
je gt
0O --- 0
We know that for every « the element j, has a form : : : : , where j* € A

0 --- 0

for every i € I. Now put j and j, in (9) we have j{ag — 0. Since ¢ is continuous, we have
#(j§) — 0. On the other hand 94 (jo) = #(j§) = 1 which is a contradiction. So I must be
singleton and the proof is complete. O

Lemma 5.2. Let A be a Banach algebra and ¢ € A(A). Suppose that xg is an element
in A which satisfies axo = woa and ¢(xo) = 1, for every a € A. Then UPyyqoy(A) is
approzimately -inner amenable, for some 1 € A(U Pyugoy(A))-

Proof. Suppose that I = NU{0}. Define ¢(3_; ;o7 ai;) = #(ao,), it is clear that 1 is a
character on UPr(A). Put F(I) for the set of all finite subsets of I. Let a be an arbitrary
element of UPr(A) and F' € F(I) be such that }_, o/ pllai;l| < MaaT - Set
np = max{nli, € F}.
Define a,,, = Zije{l o} i with a; ; = xo whenever i = j € {1,2,...,np}, otherwise
a;j = 0. Consider
lladne = anpall < llzollll D aigll <€ Wlans) = ¢(z0) = 1.
ijEl-F
Then UP;(A) is approximately ¢-inner amenable. a

Theorem 5.2. Let A be a Banach algebra and ¢ € A(A). Suppose that xg is an element
in A which satisfies axg = xoa and ¢p(xo) = 1, for every a € A. Then UPyyqoy(A) is not
biflat.

Proof. Let I = NU{0}. Suppose conversely that UPy(A) is biflat. Then UP;(A) is ¢-biflat,
where 9 is the character which we defined as in the proof of Lemma 5.2. Using the Lemma

5.2, UP;(A) is approximately ¥-inner amenable. Thus by Proposition 2.1, we have UP;(A)
is right approximate t-amenable. Set

J = {(am)i?je] S UPI(A)|a,;7j =0 for 1 7& 0}.
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It is easy to see that J is a closed ideal of UPr(A) and 9|y # 0. By Proposition 5.1, we have
J is approximately right i)-amenable. Following the same way as in the proof of Theorem
5.1, we have a contradiction. O

Corollary 5.1. Let G be a SIN group. Then UPyyoy(S(G)) is not biflat.

Proof. Tt is well-known that, if G is an SIN group, then S(G) has a central approximate
identity, say (eq)acr, see [14]. It follows that ae, = eqa and ¢(e,) — 1. Replacing e, with
@ we can assume that ¢(e,) = 1. Applying Theorem 5.2, one can see that U Pyugoy (S(G))
is not biflat. O

Corollary 5.2. Let A be a commutative Banach algebra which A(A) is non-empty. Then
U Pyugoy(A) is not biflat.

Remark 5.1. Suppose that X is a compact space. Then C(X) is an amenable Banach
algebra [19, Example 2.3.4]. Since amenability implies the biflatness, C'(X) is biflat but
using previous Corollary we can see that UPy(C(X)) is not biflat.

Set My (A), for the set of all I x I-matrices, say (ai ;)i jer, which (a; ;) comes from A and
> llaijll < oo. Note that UP;(A) is a subalgebra of M;(A). In the case of I = N and
A =C, M;(A) is biprojective so is biflat see [17, Proposition 2.7] but by previous Corollary
UP;(A) is not biflat.
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