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SLOPE FAILURE PROBABILITY AT CRITICAL VALUE OF 
SAFETY FACTOR 

Angela NEAGOE1, Radu POPA2 

A very efficient methodology to obtain the slope failure probability at minimum 
value of 1 for safety factor is presented. Using a genetic algorithm (GA), the minimum 
safety factor at specified values of geometrical and soil data is derived. This GA model 
produces lessons for learning and validation of an artificial neural network (ANN), able 
to give the correct value of minimum safety factor at imposed values of uncertain soil 
parameters. The ANN is then used in a probabilistic analysis based on the subset 
simulation (SS) and Markov chain Monte Carlo simulation (MCMCS) to provide the 
answer for the question of interest. The Latin hypercube sampling method has been 
preferred in the key steps of methodology. Numerical simulations using various data sets 
confirm the expected results. These results can be taken into account in any reliability 
analyses of such slope design problem. 

Keywords: small slope failure probability, genetic algorithm, artificial neural 
network, subset simulation, Markov chain Monte Carlo simulation. 

1. Introduction  

Due to the uncertainties associated with soil properties and their spatial 
variability, a minimum value of 1.5 is accepted for safety factor in the slope design. 
However, this practice offers no information concerning the reliability of the 
structure.  

Knowing that the real failure occurs at a safety factor value less than or equal 
to the critical value of 1, any risk analysis requires the occurrence probability 
evaluation of such situation. 

Although the use of stochastic concepts in structural safety started over half of 
century ago (e.g. Freudenthal, [1]), the computational difficulties of probabilistic 
analysis for rare events prevented, for a long time, getting some concluding results.  

Only after the year 2000, efficient techniques for small failure probabilities 
estimation were developed (e.g. Au and Beck, [2]; Cho, [3]; Zio and Pedroni, [4]). 
They are based on new sampling methods, on improvement of the standard Monte 
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Carlo simulation (MCS) by subset simulation (SS) and using Markov chains, and on 
artificial intelligence methods adapted to this domain, as well. 

Regarding the slope stability problem, it is known that, for a given geometry 
and specified soil proprieties, obtaining the minimum safety factor and the 
corresponding sliding surface is – in fact – a nonlinear and hard optimization 
problem. Including this task in any type of Monte Carlo analysis is prohibitive as 
computation time. 

Thus, the present study proposes a genetic algorithm (GA) model, applied in 
the vertical slices method (Fellenius, [5]) in order to find the minimum safety factor 
in deterministic conditions, for a specified slope geometry.  

Using the Latin hypercube sampling method (Stein, [6]), sets of representative 
samples (containing vectors of uncertain parameters) were then generated. With the 
mentioned GA model, the minimum safety factors were obtained for each such vector 
and sets of lessons for learning, and for validation of an artificial neural network 
(ANN) were formed. After validation, this ANN provides directly and simple the 
output quantity (the minimum safety factor), for specified values of input quantities 
(vector of uncertain parameters). Cho [3] mentions the use of an ANN, but for which 
the correct relationship between inputs and output was obtained with a different slope 
stability analysis method, using a commercial software package. 

Finally, ANN was used in the evaluation of small failure probabilities using 
subsets Monte Carlo simulation, with Markov chains. The standard Monte Carlo 
simulation is ineffective even in these conditions because the required number of 
minimum safety factor values is inversely proportional to the failure probability when 
this is very small. On the contrary, in the subsets simulation (SS), the initial 
probabilistic domain of uncertain variables is successively reduced. At each 
intermediate level, the new samples of vectors with uncertain parameters are 
generated using Monte Carlo simulation with Markov chains, according to the 
conditional probability of being placed in this subset. Thus, ANN will supply values 
of the minimum safety factor corresponding only to rare events, possible in this 
probabilistic subset. 

It is true that, for static or time-invariant reliability problems, sampling 
procedures have been developed (e.g. the importance sampling method) which give 
good results if the number of uncertain parameters is reduced (e.g. Rubinstein, [7]; 
Melchers, [8]). 

Still, the coupling between the GA model in order to train an ANN and use of 
the ANN in MCS subsets with Markov chains, seems to be the most efficient way for 
a suitable evaluation of small slope failure probabilities.  
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 2. GA model for the minimum safety factor evaluation in deterministic 
conditions 

 

Although there are more sophisticated methods for slope stability analysis 
(e.g. Griffiths, [9]; Matsui, [10]), here was adopted, for illustration, the classical 
method of vertical slices in the following assumptions: i) homogeneous and isotropic 
soil, having the cohesion c , friction angleϕ  and unit weight γ  as uncertain 
parameters, but having normal probability density functions (p.d.f.) – fj(xj), j = 1, 2, 3 
– with mean and standard deviations known from data measurements; ii) soil is 
unsaturated and the effect of pore pressure is neglected; iii) bottom ground is rigid, 
and the height H  and slope m are known; iv) sliding surface is a circular arc which 
passes through the tail of slope. 

By choosing the origin of the axes in C point, like in figure 1.a., the safety 
factor is given by relation: 
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where iii GT α= sin and iii GN α= cos are the tangential and normal components of 
the soil weight iG  in slice i , having an unit depth and an area of ia  ( γii aG = ). The 
angle between the vertical direction and the radius from O to the slice i middle is iα , 
and ACL  is the length of circular slip surface. 

In deterministic conditions (H, m, c , ϕ and γ specified) the equilibrium state 
occurs for the safety factor minimum value, but the position of slip circle center is 
unknown. 

Considering the above, the problem to be solved can be formulated as: 
( )[ ]YXF ,min        (2) 

with F being here a performance function (F ≡ S), and restricted by: 
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where the allowed domain for the O center position was limited like in figure 1.b. by: 
HX l 2−= , Br XX = , HYd = şi HYu 4= , according to various references (e.g. 

Priscu, [11]).  
There are many studies in the literature about GAs and their applications (e.g. 

Michalewicz, [12]; Goldberg, [13]; Chambers, [14], De Jong, [15]) so here is 
presented only a brief description of the implementation used in this problem. 
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a)      b) 

Fig.1.a) Sketch of slope defining; b) The permitted domain for the center position O 

The GA works simultaneously with populations having N real-coded solutions
( )jj YX , , Nj ,1= . In the initial population, the pairs jj YX , are randomly generated 
from the domain specified by the constraints (2). For each j solution the safety factor 

jS can be computed using relation (1) and then its fitness function jj SE /1= - that has 
to be maximized. 

To obtain the next population /generation, a random selection procedure is 
applied N times, so that the individuals with good fitness have a higher probability of 
selection. The normalized geometric ranking was used here as selection method 
(Houck et al, [16]). After each two such selections, the pair of parent solutions 
generates two children new solutions by crossover and mutation operators. Crossover 
is randomly performed by arithmetic crossover operator with probability of 9.0=cp , 
while the nonuniform mutation operator was applied with a probability of 05.0=mp . 

The solutions jj YX , , Nj ,1=  from the new generation are evaluated by 

computing jS and jE , and it is expected that they will be better than the ones from 
the previous population. 

The selection, crossover and mutation operations are repeated obtaining a new 
generation which is then evaluated, and the process stops after a specified number of 
generations, or due to a lack of improvement in the best solution over a specified 
number of generations. Here N=80 solutions per generation are used and the runs 
were stopped after 15 000 generations. 

The geometrical slope data are supposed H=9 m and m=2, while for the 
normal p.d.f. of uncertain variables the following parameters are considered: 
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kPa 4.18=c  and kPa 76.2=cσ ; o14=ϕ and o1.2=ϕσ ; 3kN/m18=γ  and 
3kN/m44.1=γσ . 

From several GA runs for the same values of ϕ,c  and γ , it could be seen that 
the safety factor minS  resulted identically in each run. The corresponding positions 
of O center are approximatively the same, but so that the radius R remains identical. 
A similar behaviour was observed for different uncertain variabiles vectors, 
concluding that the proposed GA model is suitable for this problem. 

In order to prepare for ANN learning and validation, four data sets were 
generated, each including 50 vectors ( ϕ,c , γ ).The Latin hypercube sampling 
method was used, which assures a representative covering of the entire probabilistic 
domain, defined here as ii σμ 3± , i=1,2,3 for each uncertain variable (with μ  - the 
mean). All the four sets (D1, D2, D3 and D4) contain different samples, but 
probabilistic distributed after the same methodology. 

Each data set D was run with the GA model which provided the 50 values of 
minS  corresponding to vectors ( ϕ,c , γ ) of the set. These data represent a lesson set.  

In order to diversify the available material for ANN stage, the four sets of 
lessons  were concatenated two by two, and so 12 sets, each having 100 lessons (D12, 
D13,..., D43) were obtained.  

3. ANN for deriving the relationship Smin– uncertain parameters 

A classical architecture was adopted for ANN, of multi-layers feed-forward 
type, having an input layer, one hidden layer and an output layer, as shown in figure 
2. 

The neurons from the input layer introduce into the network the values of 
uncertain parameters, and the output neuron provides the corresponding value of the 
minimum safety factor. For the hidden layer 7 neurons were accepted, the 
recommended number to obtain a good approximation (Hornik et al., [17]). 

between each input neuron and each hidden neuron, hw , and respectively 
between hidden neurons and the output one, ew , are initially randomly generated. The 
weighted signals entered in the hidden neurons are processed using a transfer function 
to generate signals towards the output neuron. This processes identically the received 
weighted signal and provides the value  of minS . Only the logistic sigmoid transfer 
functions were used. 
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      Fig.2. Architecture of the ANN model 

After the learning phase, the ANN must be validated using a different set of 
lessons, having the known input and output values. In both phases, the ANN ability to 
perform a good approximation is proved by some statistical parameters. In this 
application, the number of ANN responses having an absolute deviation less than 
0.01,…, 0.05 (about 1-5%) from the correct values is accepted. Also, for each set of 
100 lessons created with GA, there were determined: absolute average deviation on 
the set, maximum absolute deviation, average percentage deviation (%), average 
absolute percentage deviation (%) and standard residual deviation. 

For illustration, in table 1 the statistical parameters obtained after the training 
of ANN with some sets of lessons and with runs made under the same conditions are 
specified. 

Table 1 
Statistical results after training 

Used 
set 

 Number of data with deviation (from 100) AvAD MxAD AvPD AvAPD SRD ≤0.01 ≤0.02 ≤0.03 ≤0.04 ≤0.05 
D12 60 90 96 98 98 0.011 0.091 0.089 0.661 0.017 

D13 67 92 99 99 99 0.01 0.124 -0.122 0.633 0.016 

D23 71 95 98 99 99 0.008 0.055 -0.155 0.553 0.011 

D24 56 90 98 98 100 0.01 0.044 0.047 0.648 0.013 

D32 71 95 98 99 99 0.008 0.053 -0.022 0.563 0.011 

D34 57 95 98 99 100 0.009 0.05 0.129 0.598 0.012 

D42 55 95 97 98 100 0.01 0.046 -0.097 0.631 0.013 

D43 68 96 97 99 99 0.009 0.052 -0.173 0.586 0.011 

 

In the learning phase, the weight 
connection values are iteratively adjusted, 
in order to minimize the mean-squared 
error between the ANN response and that 
known as the correct one from each lesson 
of the trained set. The back-propagation is 
used to adjust the weights by a gradient 
method, starting from the output towards 
the input layer. 
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As it can be seen in table 1, the use of sets D 24, D 34 and D 42, resulted in 
responses different from the correct ones by less than 0.05, for all the 100 data sets. 
Because the set D 24 recorded the minimum absolute deviation (0.044), in table 2 are 
included the same statistical parameters obtained at validation of other data sets, 
using the weights found with this set. 

Table 2 
Statistical results at validation, with given weight 

Verified 
set 

 Number of data with deviation (from 100) AvAD MxAD AvPD AvAPD SRD ≤0.01 ≤0.02 ≤0.03 ≤0.04 ≤0.05 
D12 64 94 98 98 98 0.011 0.143 -0.009 0.674 0.023 

D13 63 94 99 99 99 0.01 0.143 0.104 0.649 0.018 

D14 63 94 99 99 99 0.01 0.143 0.104 0.649 0.018 

D23 57 91 99 99 100 0.01 0.042 0.137 0.683 0.012 

D34 61 93 99 99 100 0.009 0.044 0.127 0.589 0.012 

 
It is easy to observe that the ANN validation using the weights found with 

D24set, maintain or even improve the performance of the other sets, comparing with 
the training phase. The only exception appears at maximum absolute deviation which 
is higher for the first 3 validation sets. 

Considering the diversity of the learning sets content obtained with GA and 
the results from the tables 1 and 2, it can be considered that ANN responds to the 
imposed accuracy requirements. In the following sections, is used the ANN with the 
weights obtained in the learning phase by D 24 set. 

4. The mechanism of subset simulation (SS) 

Further, only for convenience, F is considered the failure event and the 
corresponding probabilistic domain of the uncertain parameters (Au and Beck, [2]). 
Also, S is considered the safety factor minimum value (instead of minS  from the 
previous Sections). 

Let iF , ni ,1=  be a sequence of failure events, having the probabilistic spaces 

with decreasing sizes, so that nFFF ⊃⊃⊃ ...21 and ∩
k

i
ik FF

1=
= , nk ,...,1= .  

Using the definition of conditional probability it can be written that 
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which expresses that the failure probability at the probabilistic subspace 
corresponding to nF  event is given by the product of a sequence of conditional 
probabilities ( )ii FFP 1+ , 1,...,1 −= ni  and of the ( )1FP . 

If S is the quantity influenced by the uncertain parameters, then the sequence 
of the failure events iF  can be defined by { }ii SSF <= , where nSSS >>> ...21 . 

The idea of SS for small failure probabilities evaluation, for example 

( ) 410−≅nFP is to choose 4=n  intermediate failure events so that ( )1FP  and 
( )ii FFP 1+ , =i 1,2,3 to be in the range of 10-1. 

While the estimation of ( )1FP  is possible with standard MCS (eventualy with 
Latin hypercube sampling method), obtaining the conditional failure probabilites 
from eq.(4) is a very dificult task. Generating samples of vectors with uncertain 
parameters which have p.d.f. restricted by their affiliation to the iF  event, is 
inefficient if the classical MCS is used. 

But the Markov chain MCS (MCMCS) method overcomes this inconvenience, 
being a powerful technique for simulating samples with any given p.d.f., in particular 
according to the conditional p.d.f. ( )Ff X , where X  is the vector of the uncertain 
quantities. A short description of the method is included in Section 5. 

In the actual SS implementation, the correspondence between the intermediate 
threshold values iS  of the output performance (the minimum safety factor) and the 
intermediate failure events iF  are taken into account. These thresholds iS  are 
introduced only for computational reasons in SS, without any physical interpretation 
about the degradation process. 

Because of an arbitrarily choosing of the sequence{ }niSi ,...,2,1; = , the values 

of the conditional probabilities ( )ii FFP 1+  are affected and difficult to be controlled. 
Thus, the intermediate threshold values are chosen adaptively: the conditional failure 
probabilities are imposed to a fixed value 0p , and then the corresponding iS  values 
are obtained. 
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The steps of SS algorithm are as follows: 
- M vectors { }M,...,2,1;0 =kkX  are sampled by standard MCS or by the Latin 
hypercube sampling technique. These samples correspond to “conditional level 0”. 
Using ANN, the corresponding values of the response ( ){ }M,...,2,1;0 =kS kX  are 
computed and ranked in an increasing list. The first intermediate threshold value 1S is 
chosen as the M0p -th value in this list; in this way, the sample estimation of 
( ) ( )11 SSPFP <=  is equal to 0p . There are now M0p  samples among all M vectors

{ }M,...,2,1;0 =kkX , whose S   values lie in { }11 SSF <= . These are placed at 

“conditional level 1” and distributed as ( )1Ff ⋅ ; 
- starting from each one of these samples, the MCMCS is used to generate ( )11 0 −p  
new conditional samples – i.e. on the entire ( )M11 0 −p  samples - to complete at M  

the number of conditional samples { } 11 M,...,2,1; Fkk ∈=X at “conditional level 1”. 
The intermediate threshold value 2S  is chosen as the Mp0 -th value from the 

increasing list of the responses ( ){ }M,...,2,1;1 =kS kX , so defining the failure region
{ }22 SSF <= . The sample estimation of ( ) ( )1212 SSSSPFFP <<=  is also equal to

0p ; 
- the M0p  samples lying in 2F are used as seeds for sampling ( )M-1 0p additional 

conditional samples distributed as ( )2Ff ⋅ , to complete a total of M conditional 

samples { }M,...,2,1;2 =kkX  at “conditional level 2”. 

This procedure is repeated until the samples at “conditional level n-1” are 
generated to obtain the threshold value nS  as the M0p -th value in the increasing list 

of ( ){ }M,...,2,1,1 =− kS k
nX . The failure region { }nn SSF <=  is then defined and the 

sample estimation of ( )1−nn FFP  is also equal to 0p . 

Idea of this SS implementation is detailed described in Au and Beck, [18], Zio 
and Pedroni, [4], etc.  
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5. Markov chain Monte Carlo simulation (MCMCS) 

In Fishman, [19] is presented the Metropolis method from which originates the 
MCMCS. Au and Beck, [2] include a modified Metropolis algorithm, more suitable 
when random vectors with many independent components are to be sampled. 

Let a seed sample X  in the failure region iF . For every 3,2,1=j  uncertain 

parameters ( )γϕ ,,c  it can be considered a “proposal” p.d.f. ( )xyf j
*  as a one – 

dimensional p.d.f. for y centered at x and having the symmetry property, i.e. 
( ) ( )yxfxyf jj

** = . 

With seed sample { }1
3

1
2

1
11 ,, xxx== XX , the Markov chain ,...,...,2 kXX  is 

generated according to the following scheme:  
1. Let { }kkk

k xxx 321 ,,=X  the current state 

2. Generate a candidate state  { }1
3

1
2

1
11

~,~,~~ +++
+ = kkk

k xxxX  
For each component 3,2,1=j : 

- generate a pre-candidate 1+k
jy  from ( )k

jj xf •*  
- compute the acceptance ratio 
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- set  1~ +k
jx according to 
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⎨
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j
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1
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3. Accept / reject candidate state 1~ +k
jX : 

- if no pre-candidate components were accepted, then go to step 4 
- else, check the location of 1~ +k

jX  by computing with ANN the output 
performance S and 
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• if S is less than the threshold value iS , then i
k
j F∈+1~X  and accept it as 

the next state (i.e. set 1
1

~ +
+ = k

jk XX ); 

• else  the current pre-candidate is rejected. 
4. Repeat from step 2 for an imposed number of attempts, at rejection from step 

3. If no accepting condition persists after 5 attempts, set kk XX =+1 . 
The last operation is here proposed to decrease the number of identical 

samples at “conditional level i” and so, to provide a more accurate sample estimation 
of the next intermediate threshold value 1+iS . 

Referring to the “proposal” p.d.f.s *
jf , these affect the deviation of the 

candidate state from the current one. The spread of *
jf determines the covering of 

failure region by Markov chain samples. Small spread increases the dependence 
between successive samples, while too large spread reduces the acceptance rate, 
increasing the number of identical samples in Markov chain. The type of the chosen 
proposal p.d.f. is less important and an uniform or normal p.d.f. centered at current 
sample may be used. In this work, the last one is adopted, with the same spreading as 
the original p.d.f., s jf . 

 

6. Numerical results 

A first problem in SS algorithm implementation is choosing the number of 
vectors M , with values of uncertain parameters and the fixed value 0p , for the failure 
conditional probabilities. In addition, Mp0 , has to be integer and, also, ( )11 0 −p  - 
the number of new conditional samples generated by MCMCS from each sample 
maintained at any level – to be integer. 

For the “conditional level 0”, by the Latin hypercube sampling technique a 
more suitable filling of the probabilistic space is obtained, comparatively to the 
standard MCS. This is based upon stratified sampling, with random selection within 
each stratum, and 1000 samples obtained by such a method will produce comparable 
estimations to these of about 5000 samples generated by standard MCS. 

Two files, V1 and V2, each having 1000=M  different vectors ( )γϕ ,,c  were 
created using this method. Then, a new file, V, with 2000=M  vectors, is obtained 
by concatenation of the previous two. 
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Referring to the 0p  value, Au and Beck, [2], empirically found that a good 
efficiency is obtained if 0p =0.1, but in this application such value seems to be too 
small (critical condition 1=S appears inside the conditional level 1). Some other 
values should be 0.2; 0.25 and 0.5, with only 4, 3 and 1 new generated samples from 
each seed vector in MCMCS procedure. 

Because all seed samples maintained at any level i are in the probabilistic region 
iF  (and therefore distributed as ( )iFf X , so are the subsequent samples generated 

from each seed and the Markov chain is in a stationary state. This means that the 
length of the Markov chain obtained from each seed becomes less important. The 
following results were computed using 0p =0.5 and 0p =0.2, with 1 and 4 new 
samples in each Markov chain. 

To illustrate the SS idea, figure 3.a presents the 1000=M  points ( )γϕ ,,c  from 
V1 at conditional level 0, and then, figures 3.b, c and d present all the 500 seed states 
and 500 generated states at conditional levels 1, 2 and 3. 

 

 
Fig.3. The points of M = 1000 sample vectors in probabilistic domain: a) level 0; 

b) level 1( 4906.1min ≤S ); c) level 2( 3229.1min ≤S ); d) level 3 ( 2207.1min ≤S ) 
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Table 3 includes some results obtained for 0p =0.5, and 1000=M . For each 
initial vector V1 and V2 are presented the threshold values iS  from one run, and the 
average values from 3 different runs. 

One ascertains that threshold values iS  at different values of the non-
exceeding probability are almost equals. This is true between individual runs with 
initial vectors V1 and V2, as well for the mean values from 3 runs with V1 and V2 
respectively. 

 Table 3 
Threshold values iS , so that ( ) 5.0, 0 =≤ piSSP  

( )iSSP ≤  0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 

V1 1.4906 1.3229 1.2207 1.1508 1.0993 1.0588 1.0213 0.9953 

V1ave 1.4906 1.3210 1.2196 1.1508 1.0984 1.0568 1.0217 0.9931 

V2 1.4953 1.3253 1.2244 1.1423 1.0990 1.0508 1.0209 0.9824 

V2ave 1.4953 1.3268 1.2247 1.1462 1.0978 1.0521 1.0216 0.9860 

 
Using the last two average S values obtained with V1 and linear interpolation, 

the probability for critical state 1≤S  results as ( )1≤SP =0.00485, i.e. less than 0.5%. 
A similar analysis was developed for the fixed probability 0p =0.2. In table 4 

are presented the threshold values iS , obtained in 3 runs with initial vectors V1, V2 
and V (M=2000 data sets) respectively.  

Table 4 
Threshold values iS , so that ( ) 2.0, 0 =≤ piSSP  

( )iSSP <  V1 V2 V 

0.21 1.2365 1.2365 1.2365 1.2473 1.2473 1.2473 1.2431 1.2431 1.2431 

0.22 1.0949 1.0945 1.1019 1.0873 1.0899 1.1001 1.0837 1.0942 1.0888 

0.23 1.0137 1.0078 1.0126 0.9942 1.0104 1.0017 1.0024 1.0094 1.0014 

0.24 0.9377 0.9377 0.9527 0.9413 0.9465 0.9413 0.9365 0.9365 0.9387 

 
By a simple inspection, the same general conclusions as above can be derived. 

At any non-exceeding probability level, in all runs were obtained almost the same 
values of the threshold iS . 
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For evaluation the critical state probability ( )1≤SP , the last two lines from 
table 4 are to be used within the linear interpolation. The mean S values from the 3 
runs with V1 are 1.0114 and 0.9427 (at 008.02.0 3 ==P  and 0016.02.0 4 ==P  
respectively), resulting ( ) 00694.01 =≤SP , while from runs with V  vectors are 
obtains the mean S values 1.0044 and 0.9373 (at the same P  values), and 
( ) 00758.01 =≤SP  (i.e. less than 0.7% and 0.8% respectively). 

The linear interpolation was used above only for convenience. 
A more appropriate way to evaluate the non-exceeding probability ( )1≤SP  

should be to obtain the rank of the first value with S=1in the increasing list at the last 
level having the Mp0  values of S  less than 1. Then, the value of the rank divided by 
M is exactly the conditional probability as ≤S 1 at the last level. 

With initial V  vectors ( 2000=M ) and fixed probability 2.00 =p , a run that 
uses this scheme gives ( ) 00516.01 =≤SP  (while using linear interpolation the result 
was 0.00636) and the average value from 3 runs resulted as 0.0060. With 5.00 =p  an 
average probability ( ) 0045.01 =≤SP  is derived. 

However, taking into account the observation about using 1.00 =p  in this 
application, 3 runs were finally accomplished with initial V  vectors. The non-
exceeding probability ( )1≤SP  is obtained as: 0.0135; 0.01295 and 0.0129, having an 
average value of 0.0131 (i.e. about 1.3%). 

The small differences between the results obtained at the same value 0p  are 
perfectly well explained by the probabilistic nature of the analysis. Concerning the 
observed differences at various values of 0p , these are rather related to the 
characteristic feature of this particular problem, besides the probabilistic aspects. 

At any rate, an estimation of the non-exceeding probability for critical state 
1≤S  as being less than 1.5% seems to be reasonable and this value may be accepted 

in any reliability study.  

7. Conclusions 

Efficient computation of slope failure probability at critical value 1=S  for the 
minimum safety factor is here obtained using: 1) a genetic algorithm (GA) model to 
find this minimum safety factor when geometrical and soil data are specified; 2) an 
artificial neural network (ANN) able to directly give this factor, for specified values 
of uncertain parameters; 3) subset simulation (SS) to express the small failure 
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probability as a product of larger conditional failure probabilities; 4) Markov chain 
Monte Carlo simulation (MCMCS) to easily generate samples conditional on 
intermediate failure region.  

By Latin hypercube sampling method, a lot of vectors with uncertain 
parameters were derived and then used in GA model to obtain the training and 
validation data sets for ANN. All the following probabilistic analyses were 
accomplished only by using this ANN, which ensures the efficiency of proposed 
methodology. 

It should be noted that – in this numerical example – the chance to appear a 
minimum safety factor less than a value of 1.5 (standard value in design) is about 
50%, but the same chance for an effective failure (at critical value 1≤S ) does not 
exceed about 1.5%. This aspect must be taken into account for any risk analysis and 
possible optimization of structure design. 
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