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SLOPE FAILURE PROBABILITY AT CRITICAL VALUE OF
SAFETY FACTOR

Angela NEAGOE', Radu POPA’

A very efficient methodology to obtain the slope failure probability at minimum
value of 1 for safety factor is presented. Using a genetic algorithm (GA), the minimum
safety factor at specified values of geometrical and soil data is derived. This GA model
produces lessons for learning and validation of an artificial neural network (ANN), able
to give the correct value of minimum safety factor at imposed values of uncertain soil
parameters. The ANN is then used in a probabilistic analysis based on the subset
simulation (SS) and Markov chain Monte Carlo simulation (MCMCS) to provide the
answer for the question of interest. The Latin hypercube sampling method has been
preferred in the key steps of methodology. Numerical simulations using various data sets
confirm the expected results. These results can be taken into account in any reliability
analyses of such slope design problem.

Keywords: small slope failure probability, genetic algorithm, artificial neural
network, subset simulation, Markov chain Monte Carlo simulation.

1. Introduction

Due to the uncertainties associated with soil properties and their spatial
variability, a minimum value of 1.5 is accepted for safety factor in the slope design.
However, this practice offers no information concerning the reliability of the
structure.

Knowing that the real failure occurs at a safety factor value less than or equal
to the critical value of 1, any risk analysis requires the occurrence probability
evaluation of such situation.

Although the use of stochastic concepts in structural safety started over half of
century ago (e.g. Freudenthal, [1]), the computational difficulties of probabilistic
analysis for rare events prevented, for a long time, getting some concluding results.

Only after the year 2000, efficient techniques for small failure probabilities
estimation were developed (e.g. Au and Beck, [2]; Cho, [3]; Zio and Pedroni, [4]).
They are based on new sampling methods, on improvement of the standard Monte
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Carlo simulation (MCS) by subset simulation (SS) and using Markov chains, and on
artificial intelligence methods adapted to this domain, as well.

Regarding the slope stability problem, it is known that, for a given geometry
and specified soil proprieties, obtaining the minimum safety factor and the
corresponding sliding surface is — in fact — a nonlinear and hard optimization
problem. Including this task in any type of Monte Carlo analysis is prohibitive as
computation time.

Thus, the present study proposes a genetic algorithm (GA) model, applied in
the vertical slices method (Fellenius, [5]) in order to find the minimum safety factor
in deterministic conditions, for a specified slope geometry.

Using the Latin hypercube sampling method (Stein, [6]), sets of representative
samples (containing vectors of uncertain parameters) were then generated. With the
mentioned GA model, the minimum safety factors were obtained for each such vector
and sets of lessons for learning, and for validation of an artificial neural network
(ANN) were formed. After validation, this ANN provides directly and simple the
output quantity (the minimum safety factor), for specified values of input quantities
(vector of uncertain parameters). Cho [3] mentions the use of an ANN, but for which
the correct relationship between inputs and output was obtained with a different slope
stability analysis method, using a commercial software package.

Finally, ANN was used in the evaluation of small failure probabilities using
subsets Monte Carlo simulation, with Markov chains. The standard Monte Carlo
simulation is ineffective even in these conditions because the required number of
minimum safety factor values is inversely proportional to the failure probability when
this is very small. On the contrary, in the subsets simulation (SS), the initial
probabilistic domain of uncertain variables is successively reduced. At each
intermediate level, the new samples of vectors with uncertain parameters are
generated using Monte Carlo simulation with Markov chains, according to the
conditional probability of being placed in this subset. Thus, ANN will supply values
of the minimum safety factor corresponding only to rare events, possible in this
probabilistic subset.

It is true that, for static or time-invariant reliability problems, sampling
procedures have been developed (e.g. the importance sampling method) which give
good results if the number of uncertain parameters is reduced (e.g. Rubinstein, [7];
Melchers, [8]).

Still, the coupling between the GA model in order to train an ANN and use of
the ANN in MCS subsets with Markov chains, seems to be the most efficient way for
a suitable evaluation of small slope failure probabilities.
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2. GA model for the minimum safety factor evaluation in deterministic
conditions

Although there are more sophisticated methods for slope stability analysis
(e.g. Griffiths, [9]; Matsui, [10]), here was adopted, for illustration, the classical
method of vertical slices in the following assumptions: i) homogeneous and isotropic
soil, having the cohesionc, friction anglep and unit weight » as uncertain
parameters, but having normal probability density functions (p.d.f.) —fj(xj),j =1, 2, 3
— with mean and standard deviations known from data measurements; ii) soil is
unsaturated and the effect of pore pressure is neglected; iii) bottom ground is rigid,
and the height H and slope m are known; iv) sliding surface is a circular arc which
passes through the tail of slope.

By choosing the origin of the axes in C point, like in figure 1.a., the safety
factor is given by relation:

tg(pz N,+cL,c

S M

where T; =G;jsinaand Nj = Gj cosajare the tangential and normal components of

S =

the soil weight G; in slice i, having an unit depth and an area of &, (G; =a; ). The
angle between the vertical direction and the radius from O to the slice i middle is ¢,
and L pc is the length of circular slip surface.

In deterministic conditions (H, m, ¢, ¢ and » specified) the equilibrium state

occurs for the safety factor minimum value, but the position of slip circle center is
unknown.
Considering the above, the problem to be solved can be formulated as:

min [F(X,Y)] 2
with F being here a performance function (F = S), and restricted by:
X SX <X,
Yq <Y <Y, )
d=T="Ty

where the allowed domain for the O center position was limited like in figure 1.b. by:
Xy =-2H, X, =Xg, Yg =Hsi Y, =4H, according to various references (e.g.
Priscu, [11]).

There are many studies in the literature about GAs and their applications (e.g.
Michalewicz, [12]; Goldberg, [13]; Chambers, [14], De Jong, [15]) so here is
presented only a brief description of the implementation used in this problem.
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Fig.1.a) Sketch of slope defining; b) The permitted domain for the center position O

The GA works simultaneously with populations having N real-coded solutions
(X i-Yj ), J=L N In the initial population, the pairs X j»Yjare randomly generated
from the domain specified by the constraints (2). For each j solution the safety factor
S can be computed using relation (1) and then its fitness functionE; =1/s - that has

to be maximized.

To obtain the next population /generation, a random selection procedure is
applied N times, so that the individuals with good fitness have a higher probability of
selection. The normalized geometric ranking was used here as selection method
(Houck et al, [16]). After each two such selections, the pair of parent solutions
generates two children new solutions by crossover and mutation operators. Crossover
is randomly performed by arithmetic crossover operator with probability of p, =0.9,

while the nonuniform mutation operator was applied with a probability of p,, =0.05.

The solutions Xj,Yj, J=LN from the new generation are evaluated by

computing S;and E j- and it is expected that they will be better than the ones from

the previous population.

The selection, crossover and mutation operations are repeated obtaining a new
generation which is then evaluated, and the process stops after a specified number of
generations, or due to a lack of improvement in the best solution over a specified
number of generations. Here N=80 solutions per generation are used and the runs
were stopped after 15 000 generations.

The geometrical slope data are supposed H=9 m and m=2, while for the
normal p.d.f. of uncertain variables the following parameters are considered:
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c=184kPa and o.=2.76kPa; ¢=14%and 0(/,=2.1°; 7_/=181<N/m3 and

o, = 1.44kN/m"> .

From several GA runs for the same values of €, and y, it could be seen that
the safety factor S,;, resulted identically in each run. The corresponding positions
of O center are approximatively the same, but so that the radius R remains identical.
A similar behaviour was observed for different uncertain variabiles vectors,
concluding that the proposed GA model is suitable for this problem.

In order to prepare for ANN learning and validation, four data sets were
generated, each including 50 vectors (C,p, y).The Latin hypercube sampling

method was used, which assures a representative covering of the entire probabilistic
domain, defined here as g 30, i=1,2,3 for each uncertain variable (with z - the

mean). All the four sets (D1, D2, D3 and D4) contain different samples, but
probabilistic distributed after the same methodology.
Each data set D was run with the GA model which provided the 50 values of
S,... corresponding to vectors (C,¢ , ) of the set. These data represent a lesson set.
In order to diversify the available material for ANN stage, the four sets of

lessons were concatenated two by two, and so 12 sets, each having 100 lessons (D12,
D13,..., D43) were obtained.

3. ANN for deriving the relationship Spi,— uncertain parameters

A classical architecture was adopted for ANN, of multi-layers feed-forward
type, having an input layer, one hidden layer and an output layer, as shown in figure
2.

The neurons from the input layer introduce into the network the values of
uncertain parameters, and the output neuron provides the corresponding value of the
minimum safety factor. For the hidden layer 7 neurons were accepted, the
recommended number to obtain a good approximation (Hornik et al., [17]).

between each input neuron and each hidden neuron, W,, and respectively

between hidden neurons and the output one, W, , are initially randomly generated. The

weighted signals entered in the hidden neurons are processed using a transfer function
to generate signals towards the output neuron. This processes identically the received
weighted signal and provides the value of S_, . Only the logistic sigmoid transfer

functions were used.
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Input layer Hidden layer Output layer

In the learning phase, the weight
connection values are iteratively adjusted,
in order to minimize the mean-squared
error between the ANN response and that
known as the correct one from each lesson
of the trained set. The back-propagation is
used to adjust the weights by a gradient
method, starting from the output towards

backpropagation

Fig.2. Architecture of the ANN model the input layer.

After the learning phase, the ANN must be validated using a different set of
lessons, having the known input and output values. In both phases, the ANN ability to
perform a good approximation is proved by some statistical parameters. In this
application, the number of ANN responses having an absolute deviation less than
0.01,..., 0.05 (about 1-5%) from the correct values is accepted. Also, for each set of
100 lessons created with GA, there were determined: absolute average deviation on
the set, maximum absolute deviation, average percentage deviation (%), average
absolute percentage deviation (%) and standard residual deviation.

For illustration, in table 1 the statistical parameters obtained after the training
of ANN with some sets of lessons and with runs made under the same conditions are

specified.
Table 1
Statistical results after training

D12 60 90 96 98 98 0.011 0.091 0.089 0.661 0.017
D13 67 92 99 99 99 0.01 0.124 -0.122 0.633 0.016
D23 71 95 98 99 99 0.008 0.055 -0.155 0.553 0.011
D24 56 90 98 98 100 0.01 0.044 0.047 0.648 | 0.013
D32 71 95 98 99 99 0.008 0.053 -0.022 0.563 | 0.011
D34 57 95 98 99 100 0.009 0.05 0.129 0.598 | 0.012
D42 55 95 97 98 100 0.01 0.046 -0.097 0.631 | 0.013
D43 68 96 97 99 99 0.009 0.052 -0.173 0.586 | 0.011
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As it can be seen in table 1, the use of sets D24, D 34 and D 42, resulted in
responses different from the correct ones by less than 0.05, for all the 100 data sets.
Because the set D 24 recorded the minimum absolute deviation (0.044), in table 2 are
included the same statistical parameters obtained at validation of other data sets,

using the weights found with this set.
Table 2
Statistical results at validation, with given weight

D12 64 94 98 98 98 0.011 0.143 -0.009 | 0.674 | 0.023
D13 63 94 99 99 99 0.01 0.143 0.104 0.649 | 0.018
D14 63 94 99 99 99 0.01 0.143 0.104 0.649 | 0.018
D23 57 91 99 99 100 0.01 0.042 0.137 0.683 | 0.012
D34 61 93 99 99 100 0.009 0.044 0.127 0.589 | 0.012

It is easy to observe that the ANN validation using the weights found with
D24set, maintain or even improve the performance of the other sets, comparing with
the training phase. The only exception appears at maximum absolute deviation which
is higher for the first 3 validation sets.

Considering the diversity of the learning sets content obtained with GA and
the results from the tables 1 and 2, it can be considered that ANN responds to the
imposed accuracy requirements. In the following sections, is used the ANN with the
weights obtained in the learning phase by D 24 set.

4. The mechanism of subset simulation (SS)

Further, only for convenience, F is considered the failure event and the
corresponding probabilistic domain of the uncertain parameters (Au and Beck, [2]).
Also, S is considered the safety factor minimum value (instead of S,;, from the
previous Sections).

Let Fj, i =1,_n be a sequence of failure events, having the probabilistic spaces
k
with decreasing sizes, so thatFf o F, o...o Fyand R = ﬂ F, k=1..,n.
i=1
Using the definition of conditional probability it can be written that
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P(F,)= P(i(n] Fij = P(Fn|?_ll FiJ- P[?_ll Fi] =P(F,|F..): P(:l FiJ =
01 (4)

i=1
which expresses that the failure probability at the probabilistic subspace
corresponding to Fp event is given by the product of a sequence of conditional

probabilities P(F|F ), i = L....n—1 and of the P(F ).
If S is the quantity influenced by the uncertain parameters, then the sequence
of the failure events F; can be defined by F; = {S <§j }, where S; > S, >...>§,,.
The idea of SS for small failure probabilities evaluation, for example

P(Fn)z 10™is to choose N=4 intermediate failure events so that P(Fl) and
P(Fi+1|Fi ), i =1,2,3 to be in the range of 10™".

While the estimation of P(Fl) is possible with standard MCS (eventualy with
Latin hypercube sampling method), obtaining the conditional failure probabilites
from eq.(4) is a very dificult task. Generating samples of vectors with uncertain
parameters which have p.d.f. restricted by their affiliation to theF; event, is
inefficient if the classical MCS is used.

But the Markov chain MCS (MCMCS) method overcomes this inconvenience,
being a powerful technique for simulating samples with any given p.d.f., in particular

according to the conditional p.d.f. f(X|F), where X is the vector of the uncertain
quantities. A short description of the method is included in Section 5.

In the actual SS implementation, the correspondence between the intermediate
threshold values S; of the output performance (the minimum safety factor) and the

intermediate failure events F are taken into account. These thresholds S, are

introduced only for computational reasons in SS, without any physical interpretation
about the degradation process.

Because of an arbitrarily choosing of the sequence {Si = 1,2,...,n} , the values
of the conditional probabilities P(Fm|Fi) are affected and difficult to be controlled.

Thus, the intermediate threshold values are chosen adaptively: the conditional failure
probabilities are imposed to a fixed value p,, and then the corresponding S; values

are obtained.
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The steps of SS algorithm are as follows:

-M vectors {X(k);kzl,Z,...,M} are sampled by standard MCS or by the Latin
hypercube sampling technique. These samples correspond to “conditional level 0”.
Using ANN, the corresponding values of the response {S(Xglk=1,2,...,M} are
computed and ranked in an increasing list. The first intermediate threshold value S, is
chosen as the p,M-th value in this list; in this way, the sample estimation of

P(F,)=P(S <S,) is equal to p,. There are now p,M samples among all M vectors
{X(lg;k = 1,2,...,M}, whose S values lie in F = {S < Sl}. These are placed at
“conditional level 1” and distributed as f (| FH );

- starting from each one of these samples, the MCMCS is used to generate (1/ po—1)
new conditional samples — i.e. on the entire (1/ Po —l)M samples - to complete at M
the number of conditional samples {Xi(;k :1,2,...,M}e F,at “conditional level 1”.
The intermediate threshold value S, is chosen as the p,M -th value from the
increasing list of the responses {S(Xll( lk =l,2,...,M}, so defining the failure region
F, ={S < S, }. The sample estimation of P(F2 F1)= P(S < 82|S < Sl) is also equal to

Pos
- the pogM samples lying in F, are used as seeds for sampling (1— Po )M additional

conditional samples distributed as f(-|F2), to complete a total of M conditional
samples {XE k= 1,2,...,M} at “conditional level 2”.

This procedure is repeated until the samples at “conditional level n-1" are
generated to obtain the threshold value S, as the pyM -th value in the increasing list

of{S(Xﬁ_llk =1,2,...,M}. The failure region F,={S<S,} is then defined and the

sample estimation of P(Fn |Fn_1) is also equal to pg .

Idea of this SS implementation is detailed described in Au and Beck, [18], Zio
and Pedroni, [4], etc.
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5. Markov chain Monte Carlo simulation (MCMCYS)

In Fishman, [19] is presented the Metropolis method from which originates the
MCMCS. Au and Beck, [2] include a modified Metropolis algorithm, more suitable
when random vectors with many independent components are to be sampled.

Let a seed sample X in the failure regionFj. For every j=1,2,3 uncertain
parameters (c,go, 7) it can be considered a “proposal” p.d.f. fjk(y|x) as a one —
dimensional p.d.f. for y centered at X and having the symmetry property, i.e.
7 (vix)= 17 (y).

With seed sample X=X, = {Xl X%,X%} the Markov chain Xj,...,Xy,... is

generated according to the following scheme:

1. Let Xy = {Xlk ,Xg X3 } the current state

k+1 gk+1 gk+l1
2. Generate a candidate state Xk+1 {Xl Xy X3 }

For each component j=1,2,3:
- generate a pre-candidate yk+1 from f; ( |X|J()

- compute the acceptance ratio

£ (ylj<+1)f ( yIJ<+1)

i )
) k+1) k1, k
fi (XJ fj [y i j
- set X}Hlaccording to
k+ . . .
S _ {y] 1 with probability mln(l,rj) ©
J k : . .
X;j  withprobability l-mm(l,rj)

3. Accept/ reject candidate state )N('}Jrl :
- if no pre-candidate components were accepted, then go to step 4
- else, check the location of )N(ljJrl by computing with ANN the output

performance S and
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e if S is less than the threshold value S;, then )N(l}+1 € F; and accept it as

: g K+15.
the next state (i.e. set X1 =Xj");

e clse the current pre-candidate is rejected.
4. Repeat from step 2 for an imposed number of attempts, at rejection from step
3. If no accepting condition persists after 5 attempts, set Xy = X .

The last operation is here proposed to decrease the number of identical
samples at “conditional level i” and so, to provide a more accurate sample estimation

of the next intermediate threshold value S; ;.

Referring to the “proposal” p.d.fs fjk, these affect the deviation of the

candidate state from the current one. The spread of f;determines the covering of

failure region by Markov chain samples. Small spread increases the dependence
between successive samples, while too large spread reduces the acceptance rate,
increasing the number of identical samples in Markov chain. The type of the chosen
proposal p.d.f. is less important and an uniform or normal p.d.f. centered at current
sample may be used. In this work, the last one is adopted, with the same spreading as
the original p.d.f., s f;.

6. Numerical results

A first problem in SS algorithm implementation is choosing the number of
vectors M | with values of uncertain parameters and the fixed value p, for the failure

conditional probabilities. In addition, pyM , has to be integer and, also, (1/ Po —1) -

the number of new conditional samples generated by MCMCS from each sample
maintained at any level — to be integer.

For the “conditional level 0”, by the Latin hypercube sampling technique a
more suitable filling of the probabilistic space is obtained, comparatively to the
standard MCS. This is based upon stratified sampling, with random selection within
each stratum, and 1000 samples obtained by such a method will produce comparable
estimations to these of about 5000 samples generated by standard MCS.

Two files, V1 and V2, each having M =1000 different vectors (c,p,y) were

created using this method. Then, a new file, V, with M =2000 vectors, is obtained
by concatenation of the previous two.
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Referring to the py value, Au and Beck, [2], empirically found that a good
efficiency is obtained if py=0.1, but in this application such value seems to be too

small (critical condition S =1lappears inside the conditional level 1). Some other
values should be 0.2; 0.25 and 0.5, with only 4, 3 and 1 new generated samples from
each seed vector in MCMCS procedure.

Because all seed samples maintained at any level i are in the probabilistic region

Fi (and therefore distributed as f(X|Fi), so are the subsequent samples generated
from each seed and the Markov chain is in a stationary state. This means that the
length of the Markov chain obtained from each seed becomes less important. The
following results were computed using Pp=0.5 and py=0.2, with 1 and 4 new
samples in each Markov chain.

To illustrate the SS idea, figure 3.a presents the M =1000 points (c,¢,y) from

V1 at conditional level 0, and then, figures 3.b, ¢ and d present all the 500 seed states
and 500 generated states at conditional levels 1, 2 and 3.

b ©

Fig.3. The points of M = 1000 sample vectors in probabilistic domain: a) level 0;
b) level 1(S 1.4906 ); ¢) level 2( S 1.3229); d) level 3 (S 1.2207 )

< < <
min min min
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Table 3 includes some results obtained for py=0.5, and M =1000. For each

initial vector V1 and V2 are presented the threshold values S; from one run, and the

average values from 3 different runs.
One ascertains that threshold values S; at different values of the non-

exceeding probability are almost equals. This is true between individual runs with
initial vectors V1 and V2, as well for the mean values from 3 runs with V1 and V2

respectively.

Table 3

Threshold values S, so that P(S <§j ) Po =0.5

P(s<sj) | 05 0.5 0.5° 0.5 0.5° 0.5° 0.5’ 0.5°
V1 1.4906 1.3229 1.2207 1.1508 1.0993 1.0588 1.0213 0.9953
Ve 1.4906 1.3210 1.2196 1.1508 1.0984 1.0568 1.0217 0.9931
V2 1.4953 1.3253 1.2244 1.1423 1.0990 1.0508 1.0209 0.9824
V2,e 1.4953 1.3268 1.2247 1.1462 1.0978 1.0521 1.0216 0.9860

Using the last two average S values obtained with V1 and linear interpolation,
the probability for critical state S <1 results as P(S < 1) =0.00485, 1.e. less than 0.5%.

A similar analysis was developed for the fixed probability py=0.2. In table 4

are presented the threshold values S, obtained in 3 runs with initial vectors V1, V2
and V (M=2000 data sets) respectively.

Table 4
Threshold values S, so that P(S <S§j ) Pp =0.2
P(s <Sj) V1 V2 v
0.2' 1.2365 | 1.2365 | 1.2365 | 1.2473 | 1.2473 | 1.2473 | 1.2431 | 1.2431 | 1.2431
0.2° 1.0949 | 1.0945 | 1.1019 | 1.0873 | 1.0899 | 1.1001 | 1.0837 | 1.0942 | 1.0888
0.2° 1.0137 | 1.0078 | 1.0126 | 0.9942 | 1.0104 | 1.0017 | 1.0024 | 1.0094 | 1.0014
0.2* 0.9377 | 0.9377 | 0.9527 | 0.9413 | 0.9465 | 0.9413 | 0.9365 | 0.9365 | 0.9387

By a simple inspection, the same general conclusions as above can be derived.
At any non-exceeding probability level, in all runs were obtained almost the same
values of the threshold S;.
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For evaluation the critical state probability P(S <1), the last two lines from
table 4 are to be used within the linear interpolation. The mean S values from the 3

runs with V1 are 1.0114 and 0.9427 (at P =0.2>=0.008 and P=0.2*=0.0016
respectively), resulting P(S <1)=0.00694, while from runs with V vectors are
obtains the mean S values 1.0044 and 0.9373 (at the same P values), and
P(S < 1) =0.00758 (i.e. less than 0.7% and 0.8% respectively).

The linear interpolation was used above only for convenience.

A more appropriate way to evaluate the non-exceeding probability P(S <1)
should be to obtain the rank of the first value with S=1in the increasing list at the last
level having the p,M wvalues of S less than 1. Then, the value of the rank divided by
M is exactly the conditional probability as S <1 at the last level.

With initial V' vectors (M =2000) and fixed probability p, = 0.2, a run that
uses this scheme gives P(S < 1) =0.00516 (while using linear interpolation the result
was 0.00636) and the average value from 3 runs resulted as 0.0060. With p, =0.5 an
average probability P(S < 1) =0.0045 1is derived.

However, taking into account the observation about using p, =0.1 in this
application, 3 runs were finally accomplished with initial V vectors. The non-
exceeding probability P(S < 1) is obtained as: 0.0135; 0.01295 and 0.0129, having an
average value of 0.0131 (i.e. about 1.3%).

The small differences between the results obtained at the same value p, are
perfectly well explained by the probabilistic nature of the analysis. Concerning the
observed differences at various values of p,, these are rather related to the
characteristic feature of this particular problem, besides the probabilistic aspects.

At any rate, an estimation of the non-exceeding probability for critical state

S <1 as being less than 1.5% seems to be reasonable and this value may be accepted
in any reliability study.

7. Conclusions

Efficient computation of slope failure probability at critical value S =1 for the
minimum safety factor is here obtained using: 1) a genetic algorithm (GA) model to
find this minimum safety factor when geometrical and soil data are specified; 2) an
artificial neural network (ANN) able to directly give this factor, for specified values
of uncertain parameters; 3) subset simulation (SS) to express the small failure
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probability as a product of larger conditional failure probabilities; 4) Markov chain
Monte Carlo simulation (MCMCS) to easily generate samples conditional on
intermediate failure region.

By Latin hypercube sampling method, a lot of vectors with uncertain
parameters were derived and then used in GA model to obtain the training and
validation data sets for ANN. All the following probabilistic analyses were
accomplished only by using this ANN, which ensures the efficiency of proposed
methodology.

It should be noted that — in this numerical example — the chance to appear a
minimum safety factor less than a value of 1.5 (standard value in design) is about
50%, but the same chance for an effective failure (at critical value S <1) does not
exceed about 1.5%. This aspect must be taken into account for any risk analysis and
possible optimization of structure design.
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