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A fast artificial bee colony algorithm variant for continuous global
optimization problems

George Anescu1

Since its creation in 2005 by D. Karaboga the ABC algorithm proved
to be very effective in approaching a wide variety of research optimization
problems. However, some drawbacks were also experienced related mainly
to a poor exploitation capability (which makes the algorithm relatively slow)
and poor success rates when highly non-linear optimization problems with
unstructured modes are approached. In order to improve the performance of
the ABC algorithm, in both efficiency and success rate, the paper presents
a set of proposed enhancements to the original ABC algorithm. The novel
proposed ABC variant, Fast ABC (F-ABC), was tested against two known
variants of ABC, the original algorithm proposed by D. Karaboga ([1]), and
an improved variant, Gbest-guided Artificial Bee Colony (GABC) ([2]). The
testing was conducted by employing an original testing methodology over
a set of 11 scalable, multimodal, continuous optimization functions (10
unconstrained and 1 constrained) with known global solutions. The novel
F-ABC algorithm clearly outperformed the older variants in both efficiency
and success rate over the test functions which present unstructured modes,
while for the remaining test functions the results were mixed.
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1. Introduction

Due to the difficulty of solving some real world optimization problems
from a variety of scientific and engineering fields, in the last decades some
modern optimization algorithms inspired from nature were developed. A
special class of such nature inspired optimization algorithms is represented
by the Swarm Intelligence (SI ) algorithms. SI can be briefly defined as the
collective intelligent behavior of decentralized and self-organized swarms of
individuals (bird flocks, fish schools and colonies of social insects such as
termites, ants and bees). Several algorithms have been developed inspired from
different intelligent behaviors of honey bee swarms, among which Artificial
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Bee Colony (ABC ), originally published by D. Karaboga in 2007 ([1]), is the
one which has been most widely studied on and applied to solve some real
world optimization problems. The ABC algorithm presents many advantages
compared to the traditional optimization methods and modern meta-heuristic
methods: does not assume continuity and differentiability of the objective
function (derivative free), needs fewer control parameters (parameter free),
has a simple design which it is easy to implement, can be easily modified
and hybridized with other meta-heuristic algorithms. From the application
perspective ABC has been tailored successfully to solve a wide variety
of discrete, continuous (constrained and unconstrained) and combinatorial
optimization problems in a wide variety o fields: decision making, engineering
design, pattern recognition, image processing, scheduling, protein structure
prediction, etc. Two comprehensive surveys concerning the state of the art in
the ABC algorithm research and its applications are presented in papers [3]
and [4].

From the numerical performance perspective the ABC algorithm was
compared to many other meta-heuristic population-based algorithms and the
numerical results showed that the algorithm is competitive, although there
was room for enhancements. The main two problems (which will also be
emphasized in the experimental results section of the present paper) are related
to a poor exploitation capability (which makes the algorithm relatively slow)
and poor success rates when optimization problems with a highly non-regular
structure of the modes are approached. The main goal of the present paper
is to propose a variant of the ABC algorithm which is able to overcome the
mentioned problems.

The rest of this paper is organized as follows: Section 2 shortly presents
the Continuous Global Optimization Problem (CGOP); Section 3 presents the
Deb’s Rules for Constraints Handling as they were adapted for the F-ABC
method; Section 4 presents the original ABC algorithm and the modifications
implemented in the GABC variant; Section 5 presents the enhancements
introduced in the design of the new F-ABC variant; Section 6 presents the
set of test optimization problems used in the testing experiments and the
obtained comparative results for the novel F-ABC method, the original ABC
algorithm and the GABC variant; and finally, Section 7 summarizes and draws
some conclusions.

2. Continuous Global Optimization Problem (CGOP)

The Continuous Global Optimization Problem (CGOP) is generally
formulated as ([5]):

minimize f(x) (1)

subject to x ∈ D
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with

D = {x : l ≤ x ≤ u; and gi(x) ≤ 0, i = 1, . . . , G;

and hj(x) = 0, j = 1, . . . , H}
(2)

where x ∈ Rn is a real n-dimensional vector of decision variables
(x = (x1, x2, . . . , xn)), f : Rn → R is the continuous objective function,
D ⊂ Rn is the non-empty set of feasible decisions (a proper subset of Rn),
l and u are explicit, finite (component-wise) lower and upper bounds on x,
gi : Rn → R, i = 1, . . . , G is a finite collection of continuous inequality
constraint functions, and hj : Rn → R, j = 1, . . . , H is a finite collection
of continuous equality constraint functions. No other additional supposition is
made on the CGOP problem and it is assumed that no additional knowledge
about the collections of real continuous functions can be obtained, in this way
treating the CGOP problem as a black box, i.e. for any point x in the boxed
domain {x : l ≤ x ≤ u} it is assumed the ability to calculate the values of the
functions f(x), gi(x), i = 1, . . . , G, hj(x), j = 1, . . . , H, but nothing more.

3. Deb’s Rules for Constraints Handling

The Deb’s rules ([6]) offer a methodology to efficiently handle the
constraints in constrained optimization problems. The presentation in this
section is adapted from [7] with the notations from equations (1) and (2).
The inequality constraints that satisfy gi(x) = 0, i = 1, . . . , G at the global
optimum solution are called active constraints. All equality constraints are
active constraints. The equality constraints can be transformed into the
inequality form and can be combined with other inequality constraints as the
auxiliary functions g̃i(x):

g̃i(x) =

{
max[0, gi(x)], i = 1, . . . , G
max[0, |hi−G(x)| − δ], i = G+ 1, . . . , G+H.

(3)

where δ is a tolerance parameter for the equality constraints. Therefore,
the objective is to minimize the objective function f(x) such that the obtained
optimal solution satisfies all the inequality constraints g̃i(x) ≤ 0 as active
constraints. The overall constraint violation for an infeasible solution is a
weighted mean of all the constraints expressed as:

v(x) =

G+H∑
i=1

wig̃i(x)

G+H∑
i=1

wi

(4)

where wi = 1/g̃max,i is a weight parameter and g̃max,i is the maximum
violation of constraint g̃i(x) obtained so far (up to the current computing
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iteration). g̃max,i varies during the optimization process in order to balance the
contribution of every constraint in the problem irrespective of their differing
numerical ranges. There are a number of constraint handling techniques
based on constraint violation, the one used here being the Superiority of
Feasible Solutions (SF ) technique. In SF the Deb’s rules ([6]) are applied
when comparing two solutions xi1 and xi2 . According to Deb’s rules xi1 is
regarded superior to xi2 when:

- xi1 is feasible and xi2 is not feasible.
- xi1 and xi2 are both feasible and xi1 has a smaller objective value than

xi2 .
- xi1 and xi2 are both infeasible, but xi1 has a smaller overall constraint

violation than xi2 .

Therefore, in SF the feasible solutions are always considered better than
the infeasible ones. Two infeasible solutions are compared based on their
overall constraint violations only, while two feasible solutions are compared
based on their objective function values only. The comparison of infeasible
solutions based on the overall constraint violation aims to push the infeasible
solutions toward the feasible regions, while the comparison of two feasible
solutions based on the objective function value improves the overall solution.

In order to be able to correctly compare the infeasible solutions which
are near feasible regions the following modification to the constraint violation
was proposed:

v(x) =

G+H∑
i=1

wig̃i(x)

G+H∑
i=1

wi

+Gns +Hns (5)

whereGns (Gns ≤ G) is the number of not satisfied inequality constraints,
and Hns (Hns ≤ H) is the number of not satisfied equality constraints.

Another important proposed improvement for the handling of the
equality constraints is to make the δ tolerance parameter dependent on the
current iteration index k:

δ = k(δ2 − δ1)/itermax + δ1 (6)

where δ1 is the initial tolerance parameter (at k = 0), δ2 is the final
tolerance parameter (at k = itermax) with δ1 � δ2, and itermax is the maximum
iteration count.
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4. Artificial Bee Colony (ABC ) Optimization

The ABC algorithm is a SI meta-heuristic algorithm based on the
model proposed by D. Karaboga in 2007 ([1]) for the foraging behavior of
honey bee colonies. In the ABC model the colony of artificial bees contains
three groups (types) of bees: employed bees, onlooker bees and scouts. A bee
searching around the food source visited by itself previously (its position at
the previous iteration) is called an employed bee, a bee waiting in the dance
area for making the decision to choose a food source is called an onlooker
bee (the bees’ dance is assumed as the method of communication), and a
bee carrying out random search is called a scout bee. The main steps of the
algorithm are given below:

Step 1 : Initialization;
while (true)

Step 2 : Check termination conditions, break the
loop if any applies;

Step 3 : Employed Bees Phase;
Step 4 : Onlooker Bees Phase;
Step 5 : Scout Bees Phase;

end while

The method’s parameters are: N the number of employed bees and
onlooker bees, ε the required precision, limit the stagnation count and itermax

the maximum number of iterations. The N employed bees and N onlooker bees
are represented as vector positions xe

i and respectively xo
i , i = 1, . . . , N in the

the limiting box (hyper-rectangle) defined by the lower limits lj, j = 1, . . . , n
and higher limits hj, j = 1, . . . , n (lj < hj).

Each time an employed bee moves to a better position it sets a food source
and the nectar amount of a food source corresponds to the quality (fitness) of
the associated solution. Food sources around which the searching takes place
are considered only the positions of the employed bees, while possible solutions
are considered all the bee positions (employed bees, onlooker bees, scout bees).

At initialization the employed bees and the onlooker bees take random
values in the limiting box:

xei,j = lj + rndei,j × (uj − lj), i = 1, . . . , N, j = 1, . . . , n (7)

xoi,j = lj + rndoi,j × (uj − lj), i = 1, . . . , N, j = 1, . . . , n (8)

where rndei,j and rndoi,j are uniformly generated pseudo-random numbers
in the interval [0, 1). The iteration index is initialized to k = 0. The objective
function f(x) is evaluated in the current bees positions xe

i (0),xo
i (0), i =

1, . . . , N : f e
i (0) = f(xe

i (0)), f o
i (0) = f(xo

i (0)), i = 1, . . . , N .
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Each iteration of the optimization method consists of three phases:
sending the employed bees onto the food sources and then measuring their
nectar amounts (Employed Bees Phase); selecting the food sources by the
onlooker bees after sharing the information of the employed bees and measuring
the nectar amount of the food sources (Onlooker Bees Phase); determining
the scout bees and then sending them onto possible food sources (Scout Bees
Phase).

During the Employed Bees Phase each employed bee goes to the food
source area visited at the previous iteration (since that food source exists in
its memory), and chooses a new candidate food source by means of visual
information in the neighborhood of the current one. The visual information is
based on the comparison of food source positions. For each employed bee with
index i another employed bee with index m ∈ {1, . . . , N}, m 6= i, is selected
in a discrete uniform pseudo-random manner. In order to produce a candidate
food source position, the ABC algorithm uses the following equation:

x′ei,j(k + 1) = xei,j(k) + rei,j × (xem,j(k)− xei,j(k)) (9)

where j ∈ {1, . . . , n}, is an uniform pseudo-randomly selected index
and rei,j are pseudo-random numbers uniformly sampled from the [−1, 1) real
interval. Equation (9) controls the generation of a neighbor food source
position around xe

i (k) and the modification represents the comparison of the
neighbor food positions visually by the bee. Note that only one component
of x′ei , the one with index j, is different from the components of xe

i . The new
candidate food source position is taken as the current food source position only
if it is better than the old food source position: if f(x′ei (k+1)) < f(xe

i (k)) then
xe
i (k + 1) := x′ei (k + 1). Equation (9) shows that as the difference between

the position components xei,j(k) and xem,j(k) decreases, the perturbation on
the position xe

i,j(k) decreases too. Thus, as the search approaches the optimal
solution in the search space, the perturbation is adaptively reduced.

During the Onlooker Bees Phase first the employed bees go into the hive
and share the nectar information of the food sources with the onlooker bees
waiting in the dance area within the hive. After sharing the nectar information
the food sources are given by the new positions of the employed bees calculated
at the current iteration. In order to choose a food source an onlooker bee needs
a selection mechanism. An onlooker bee prefers a food source area depending
on the nectar information distributed by the employed bees in the dance area.
As the nectar amount of a food source increases, the probability with which
that food source is chosen by an onlooker bee increases, too. Hence, the
dance of employed bees carrying higher nectar recruits the onlooker bees for
the food source areas with higher nectar amount. The selection mechanism
proposed originally was the roulette wheel selection (widely applied in Genetic
Algorithms, see [8]), but in the present implementation a ternary tournament
selection (also widely applied in Genetic Algorithms, see [8]) was preferred
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considering that Deb’s Rules are used for constraints handling and that they
provide only the possibility to compare solutions, but they do not provide
the possibility to precisely determine the selection probabilities needed for
roulette wheel selection. Let’s denote by l the index of the food source selected
based on the adopted selection mechanism. After arriving at the selected area
l the onlooker bee chooses a candidate food source in the neighborhood of
the selected one depending on the visual information. In order to produce a
candidate onlooker position the ABC algorithm uses the following expression:

x′oi,j′(k + 1) = xel,j′(k + 1) + roi,j′ × (xem′,j′(k + 1)− xel,j′(k + 1)) (10)

where m′ ∈ {1, . . . , N}, m′ 6= l, and j′ ∈ {1, . . . , n}, are discretely
uniformly pseudo-randomly sampled indexes and roi,j′ are pseudo-random
numbers uniformly sampled from the [−1, 1) real interval. Note that only one
component of x′oi , the one with index j′, is different from the components of xe

l .
The new candidate onlooker position is taken as the current onlooker position
only if it is better than the old onlooker position: if f(x′oi (k + 1)) < f(xo

i (k))
then xo

i (k+1) := x′oi (k+1). Equation (10) shows that as the difference between
the component positions xel,j′(k) and xem′,j′(k) decreases, the perturbation on
the position xe

l (k + 1) decreases too. Thus, as the search approaches the
optimum solution in the search space, the perturbation is adaptively reduced.

In the ABC algorithm, if a food source cannot be improved further over
a predetermined number of limit iterations (stagnation count), then that food
source is abandoned. Originally the stagnation count was suggested limit =
n×N . The food source whose nectar is abandoned is replaced with a new food
source by the scouts (note that only the employed bees can become scouts).
This is simulated by randomly generating a position in the search space and
replacing the abandoned one with it. At each iteration during the Scout Bees
Phase at most one scout goes outside for searching a new food source, the one
with the highest stagnation count, but only if it is higher than limit.

A first termination condition is defined when the current iteration index
k attains the maximum number of iterations itermax. A second termination
condition is defined when the diameter of the current onlooker bees swarm
becomes less than the required precision ε:

d(k) =

(
n∑

j=1

(dj(k))2

) 1
2

< ε (11)

where the overall population diameter d(k) is calculated according to the
Euclidian distance, and the diameters on each dimension are calculated as the
maximum absolute difference between two position values on that dimension
over all the onlooker bees in the population:
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dj(k) = max
1≤i1,i2≤N,i1 6=i2

{|xoi1,j(k)− xoi2,j(k)|},

j = 1, 2, . . . , n
(12)

A still further termination condition is defined when a flat region is
detected. It can appear when the objective function f(x) depends only on
a subset of its decision variables, and it can be easily checked as:

f o
max(k)− f o

min(k) < εf (13)

with

f o
max(k) = max

1≤i1≤N
{f o

i1
(k)} (14)

f o
min(k) = min

1≤i2≤N
{f o

i2
(k)} (15)

where f e
i (k) = f(xe

i (k)), f o
i (k) = f(xo

i (k)), i = 1, . . . , N and εf is a very
small value. If any of the termination conditions is satisfied then the iterative
process is stopped (the loop is broken) and the onlooker bee position which
gives f o

min(k) (positioned in xo
min(k)) is taken as the solution of the global

optimization problem. Otherwise the iteration index is incremented to k + 1
and the computation continues to the next iteration.

Inspired by PSO ([9]) the Gbest-guided ABC (GABC ) method ([2])
improves the original ABC method by taking advantage of the information
of the global best (gbest) solution to guide the search of candidate solutions in
order to improve the exploitation. The equations (9) and (10) are modified as
follows:

x′ei,j(k + 1) = xei,j(k) + rei,j × (xem,j(k)− xei,j(k))+

+ C × r1e
i,j × (xgbestj (k)− xei,j(k))

(16)

x′oi,j′(k + 1) = xel,j′(k + 1) + roi,j′ × (xem′,j′(k + 1)− xel,j′(k + 1))+

+ C × r1o
i,j′ × (xgbestj′ (k)− xel,j′(k + 1))

(17)

where xgbest(k) is the current global best food source position (as
determined at iteration k), r1e

i,j and r1o
i,j′ are pseudo-random numbers

uniformly sampled from the [0, 1) real interval and C > 0 is a real
positive constant. The global best food source is updated at each iteration.
Experiments conducted in ([2]) showed that the best results are obtained when
taking C = 1.5.
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5. The Fast ABC Algorithm

In order to improve the performance of the ABC optimization algorithm,
for both speed and success rate, a set of enhancements were designed,
implemented and tested, the new resulting optimization algorithm being
named Fast ABC (F-ABC ). The F-ABC algorithm is identical, in respect
to the general algorithmic steps, to the original ABC algorithm, but differs
from it in some detail aspects:

- In both the Employed Bees Phase and Onlooker Bees Phase in equations
(9) and (10) the pseudo-random numbers rei,j and roi,j′ are now uniformly
sampled from the [−0.5, 1.5) real interval;

- There are differences in the determination of indices l andm′ intervening
in equation (10) in Onlooker Bees Phase. The index l of the selected food
source is determined by using a binary tournament selection mechanism, while
the index m′ is selected in a discrete uniform pseudo-random manner from
the set sl = {m′ : 1 ≤ m′ ≤ N ; m′ 6= l; and f(xe

m′) < f(xe
l )}. In

other words, the selected food source l, instead of interacting with a pseudo-
randomly selected different food source, it interacts with a better pseudo-
randomly selected different food source. This topology used in the selection of
m′ is called random greedy topology (see also [10]).

- In the original ABC algorithm in the Employed Bees Phase and
Onlooker Bees Phase equations (9) and respectively (10) are applied only to
one pseudo-randomly determined dimension, j respectively j′. In order to
make the algorithm able to cope with highly non-linear objective functions,
there is a need to give chances to change to all the dimensions. Therefore
to any food source is associated a weight, wi, which will be used as a limit
probability and which is calculated for each food source using the formula:

wi =
f(xe

i )− fbest
fworst − fbest

, i = 1, . . . , N (18)

where

fbest = min
1≤i≤N

f(xe
i ), fworst = max

1≤i≤N
f(xe

i ) (19)

Note that for constrained optimization problems, in the context of
applying the Deb’s Rules for handling the constraints (as presented in Section
3), the weights are defined as wi = i/N , with the assumption that the food
sources are sorted in the increasing order (from the best to the worst), and the
sorting is done according to the Deb’s Rules, in this way the index i also being
the rank of the food source. As defined above, the weights are in the [0, 1]
real interval and therefore it is safe to use them as limit probabilities. In both
the Employed Bees Phase and Onlooker Bees Phase the candidate food source
position are determined by applying equations (9) and respectively (10) on one
dimension uniformly pseudo-randomly determined between 1 and n (discrete
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selection with equal probabilities) and on the remaining dimensions only after
successfully passing a probabilistic test: rnd() < wi. Through the defined
probabilistic test there is possible to induce a more exploratory behavior at
the food sources with large weights (poor fitness) and a more exploitative
behavior at the food sources with small weights (good fitness values, close to
the best value).

- In the Scout Bees Phase it was found that the originally suggested
formula of the stagnation count parameter limit gives a too high value and
experimentally were tried different values as multiples of the search space
dimension n. The experiments showed that balanced results can be obtained,
from the efficiency perspective over the set of test optimization problems, with
limit = 4× n (see also [10]), which was proposed as an appropriate value.

- The second modification in the Scout Bees Phase consisted in
determining the reset position of a scout bee in a uniformly pseudo-random
manner inside the current hyper-rectangle that is limiting the food sources (also
recommended in [10]) with lower and upper limits l(k + 1) and respectively
u(k + 1) determined on each dimension (the notations being inclusive for the
initial box bounds l(0) = l and u(0) = u):

lj(k + 1) = min
1≤i≤N

{xei,j(k + 1)} (20)

uj(k + 1) = max
1≤i≤N

{xei,j(k + 1)} (21)

This modification demonstrated an obvious further improvement in
efficiency for some of the test functions.

6. Testing and Results

The purpose of the testing phase was to prove that the new proposed
F-ABC algorithm is competitive when compared to other existing ABC
algorithm variants. For comparison two ABC variants were chosen: the
original ABC algorithm and an improved version of it, GABC (both presented
in Section 4 of the present paper).

In order to conduct the tests, an appropriate testing methodology was
devised (see also [10], [11]). When the quality of an optimization method is
estimated two (often conflicting) characteristics are of interest: a small number
of function evaluations (NFE) and a high success rate (SR). For test functions
with known solutions the success can be simply defined as the achievement of
an absolute or relative precision tolerance to the known solutions. By fixing
the tolerance and choosing itermax high enough so that this in never attained
before the tolerance is attained, it is easy to measure the SR and average
NFE to success (µ(NFE)). There are other testing methodologies frequently
applied in practice, like for example based on fixing NFE and reporting the
best, the worst and the median results obtained after a number o runs, but
in author’s opinion such methodologies are not recognizing the importance of
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Table 1

F-ABC versus ABC and GABC, n=10, runs=100, tolerance=0.1%, N=100

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
F-ABC F-ABC ABC ABC GABC GABC

f1 100% 61940 100% 93774 100% 50350
f2 100% 24704 100% 60558 100% 33708
f3 100% 40476 84% 187084 99% 208131
f4 100% 38662 98% 90477 100% 64486
f5 100% 26541 100% 63672 100% 26188
f6 100% 11660 100% 34176 100% 14600
f7 100% 110778 100% 258828 100% 103454
f8 100% 54672 100% 98842 100% 61244
f9 100% 27976 100% 96998 100% 48602
f10 100% 220334 99% 645614 100% 566790
f∗∗11 100% 53621 0% N/A 89% 232420

Table 2

F-ABC versus ABC and GABC, n=20, runs=100, tolerance=0.1%, N=100

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
F-ABC F-ABC ABC ABC GABC GABC

f1 99% 164930 100% 250486 100% 129496
f2 100% 40668 100% 144244 100% 83410
f3 84% 105366 1% 125600 2% 918816
f4 100% 44094 100% 130602 100% 80360
f5 100% 58314 100% 228518 100% 71392
f6 100% 22754 100% 97352 100% 43862
f7 100% 507039 18% 1232733 26% 872115
f8 66% 360543 100% 446884 100% 280196
f9 100% 45974 100% 215866 100% 111490
f10 66% 897662 0% N/A 0% N/A
f∗10 N/A N/A 33% 1532945 78% 1232751
f∗∗11 94% 254994 0% N/A 0% N/A

success rate and are concealing it from reporting. A very efficient method
(with a fast convergence) but with a low success rate cannot be considered
better than a less efficient method, but with a high success rate, because the
former may need many repeated runs in order to obtain the correct result,
while the later may get the correct result in less runs, which can entail a larger
overall NFE (obtaining by summation) for the former compared to the later.

A test bed of 11 known scalable multimodal optimization functions (10
unconstrained and 1 constrained, see [12], [13], [14], [15]) was used for the tests
run on the three compared optimization methods:

• Rastrigin’s Function - highly multimodal with the locations of the
minima regularly distributed, global minimum value of 0 at (0, 0, . . . , 0)
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Table 3

F-ABC versus ABC and GABC, n=30, runs=100, tolerance=0.1%, N=100

Fn SR% µ(NFE) SR% µ(NFE) SR% µ(NFE)
F-ABC F-ABC ABC ABC GABC GABC

f1 91% 289129 100% 436558 100% 218932
f2 100% 54936 100% 235984 100% 137964
f3 29% 180861 0% N/A 0% N/A
f4 100% 55412 100% 195762 100% 119122
f5 100% 91539 100% 473928 100% 124644
f6 100% 37790 100% 120422 100% 93148
f7 94% 1153975 0% N/A 0% N/A
f8 12% 1131014 100% 920902 100% 595538
f9 100% 61606 100% 339068 100% 177614
f10 20% 1866919 0% N/A 0% N/A
f∗10 N/A N/A 0% N/A 6% 2579333
f∗∗11 42% 403339 0% N/A 0% N/A

f1(x) = 10n+
n∑

j=1

[x2j − 10 cos(2πxj)],

− 5.12 ≤ xj ≤ 5.12, j = 1, . . . , n

(22)

• Alpine 1 Function - highly multimodal, global minimum value of 0 at
(0, 0, . . . , 0)

f2(x) =
n∑

j=1

(|xj sin(xj)|+ 0.1|xj|),

− 10 ≤ xj ≤ 10, j = 1, . . . , n

(23)

• Alpine 2 Function - highly multimodal, global maximum value of 2.808n

at (7.917, 7.917, . . . , 7.917)

f3(x) =
n∏

j=1

√
xj sin(xj),

0 ≤ xj ≤ 10, j = 1, . . . , n

(24)

• Griewangk’s Function - many widespread local minima regularly
distributed with the global minimum of 0 at (0, 0, . . . , 0)

f4(x) =
1

4000

n∑
j=1

x2j −
n∏

j=1

cos

(
xj√
j

)
+ 1,

− 100 ≤ xj ≤ 100, j = 1, . . . , n

(25)
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• Schwefel’s Function - many widespread local minima distributed at
distance from the origin with the global minimum of −418.9829 at
(420.9687, 420.9687, . . . , 420.9687)

f5(x) = − 1

n

n∑
j=1

xj sin

(√
|xj|
)
,

− 500 ≤ xj ≤ 500, j = 1, . . . , n

(26)

• Paviani’s Function - many local minima with the global minimum of
−45.77847 at (9.351, 9.351, . . . , 9.351) for n = 10, −9549.89061 at
(9.9658, 9.9658, . . . , 9.9658) for n = 20, and respectively −99786.45525
at (9.9993, 9.9993, . . . , 9.9993) for n = 30:

f6(x) =
n−1∑
j=1

[
log(xj − 2)2 + log(10− xj)2

]
−

(
n−1∏
j=1

xj

)0.2

,

2.0001 ≤ xj ≤ 9.9999, j = 1, . . . , n

(27)

• Expanded Schaffer’s Function - many local minima with the global
minimum of 0 at (0, 0, . . . , 0)

f7(x) = g(x1, x2) + g(x2, x3) + . . .+ g(xn, x1),

− 10 ≤ xj ≤ 10, j = 1, . . . , n
(28)

where

g(x, y) = 0.5 +
sin2(

√
x2 + y2)− 0.5

1 + 0.001(x2 + y2)2
(29)

• Michaelwitz’s Function - highly multimodal with global minimum of:
−0.966015 for n = 10, −0.9818507 for n = 20, and respectively
−0.9876481 for n = 30:

f8(x) = − 1

n

n∑
j=1

sin(xj) sin2m

(
jx2j
π

)
,

m = 10, 0 ≤ xj ≤ π, j = 1, . . . , n

(30)

• Ackley’s Function - highly multimodal with global minimum of 0 at
(0, 0, . . . , 0):
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f9(x) = 20 + e− 20e

−0.2

 1
n

n∑
j=1

x2j


1/2

− e

1
n

n∑
j=1

cos(2πxj)

,

− 30 ≤ xj ≤ 30, j = 1, . . . , n

(31)

• Non-Linear Function - highly multimodal, many global minima of 0:

f10(x) = n− 1 +
n−1∑
j=1

cos

(
|xj+1 − xj|

|xj + xj+1|+ 10−10

)
,

− 10 ≤ xj ≤ 10, j = 1, . . . , n

(32)

• Keane’s Bump Function - highly multimodal open constrained problem,
best known global minima for different search space dimensions were
used during testing (−0.747310362 for n = 10, −0.803619104 for n = 20,
and respectively −0.821878040697 for n = 30):

f11(x) = −

∣∣∣∣∣∣
{

n∑
j=1

cos(xj)
4 − 2

n∏
j=1

cos(xj)
2

}
/

(
n∑

j=1

jx2j

)0.5
∣∣∣∣∣∣ ,

g1(x) = 0.75−
n∏

j=1

xj ≤ 0.0,

g2(x) =
n∑

j=1

xj − 7.5n ≤ 0.0,

0.0 ≤ xj ≤ 10.0, j = 1, . . . , n

(33)

All the test functions with global optima in origin were shifted,
considering that the origin is favored by ABC type methods and this
peculiarity can interfere in the results. In the tables the star sign (∗) in
the first column signifies that the test was repeated with increased tolerance
(tolerance = 1%), while the double star sign (∗∗) signifies that a different value
of the N parameter was used (it applied only to f11 and it was N = 200 for
n = 10, n = 20 and N = 400 for n = 30).

Table 1 presents the comparative testing results obtained for n = 10.
From the success rate perspective, it can be observed that F-ABC obtained
the maximum percentage for all the test functions, while ABC was not able
to solve f11 and showed an inception of problems with f3, f4 and f10, while
GABC showed an inception of problems with f3 and f11. Nevertheless, both
ABC and GABC provided excellent results for the test functions they were
able to solve. From the efficiency perspective, F-ABC clearly surpassed ABC
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for all the test functions, while compared to GABC the results were mixed:
F-ABC was faster for f2, f3, f4, f6, f8, f9, f10 and f11, but slower for f1, f5
and f7.

Table 2 presents the comparative testing results obtained for n = 20.
From the success rate perspective, F-ABC showed difficulties with f1, f3, f8,
f10 and f11, but still remained the only method able to solve all the problems
in the given test conditions. ABC was not able to solve f10 and f11, while the
success rates for f3 and f7 deteriorated substantially. GABC showed similar
behavior for exactly the same functions. From the efficiency perspective, F-
ABC again surpassed ABC for all the test functions, while compared to GABC
the results were mixed: F-ABC was faster for f2, f3, f4, f5, f6, f7 and f9 but
slower for f1 and f8.

Table 3 presents the comparative testing results obtained for n = 30.
From the success rate perspective, F-ABC showed a substantial deterioration
for f1, f3, f7, f8, f10 and f11, but again was the only method able to solve
all the problems in the given testing conditions. ABC was not able to solve
f3, f7, f10 and f11, but provided the maximum percentage for the remaining
functions it was able to solve. GABC showed similar behavior for exactly
the same functions. From the efficiency perspective, F-ABC was surpassed by
ABC for f8, but it was faster for the rest of functions that ABC was able to
solve, while compared to GABC, the results were again mixed: F-ABC was
surpassed for f1 and f8, but it was faster for the rest of functions that ABC
was able to solve.

7. Conclusions

The paper proposed a novel global optimization method, F-ABC,
as a variant of the known ABC method, designed to eliminate some of
the drawbacks experienced by ABC related mainly to a poor exploitation
capability (which makes the algorithm relatively slow) and poor success rates
when approaching optimization problems with a highly non-regular structure
of the modes. The novel F-ABC algorithm was tested against two other ABC
variants, the original one proposed by D. Karaboga ([1]), and an improved
variant, GABC, proposed by G. Zhu ([2]). The testing was conducted by
employing an original testing methodology which emphasizes the importance
of both success rate and efficiency. There was also of interest the study of
the performance degradation with the increase of the search space dimension.
A set of 11 scalable, multimodal, continuous optimization functions (10
unconstrained and 1 constrained) with known global solutions was constructed
for testing purposes. The novel F-ABC variant was the only one capable to
solve all the test functions for all the search space dimensions in the given
testing conditions, but with the increase of the search space dimension it was
observed that the methods ABC and GABC provided better success rates for
the test functions with a regular structure of the modes (the modes disposed
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in a lattice structure parallel with the coordinate system), while the novel F-
ABC variant clearly provided better success rates for test functions presenting
unstructured modes.
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