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CONSTITUTIVE MATERIAL LAWS IN THE
MULTIFRACTAL THEORY OF MOTION (PART I)
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Using the Fractal Theory of Motion in the form of Madelung Scenario, the
presence of a permanent interaction between structural units of any complex system
and a multifractal medium is highlighted. In such a context, the characterization of
the multifractal medium through a multifractal tensor allows the obtainment of
material constitutive laws. Moreover, particular types of material constitutive laws
are presented. deformations exist even when no tensions are applied to the material,
deformations which can be interpreted as intrinsic or pure material properties (in
particular, Bell’s constitutive laws). Furthermore, it is shown that not only radiation
cosmic background, but the electromagnetic field in general, in its Maxwellian form,
is in truth the expression of the existence of the multifractal medium.
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1. Introduction

Recent papers referring to the description of complex system dynamics
through the multifractal Theory of Motion (either in the fractal dimension D = 2
as in the Scale Relativity Theory [1] or in a constant, but arbitrary fractal dimension
[2-7]) specify the fact that the description of dynamics, regardless of the scale
resolution, are self-similar and are induced by the property of the motion curves
(fractal/multifractal curves). As such, the holographic mode of description for
complex system dynamics is implemented, both in the form of the Schrodinger
multifractal scenario and in the Madelung multifractal scenario. The two
description scenarios are not mutually exclusive, rather they are complementary: in
any complex system dynamics, local non-linear behaviors (of digital type) and
global non-linear behaviors are reciprocally conditioned, regardless of the scale
resolution.

In the present paper, the identification of the previously mentioned
conjecture is proven to be reducible to material constitutive laws.

2. A short reminder on the multifractal hydrodynamic model

Let it be considered the multifractal Schrodinger equation [3]:
4 2
222 (dt)[ﬁ]‘zalaqu + i/l(dt)[@]‘lattp =0
where (1)

9'o _a_Z d —i [=1,23
l_aXlzi t_at: - L4
In the previous relation, x; are the multifractal space coordinates, t is a non-
multifractal time coordinate, ¥ is the state function, A is a constant associated to
the multifractal-non-multifractal scale transition, dt is the scale resolution, f (@) is
the singularity spectrum of order a and @ = a(Dy) is the fractal dimension of the
motion curves. For other details referring to the meanings of the previously
mentioned variables and parameters, please see [2-3].
In such a context, if ¥ is chosen in the form (the Madelung substitution):

¥ =pet, @)

where /p is the amplitude and s is the phase, then the complex velocity field [3]

A~

2
pi= _m(dt)[m]‘lai Iny 3)

take the explicit form:
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= aaganf o - naol o
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which implies the real velocity fields:
2
Vi= 2,1(dt)[W]‘1ais (5)
. [L]_l .
Vi = A(dt)F@] gt np. (6)

In (5), V}} is the differentiable velocity field, while V}: is the non-differentiable
velocity field.
Now, by (2), 5) and (6) and using the mathematical procedures from [2-3],
the equation (1) is reduced to the multifractal hydrodynamic equations:
9. Vi + Vi vh = —-0'Q

(7
Otp + al(pVDl) =0 (8)
with Q the specific multifractal potential:
4 ],0' o1 _2 -
Q = —222 (dt)[f(“)] 2%‘/5 = —ViVi- El(dt)[f(“)] "o Vk. ©)
p

Equation (7) corresponds to the specific multifractal momentum
conservation law, while equation (8) corresponds to the multifractal states density
conservation law. The specific multifractal potential (9) implies the specific
multifractal force:

. . _4 ], 0'0/
Il — _9t = — 2 [ a] z l—l p
Fi = —3iQ = —222(dt)F@l %5 - (10)

which is a measure of the multifractality of the motion curves.
Therefore, for the complex velocity fields (4), the dynamics of any complex
system are described through hydrodynamic equations at various scale resolutions.
The following consequences result:
1) Any complex system’s structural units are in a permanent interaction with a
multifractal medium through the specific multifractal force (10);
i1) Any complex system can be identified with a multifractal fluid, the dynamics
of which is described by the multifractal hydrodynamic model (see Egs. (7) —

9));
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iii) The velocity field V} does not represent the contemporary dynamics, but
contributes to the transfer of the specific multifractal momentum and to the
multifractal energy focus. This can be clearly seen from the absence of V} from
the multifractal-type states density conservation law and also from its role in the
multifractal variational principles (for details see [8]);

iv) If a multifractal tensor is chosen:

4
il = 2,12(dt)[m]‘2paiallnp (11)

the equation defining the multifractal “forces” that derive from a multifractal
“potential” Q can be written in the form of a multifractal equilibrium equation. This
equation can be written in a tensorial form:

The multifractal tensor % can be written in the form:
tit = (9, Vi + 0;V4) (13)
with
[L]_l
n = A(dt)lr@l “p, (14)

This is a multifractal constitutive law for a multifractal “viscous fluid”.
Moreover, an original interpretation of the n coefficient as a multifractal dynamic
viscosity of a multifractal fluid is given [9-11].

3. Multifractal tensions and deformations. Multifractal constitutive
material laws

Because the multifractal tensor (11) plays a fundamental role in the
definition of a material constitutive equation, in what follows, let it be presented
some of its properties and their implications.

In continuum mechanics, one works with tensors of the second order or,
more generally, with matrices, to adequately represent stresses and strains, and
these are representations essentially non-polar, especially if they are not specified
in terms of displacement fields and forces, as is usually done in engineering
problems. More than that, when it comes to their reality, this is guaranteed by the
so-called constitutive law [12-13].

In general terms, the constitutive law is a relationship between stresses and
strains. Since regular representations for these concepts are by matrices, a
constitutive law is a mathematical relationship - algebraic or analytical - between
two 3X3 matrices. If it is noted with o the stress matrix and & the deformation
matrix, then a constitutive law is a relation of the form o = ) & where the matrix
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function is accessible to experimental evaluation or, in any case, evaluation of a
different nature than that through pure algebraic calculation.

Here, is of importance the meaning according to which o is the applied
stress while € is the strain resultant. The reality referred to above then refers to the
identity of the material characterized by the constitutive law. In materials science it
1s claimed that stress and strain matrices are universal mathematical tools, while the
function ). is specific to the material to which the stresses o are applied to induce
deformations &. It can be seen in the concept of tension, extended beyond applied
force, a means of eliminating the force in general from the conceptual arsenal of
mechanics. Really, only the tension applied from the outside is closely related to
the idea of force. Otherwise, moving away from the idea of force, tensions can also
be thought of as energy densities that characterize matter, occasionally even
independent of any force. The central problem here is to find a function ), which
implicitly contains the physical nature of the continuum to which the stresses and
strains refer [14-19].

Now, a specific feature appears, here the problem revolves around
uncontrollable manifestations. This is the main reason for maintaining the way of
thinking from classical mechanics that considers force as a vector. It is true that any
(human) action is executed by force. In other words, it is possible to only control
forces and, if it can be anything else, only through forces.

The most general idea of uncontrollability comes in very handy by means
of a constitutive law that could be called natural. Indeed, a constitutive law that
relates the stresses to the strains must be of the form

0 = poe + p, &€ + p, € (15)

where e is the 3X3 unit matrix. This equation can be called a natural constitutive
law, because it naturally derives from the representations for stresses and strains.
Indeed, the models for stresses and strains are 3 X3 matrices, and if the constitutive
law is analytic, equation (15) must automatically be true, because then the
relationship between two matrices can be represented in the form of a whole series
in the deformation matrix, always reducible to one polynomial of the second degree
by the Hamilton-Cayley theorem. For the same reason, the relationship can be
written with the interchanged locations of stresses and strains, so that deformations
are still quadratic functions in stresses, only with other coefficients. Therefore, for
a material there are not only three characteristic numbers, but six: three for the
expression of stresses in relation to the deformations and three for the expression
of the deformations in relation to the stresses.

In this scheme, the material therefore has, at least apparently, a precise
identity, for that it is possible to identify it by the coefficients pg, 1, p, Which are
accessible to the experiment [20-21]. This one is, in fact, what is usually meant by
"characterizing the material". Too often, however, in experimental practice, these
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coefficients are considered properties of material pure, of the order of density, but
this restriction can lead to confusion in concepts, especially in engineering
problems. Let such a situation be better explained. Regardless of what these
material properties are, equation (15) shows that each of them can be extracted from
experiments of loading a piece of material, either in extension, or in compression.
Furthermore, regardless of the nature of this loading, the main directions of the
stresses coincide with the main directions of the deformations. On the other hand,
if 0 , 3 are the main values of the stress matrix and &, , 3 those of the deformation
matrix, then the constitutive law (15) is equivalent to the system

01 = Do + P1&1 + D2€7,
0y = Po + P182 + D283, (16)
03 = po + D163 + P2€5

Suppose that it is possible to perform experiments that allow the
simultaneous measurement of all three main values of deformations and stresses.
Such an experiment cannot be practically carried out, but the theoretical argument
implies it always. The result of these experiments will allow the calculation of the
properties of material embodied in the coefficients py ; , from the system (16). As
the material is unique, a unique solution of the system must be sought, which is
obtained only if its determinant

1 & &2
1 g E% = (&2 — &3)(&3 — &) (&1 — &) (17)
1 &5 &2

is non-zero. Thus, the parameters pg, p;,p, are indeed uniquely determined,
regardless of the nature of the stresses imposed on the material if, and only if, the
main deformations induced are different from each other. Regardless of the fact that
they are unique, and therefore very suitable for the characterization of material, the
coefficients thus obtained are not pure material properties, because they depend on
the stress state impressed on the material. Therefore, the meaning of pure material
properties must be further specified.

As such, the formalism shows that deformations exist even when there are
no stresses applied to the material. Because their origins are unknown, these
deformations can justifiably be taken as intrinsic properties, i.e., pure, of the
material, considering that they could be generated by forces whose presence cannot
be currently acquiesced [22-25]. These can be then described by the system of
equations:
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0=po+p& + P2312;
0=po+pi&+ Pzg%; (18)
0 = po + p1&3 + P2£5.

Consequently, the intrinsic characterization of the material by experiment is
now delegated to finding solutions of this linear and homogeneous system, if they
exist. In fact, they always exist, only remaining to decide how many, and this fact
depends on what can be measured in reality. If three different deformations in three
orthogonal directions from space are always measured, then the material does not
respond to the printed stresses. However, because the simultaneous measurement
of three main values for a matrix is only conceptually possible, that quality of the
material must be equally a conceptual one. In reality, it is only possible to
simultaneously measure at most two eigenvalues, a fact which, when taken into
consideration, reveals that the material could still respond to stresses, in other
words, its deformation is really accompanied by tensions. Thus, if one and the same
value of the deformation in any direction in space is measured, there exists a double
infinity of stress states of the material, depending on two material parameters. If
two values of the deformation are measured, in one direction and in its
perpendicular plane for example, then material stress states depending on a single
material parameter exist. Assuming it is possible to include one of the material
parameters in a measured value, the most general constitutive law satisfied by the
material presenting tensions accompanying the deformations will be of the form

o =K(e—¢e)(e—¢,e) (19)

where K is an arbitrary constant. Such a material has three uncontrollable quantities,
two of which are measurable.

In conclusion, it is noted that that as long as measurable quantities are of
interest, a convenient way to express the deformation matrix characteristic of the
material which presents uncontrollable deformations, is in the form of the tensor

Ei]' = 8251']' + (El — 82) . nl-bfnj l,] = 1,2,3 (20)

where 11 is a unit eigenvector corresponding to the principal value &;. Such a
material has distinctive directional properties in relation to the 71 direction, and these
properties are given by the eigenvalues €; and ¢,. In fact, equation (20) includes all
the cases in above view of the material, if it is agreed to characterize its intrinsic
properties as deformations. Note that this convention is independent of the
constitutive description and must be guaranteed by available measurement
capability. As such, whenever the material deforms freely, i.e., under no perceptible
force, its deformation matrix must be of the form (20) with all special cases
included. The deformations, as well as the accompanying stresses, will then
manifestly be orthogonal tensors [26-28].
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In the same way, it is possible to discuss that category of materials capable
of sustaining tensions without responding with deformations. To express it, the
opposite law must be considered, namely

This time, o could only hardly be called tension; rather, it represents an
internal energy density of matter. Then, the defining state of this multifractal
medium will be characterized by the system of equations

0 =qo + q101 + q,07

0 = qo + q102 + 205 22)
0 = qo + q103 + 203

which corresponds to the situation in which no deformation of the multifractal
medium is observed. Again, the characterization of this multifractal medium
depends on the number of non-trivial solutions of the system, and the most general
form of the deformation matrix is here

e =K{'(0 —o,e)(0 - 0e) (23)

where K; is a constant. The relation (23) with o7 + g, = 0, in the absence of the
multifractality, was found by Bell [29] as a characteristic of metals.

Again, if the interest is in measurable quantities for characterization of this
material, its intrinsic stresses assume the following convenient tensor
representation, analogous to equation (20):

O'i]' = 0'261']' + (0'1 - 0'2) : mimj, l] = 1,2,3 (24)
where 1 is a unit vector corresponding to the main value a;. It can be stated that
the general property of the material that does not show deformations under tensions
is embedded in the form (23), all particular cases being included.

The case of equations (20) and (24) is specific to the tensors that should
further be called equivalent to a vector field. This equivalence can be understood in
the following way: let U be a vector field, with the help of which the following
matrix is built

vij = aSij + ﬂvivj. (25)

It is obvious that if v, are the components of a vector, and admitting a and
p scalars, v;; are automatically the components of a tensor. One of its main values,
namely «, is double. The other main value, different from a, is given by

a' = a+ pv? (26)

There are some interesting properties of this tensor. First, if either f or vy,

is zero, v;j is a purely spherical tensor. Second, if the eigenvector of v is calculated
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corresponding to the eigenvalue (26), it is found that it is ¥, up to a normalization
factor. This one property is independent of the parameter a, and in fact it is what
allows defining the afore-mentioned equivalence: given ¥, it is possible to directly
construct v as a family of tensors depending on two arbitrary parameters that has
this vector as an eigenvector. It could be stated that v represents some kind of action
directed in the general direction of ¥, but not exactly in that direction.

4. An exemplification of the model

A tensor which would then describe the multifractal medium, could be of
the form:
Wij = a5l-j + ﬁuiuj + ]/Ul'U]' (27)
It can be noted that the calculations are much more symmetrical if (27) is
written in a more convenient form, namely
where A and p are real parameters, which describe the degree of "spatial" and

"material" of the multifractal medium, with the matrices u and v defined by

1 1
U :u.u.__uzg..- Vi : =U'U'——U26"
ij i 75 ij ij Vi 75 ij
(29)
uwr=uf+us+ud  vi=vi+vi+vi

This tensor contains eight measurable quantities and two intrinsic vectors.
Extensively written, the matrix (28) will be

1
wij = Augu; + pvv; — E(Auz + uv?)6;;. (30)

It can be observed that this tensor has three real and distinct principal values.
Its orthogonal invariants are

L =—e I, =—e?+ g% I; = —e(e? — g?) 31)

where

1 - — -
e = E(Auz + uv?); g = JAu( x v). (32)

The main values of w;; can then be calculated as the roots of the
characteristic equation of matrix, and they are

wq = ¢, W2,3 = i e — gz. (33)
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It happens that the pair in equation (32) is one of the eigenvectors of w
together with its own value. The other two eigenvectors of w are perpendicular,
located in the plane of the vectors % and v.

5. Conclusions

The main conclusions of the present paper are the following:

1) A short reminder of the multifractal hydrodynamic models is given. In
such a context, the existence of a multifractal medium was highlighted
and moreover, a characterization of this medium was made, by means
of a multifractal tensor;

i1) The existence of the multifractal tensor allowed the construction of
several multifractal material constitutive laws. Since deformations exist
even when no tensions are applied to the material, they can be viewed
as intrinsic or pure material properties - in particular, see Bell’s
constitutive laws;

iii) In the same context of the proposed model, it is shown that not only
radiation cosmic background, but the electromagnetic field in general,
in its Maxwellian form, is in truth the expression of the existence of the
multifractal medium.
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