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In this paper, we introduced the concept of (m,n) bi-Γ-hyperideals and
rough (m,n) bi-Γ-hyperideals in Γ-semihypergroups and some properties of (m,n)
bi-Γ-hyperideals in Γ-semihypergroups are presented.
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1. Introduction

The notion of (m,n)-ideals of semigroups was introduced by Lajos [13, 14].
Later (m,n) quasi-ideals and (m,n) bi-ideals and generalized (m,n) bi-ideals were
studied in various algebraic structures.

The notion of a rough set was originally proposed by Pawlak [16] as a formal
tool for modeling and processing incomplete information in information systems.
Some authors have studied the algebraic properties of rough sets. Kuroki, in [12],
introduced the notion of a rough ideal in a semigroup. Anvariyeh et al. [3], in-
troduced Pawlak’s approximations in Γ-semihypergroups. Abdullah et al. [1], in-
troduced the notion of M -hypersystem and N -hypersystem in Γ-semihypergroups
and Aslam et al. [6], studied rough M -hypersystems and fuzzy M -hypersystems in
Γ-semihypergroups, also see [4, 5, 19]. Yaqoob et al. [18], Applied rough set theory
to Γ-hyperideals in left almost Γ-semihypergroups.

The algebraic hyperstructure notion was introduced in 1934 by a French math-
ematician Marty [15], at the 8th Congress of Scandinavian Mathematicians. He
published some notes on hypergroups, using them in different contexts: algebraic
functions, rational fractions, non commutative groups.

In 1986, Sen and Saha [17], defined the notion of a Γ-semigroup as a general-
ization of a semigroup. One can see that Γ-semigroups are generalizations of semi-
groups. Many classical notions of semigroups have been extended to Γ-semigroups
and a lot of results on Γ-semigroups are published by a lot of mathematicians, for
instance, Chattopadhyay [7], Chinram and Jirojkul [8], Chinram and Siammai [9],
Hila [11]. Then, in [2, 10], Davvaz et al. introduced the notion of Γ-semihypergroup
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as a generalization of a semigroup, a generalization of a semihypergroup and a gener-
alization of a Γ-semigroup. They presented many interesting examples and obtained
a several characterizations of Γ-semihypergroups.

In this paper, we have introduced the notion of (m,n) bi-Γ-hyperideals and
we have applied the concept of rough set theory to (m,n) bi-Γ-hyperideals, which
is a generalization of (m,n) bi-Γ-hyperideals of Γ-semihypergroups.

2. Preliminaries

In this section, we recall certain definitions and results needed for our purpose.

Definition 2.1. A map ◦ : S×S → P∗(S) is called hyperoperation or join operation
on the set S, where S is a non-empty set and P∗(S) denotes the set of all non-empty
subsets of S. A hypergroupoid is a set S with together a (binary) hyperoperation. A
hypergroupoid (S, ◦), which is associative, that is x◦ (y ◦z) = (x◦y)◦z, ∀x, y, z ∈ S,
is called a semihypergroup.

Let A and B be two non-empty subsets of S. Then, we define

AΓB =
∪
γ∈Γ

AγB =
∪

{aγb | a ∈ A, b ∈ B and γ ∈ Γ} .

Let (S, ◦) be a semihypergroup and let Γ = {◦}. Then, S is a Γ-semihypergroup.
So, every semihypergroup is Γ-semihypergroup.

Let S be a Γ-semihypergroup and γ ∈ Γ. A non-empty subset A of S is called
a sub Γ-semihypergroup of S if xγy ⊆ A for every x, y ∈ A. A Γ-semihypergroup S
is called commutative if for all x, y ∈ S and γ ∈ Γ, we have xγy = yγx.

Example 2.1. [2] Let S = [0, 1] and Γ = N. For every x, y ∈ S and γ ∈ Γ, we

define γ : S × S −→ ℘∗ (S) by xγy =
[
0, xyγ

]
. Then, γ is hyperoperation. For every

x, y, z ∈ S and α, β ∈ Γ, we have (xαy)βz =
[
0, xyzαβ

]
= xα(yβz). This means that

S is Γ-semihypergroup.

Example 2.2. [2] Let (S, ◦) be a semihypergroup and Γ be a non-empty subset of S.
We define xγy = x◦y for every x, y ∈ S and γ ∈ Γ. Then, S is a Γ-semihypergroup.

Definition 2.2. [2] A non-empty subset A of a Γ-semihypergroup S is a right (left)
Γ-hyperideal of S if AΓS ⊆ A (SΓA ⊆ A), and is a Γ-hyperideal of S if it is both a
right and a left Γ-hyperideal.

Definition 2.3. [2] A sub Γ-semihypergroup B of a Γ-semihypergroup S is called a
bi-Γ-hyperideal of S if BΓSΓB ⊆ B.

A bi-Γ-hyperideal B of a Γ-semihypergroup S is proper if B ̸= S.

Lemma 2.1. In a Γ-semihypergroup S, (AΓB)m = AmΓBm holds if AΓB = BΓA
for all A,B ∈ S and m is a positive integer.

Proof. We prove the result (AΓB)m = AmΓBm by induction on m. For m = 1,
AΓB = AΓB, which is true. Form = 2, (AΓB)2 = (AΓB)Γ(AΓB) = AΓ(BΓA)ΓB =
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A2ΓB2. Suppose that the result is true for m = k. That is, (AΓB)k = AkΓBk. Now
for m = k + 1, we have

(AΓB)k+1 = (AΓB)kΓ(AΓB) = (AkΓBk)Γ(AΓB) = AkΓ(BkΓA)ΓB
= (AkΓA)Γ(BkΓB) = Ak+1ΓBk+1.

Thus, the result is true for m = k+1. By induction hypothesis the result (AΓB)m =
AmΓBm is true for all positive integers m. �

3. (m,n) Bi-Γ-hyperideals in Γ-semihypergroups

From [14], a subsemigroup A of a semigroup S is called an (m,n)-ideal of S if
AmSAn ⊆ A.

A subset A of a Γ-semihypergroup S is called an (m, 0) Γ-hyperideal ((0, n)
Γ-hyperideal) if AmΓS ⊆ A (SΓAn ⊆ A). A sub Γ-semihypergroup A of a Γ-
semihypergroup S is called (m,n) bi-Γ-hyperideal of S, if A satisfies the condition

AmΓSΓAn ⊆ A,

where m, n are non-negative integers (Am is suppressed if m = 0). Here if m = n = 1
then A is called bi-Γ-hyperideal of S. By a proper (m,n) bi-Γ-hyperideal we mean
an (m,n) bi-Γ-hyperideal, which is a proper subset of S.

Example 3.1. Let (S, ◦) be a semihypergroup and Γ be a non-empty subset of S.
Define a mapping S×Γ×S → P∗(S) by xγy = x◦y for every x, y ∈ S and γ ∈ Γ. By
Example 2.2, we know that S is a Γ-semihypergroup. Let B be an (m,n) bi-hyperideal
of the semihypergroup S. Then, Bm◦S◦Bn ⊆ B. So, BmΓSΓBn = Bm◦S◦Bn ⊆ B.
Hence, B is an (m,n) bi-Γ-hyperideal of S.

Example 3.2. Let S = [0, 1] and Γ = N. Then, S together with the hyperoperation

xγy =
[
0, xyγ

]
is a Γ-semihypergroup. Let t ∈ [0, 1] and set T = [0, t]. Then, clearly it

can be seen that T is a sub Γ-semihypergroup of S. Since TmΓS = [0, tm] ⊆ [0, t] = T
(SΓTn = [0, tn] ⊆ [0, t] = T ), so T is an (m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of
S. Since TmΓSΓTn = [0, tm+n] ⊆ [0, t] = T, then T is an (m,n) bi-Γ-hyperideal of
Γ-semihypergroup S.

Example 3.3. Let S = [−1, 0] and Γ = {−1,−2,−3, · · · }. Define the hyperopera-

tion xγy =
[
xy
γ , 0

]
for all x, y ∈ S and γ ∈ Γ. Then, clearly S is a Γ-semihypergroup.

Let λ ∈ [−1, 0] and the set B = [λ, 0]. Then, clearly B is a sub Γ-semihypergroup of S.
Since BmΓS = [λ2m+1, 0] ⊆ [λ, 0] = B (SΓBn = [λ2n+1, 0] ⊆ [λ, 0] = B), so B is an

(m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of S. Since BmΓSΓBn = [λ2(m+n)+1, 0] ⊆
[λ, 0] = B, then B is an (m,n) bi-Γ-hyperideal of Γ-semihypergroup S.

Proposition 3.1. Let S be a Γ-semihypergroup, B be a sub Γ-semihypergroup of
S and let A be an (m,n) bi-Γ-hyperideal of S. Then, the intersection A ∩ B is an
(m,n) bi-Γ-hyperideal of Γ-semihypergroup B.

Proof. The intersection A ∩ B evidently is a sub Γ-semihypergroup of S. We show
that A ∩B is an (m,n) bi-Γ-hyperideal of B, for this

(A ∩B)mΓBΓ(A ∩B)n ⊆ AmΓSΓAn ⊆ A, (1)
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because of A is an (m,n) bi-Γ-hyperideal of S. Secondly

(A ∩B)mΓBΓ(A ∩B)n ⊆ BmΓBΓBn ⊆ B. (2)

Therefore, (1) and (2) imply that (A ∩ B)mΓBΓ(A ∩ B)n ⊆ A ∩ B, that is, the
intersection A ∩B is an (m,n) bi-Γ-hyperideal of B. �

Theorem 3.1. Suppose that {Ai : i ∈ I} be a family of (m,n) bi-Γ-hyperideals of a
Γ-semihypergroup S. Then, the intersection ∩

i∈I
Ai ̸= ∅ is an (m,n) bi-Γ-hyperideal

of S.

Proof. Let {Ai : i ∈ I} be a family of (m,n) bi-Γ-hyperideals in a Γ-semihypergroup
S. We know that the intersection of sub Γ-semihypergroups is a sub Γ-semihypergroup.
Let B = ∩

i∈I
Ai. Now we have to show that B = ∩

i∈I
Ai is an (m,n) bi-Γ-hyperideal

of S. Here we need only to show that BmΓSΓBn ⊆ B. Let x ∈ BmΓSΓBn. Then,
x = am1 αsβan2 for some am1 , an2 ⊆ B, s ∈ S and α, β ∈ Γ. Thus, for any arbitrary
i ∈ I as am1 , an2 ⊆ Bi. So, x ∈ Bm

i ΓSΓBn
i . Since Bi is an (m,n) bi-Γ-hyperideal so

Bm
i ΓSΓBn

i ⊆ Bi and therefore x ∈ Bi. Since i was chosen arbitrarily so x ∈ Bi for
all i ∈ I and hence x ∈ B. So, BmΓSΓBn ⊆ B and hence B = ∩

i∈I
Ai is an (m,n)

bi-Γ-hyperideal of S. �

It is obvious that the intersection of two or more (m, 0) Γ-hyperideals ((0, n)
Γ-hyperideals) is an (m, 0) Γ-hyperideal ((0, n) Γ-hyperideal). Similarly, the union
of two or more (m, 0) Γ-hyperideals ((0, n) Γ-hyperideals) is an (m, 0) Γ-hyperideal
((0, n) Γ-hyperideal).

Theorem 3.2. Let S be a Γ-semihypergroup. If A is an (m, 0) Γ-hyperideal and
also (0, n) Γ-hyperideal of S, then A is an (m,n) bi-Γ-hyperideal of S.

Proof. Suppose that A is an (m, 0) Γ-hyperideal and also (0, n) Γ-hyperideal of S.
Then,

AmΓSΓAn ⊆ AΓAn ⊆ SΓAn ⊆ A,

which implies that A is an (m,n) bi-Γ-hyperideal of S. �

Theorem 3.3. Let m,n be arbitrary positive integers. Let S be a Γ-semihypergroup,
B be an (m,n) bi-Γ-hyperideal of S and A be a sub Γ-semihypergroup of S. Suppose
that AΓB = BΓA. Then,

(1) BΓA is an (m,n) bi-Γ-hyperideal of S.
(2) AΓB is an (m,n) bi-Γ-hyperideal of S.

Proof. (1) The suppositions of the theorem imply that

(BΓA)Γ(BΓA) = (BΓAΓB)ΓA = BΓA.

This shows that BΓA is a sub Γ-semihypergroup of S. On the other hand, as B is
an (m,n) bi-Γ-hyperideal of S, so

(BΓA)mΓSΓ(BΓA)n = (BmΓAmΓSΓBn)ΓAn ⊆ BΓAn ⊆ BΓA.

Hence, the product BΓA is an (m,n) bi-Γ-hyperideal of S.
(2) The proof is similar to (1). �
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Theorem 3.4. Let S be a Γ-semihypergroup and for a positive integer n, B1, B2, · · · , Bn

be (m,n) bi-Γ-hyperideals of S. Then, B1ΓB2Γ · · ·ΓBn is an (m,n) bi-Γ-hyperideal
of S.

Proof. We prove the theorem by induction. By Theorem 3.3, B1ΓB2 is an (m,n)
bi-Γ-hyperideal of S. Next, for k ≤ n, suppose that B1ΓB2Γ...ΓBk is an (m,n) bi-Γ-
hyperideal of S. Then, B1ΓB2Γ...ΓBkΓBk+1 = (B1ΓB2Γ...ΓBk)ΓBk+1 is an (m,n)
bi-Γ-hyperideal of S by Theorem 3.3. �
Theorem 3.5. Let S be a Γ-semihypergroup, A be an (m,n) bi-Γ-hyperideal of
S, and B be an (m,n) bi-Γ-hyperideal of the Γ-semihypergroup A such that B2 =
BΓB = B. Then, B is an (m,n) bi-Γ-hyperideal of S.

Proof. It is trivial thatB is a sub Γ-semihypergroup of S. Secondly, sinceAmΓSΓAn ⊆
A and BmΓAΓBn ⊆ B, we have

BmΓSΓBn = BmΓ(BmΓSΓBn)ΓBn ⊆ BmΓ(AmΓSΓAn)ΓBn ⊆ BmΓAΓBn ⊆ B.

Therefore, B is an (m,n) bi-Γ-hyperideal of S. �

4. Lower and Upper Approximations in Γ-semihypergroups

In what follows, let S denote a Γ-semihypergroup unless otherwise specified.

Definition 4.1. Let S be a Γ-semihypergroup. An equivalence relation ρ on S is
called regular on S if

(a, b) ∈ ρ implies (aγx, bγx) ∈ ρ and (xγa, xγb) ∈ ρ,

for all x ∈ S and γ ∈ Γ.

If ρ is a regular relation on S, then, for every x ∈ S, [x]ρ stands for the
class of x with the represent ρ. A regular relation ρ on S is called complete if
[a]ργ[b]ρ = [aγb]ρ for all a, b ∈ S and γ ∈ Γ. In addition, ρ on S is called congruence
if, for every (a, b) ∈ S and γ ∈ Γ, we have c ∈ [a]ργ[b]ρ =⇒ [c]ρ ⊆ [a]ργ[b]ρ.

Let A be a non-empty subset of a Γ-semihypergroup S and ρ be a regular
relation on S. Then, the sets

Apr
ρ
(A) =

{
x ∈ S : [x]ρ ⊆ A

}
and Aprρ(A) =

{
x ∈ S : [x]ρ ∩A ̸= ∅

}
are called ρ-lower and ρ-upper approximations of A, respectively. For a non-empty
subset A of S, Aprρ(A) = (Apr

ρ
(A), Aprρ(A)) is called a rough set with respect to

ρ if Apr
ρ
(A) ̸= Aprρ(A).

Theorem 4.1. [3] Let ρ be a regular relation on a Γ-semihypergroup S and let A
and B be non-empty subsets of S. Then,

(1) Aprρ (A) ΓAprρ (B) ⊆ Aprρ (AΓB) ;
(2) If ρ is complete, then Apr

ρ
(A) ΓApr

ρ
(B) ⊆ Apr

ρ
(AΓB).

Theorem 4.2. [3] Let ρ be a regular relation on a Γ-semihypergroup S. Then,
(1) Every sub Γ-semihypergroup of S is a ρ-upper rough sub Γ-semihypergroup

of S.
(2) Every right (left) Γ-hyperideal of S is a ρ-upper rough right (left) Γ-

hyperideal of S.
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Theorem 4.3. [3] Let ∅ ̸= A ⊆ S and let ρ be a complete regular relation on S such
that the ρ-lower approximation of A is non-empty. Then,

(1) If A is a sub Γ-semihypergroup of S, then A is a ρ-lower rough sub Γ-
semihypergroup of S.

(2) If A is a right (left) Γ-hyperideal of S, then A is a ρ-lower rough right
(left) Γ-hyperideal of S.

A subset A of a Γ-semihypergroup S is called a ρ-upper [ρ-lower] rough bi-Γ-
hyperideal of S if Aprρ(A)[Apr

ρ
(A)] is a bi-Γ-hyperideal of S.

Theorem 4.4. [3] Let ρ be a regular relation on S and A be a bi-Γ-hyperideal of S.
Then,

(1) A is a ρ-upper rough bi-Γ-hyperideal of S.
(2) If ρ is complete such that the ρ-lower approximation of A is non-empty,

then A is a ρ-lower rough bi-Γ-hyperideal of S.

Lemma 4.1. Let ρ be a regular relation on a Γ-semihypergroup S. Then, for a
non-empty subset A of S

(1)
(
Aprρ(A)

)n ⊆ Aprρ(A
n) for all n ∈ N.

(2) If ρ is complete, then
(
Apr

ρ
(A)

)n
⊆ Apr

ρ
(An) for all n ∈ N.

Proof. (1) Let A be a non-empty subset of S, then for n = 2, and by Theorem 4.1(1),
we get (

Aprρ(A)
)2

= Aprρ(A)ΓAprρ(A) ⊆ Aprρ(AΓA) = Aprρ(A
2).

Now for n = 3, we get(
Aprρ(A)

)3
= Aprρ(A)Γ

(
Aprρ(A)

)2 ⊆ Aprρ(A)ΓAprρ(A
2)

⊆ Aprρ(AΓA2) = Aprρ(A
3).

Suppose that the result is true for n = k−1, such that (Aprρ(A))k−1 ⊆ Aprρ(A
k−1),

then for n = k, we get(
Aprρ(A)

)k
= Aprρ(A)Γ

(
Aprρ(A)

)k−1 ⊆ Aprρ(A)ΓAprρ(A
k−1)

⊆ Aprρ(AΓA
k−1) = Aprρ(A

k).

Hence, this shows that
(
Aprρ(A)

)k ⊆ Aprρ(A
k). This implies that

(
Aprρ(A)

)n ⊆
Aprρ(A

n) is true for all n ∈ N. By using Theorem 4.1(2), the proof of (2) can be
seen in a similar way. This completes the proof. �

5. Rough (m,n) Bi-Γ-hyperideals in Γ-semihypergroups

Let ρ be a regular relation on a Γ-semihypergroup S. A subset A of S is called
a ρ-upper rough (m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of S if Aprρ(A) is an (m, 0)
Γ-hyperideal ((0, n) Γ-hyperideal) of S. Similarly, a subset A of a Γ-semihypergroup
S is called a ρ-lower rough (m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of S if Apr

ρ
(A)

is an (m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of S.

Theorem 5.1. Let ρ be a regular relation on a Γ-semihypergroup S and A be an
(m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of S. Then,

(1) Aprρ(A) is an (m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of S.
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(2) If ρ is complete, then Apr
ρ
(A) is, if it is non-empty, an (m, 0) Γ-hyperideal

((0, n) Γ-hyperideal) of S.

Proof. (1) Let A be an (m, 0) Γ-hyperideal of S, that is, AmΓS ⊆ A. Note that
Aprρ(S) = S. Then, by Theorem 4.1(1) and Lemma 4.1(1), we have(

Aprρ(A)
)m

ΓS =
(
Aprρ(A)

)m
ΓAprρ(S) ⊆ Aprρ(A

m)ΓAprρ(S)

⊆ Aprρ(A
mΓS) ⊆ Aprρ(A).

This shows that Aprρ(A) is an (m, 0) Γ-hyperideal of S, that is, A is a ρ-upper rough
(m, 0) Γ-hyperideal of S. Similarly, we can show that the ρ-upper approximation of
a (0, n) Γ-hyperideal is a (0, n) Γ-hyperideal of S.

(2) Let A be an (m, 0) Γ-hyperideal of S, that is, AmΓS ⊆ A. Note that
Apr

ρ
(S) = S. Then, by Theorem 4.1(2) and Lemma 4.1(2), we have

(
Apr

ρ
(A)

)m
ΓS =

(
Apr

ρ
(A)

)m
ΓApr

ρ
(S) ⊆ Apr

ρ
(Am)ΓApr

ρ
(S)

⊆ Apr
ρ
(AmΓS) ⊆ Apr

ρ
(A).

This shows that Apr
ρ
(A) is an (m, 0) Γ-hyperideal of S, that is, A is a ρ-lower rough

(m, 0) Γ-hyperideal of S. Similarly, we can show that the ρ-lower approximation of
a (0, n) Γ-hyperideal is a (0, n) Γ-hyperideal of S. This completes the proof. �

A subset A of a Γ-semihypergroup S is called a ρ-upper [ρ-lower] rough (m,n)
bi-Γ-hyperideal of S if Aprρ(A) [Aprρ(A)] is an (m,n) bi-Γ-hyperideal of S.

Theorem 5.2. Let ρ be a regular relation on a Γ-semihypergroup S. If A is an
(m,n) bi-Γ-hyperideal of S, then it is a ρ-upper rough (m,n) bi-Γ-hyperideal of S.

Proof. Let A be an (m,n) bi-Γ-hyperideal of S. Then, by Theorem 4.1(1) and
Lemma 4.1(1), we have

(Aprρ(A))
mΓSΓ(Aprρ(A))

n = (Aprρ(A))
mΓAprρ(S)Γ(Aprρ(A))

n

⊆ Aprρ(A
m)ΓAprρ(S)ΓAprρ(A

n)

⊆ Aprρ(A
mΓS)ΓAprρ(A

n)

⊆ Aprρ(A
mΓSΓAn) ⊆ Aprρ(A).

From this and Theorem 4.2(1), we obtain that Aprρ(A) is an (m,n) bi-Γ-hyperideal
of S, that is, A is a ρ-upper rough (m,n) bi-Γ-hyperideal of S. This completes the
proof. �

Theorem 5.3. Let ρ be a complete regular relation on a Γ-semihypergroup S. If
A is an (m,n) bi-Γ-hyperideal of S, then Apr

ρ
(A) is, if it is non-empty, an (m,n)

bi-Γ-hyperideal of S.
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Proof. Let A be an (m,n) bi-Γ-hyperideal of S. Then, by Theorem 4.1(2) and Lemma
4.1(2), we have

(Apr
ρ
(A))mΓSΓ(Apr

ρ
(A))n = (Apr

ρ
(A))mΓApr

ρ
(S)Γ(Apr

ρ
(A))n

⊆ Apr
ρ
(Am)ΓApr

ρ
(S)ΓApr

ρ
(An)

⊆ Apr
ρ
(AmΓS)ΓApr

ρ
(An)

⊆ Apr
ρ
(AmΓSΓAn) ⊆ Apr

ρ
(A).

From this and Theorem 4.3(1), we obtain that Apr
ρ
(A) is, if it is non-empty, an

(m,n) bi-Γ-hyperideal of S. This completes the proof. �

The following example shows that the converse of Theorem 5.2 and Theorem
5.3 does not hold.

Example 5.1. Let S = {x, y, z} and Γ = {β, γ} be the sets of binary hyperoperations
defined below:

β x y z
x x {x, y} z
y {x, y} {x, y} z
z z z z

γ x y z
x {x, y} {x, y} z
y {x, y} y z
z z z z

Clearly S is a Γ-semihypergroup. Let ρ be a complete regular relation on S such
that the ρ-regular classes are the subsets {x, y}, {z}. Now for A = {x, z} ⊆ S,
Aprρ(A) = {x, y, z} and Apr

ρ
(A) = {z}. It is clear that Aprρ(A) and Apr

ρ
(A) are

(m,n) bi-Γ-hyperideals of S, but A is not an (m,n) bi-Γ-hyperideal of S. Because
AmΓSΓAn = S * A.

6. Rough (m,n) Bi-Γ-hyperideals in the Quotient Γ-semihypergroups

Let ρ be a regular relation on a Γ-semihypergroup S. We put Γ̂ = {γ̂ : γ ∈ Γ}.
For every [a]ρ, [b]ρ ∈ S/ρ, we define [a]ργ̂[b]ρ = {[z]ρ : z ∈ aγb}.

Theorem 6.1. ([3, Theorem 4.1]) If S is a Γ-semihypergroup, then S/ρ is a Γ̂-
semihypergroup.

Definition 6.1. Let ρ be a regular relation on a Γ-semihypergroup S. The ρ-lower
approximation and ρ-upper approximation of a non-empty subset A of S can be
presented in an equivalent form as shown below:

Apr
ρ
(A) =

{
[x]ρ ∈ S/ρ : [x]ρ ⊆ A

}
and Aprρ(A) =

{
[x]ρ ∈ S/ρ : [x]ρ ∩A ̸= ∅

}
,

respectively.

Theorem 6.2. ([3, Theorems 4.3, 4.4]) Let ρ be a regular relation on a Γ-semihypergroup
S. If A is a sub Γ-semihypergroup of S. Then,

(1) Aprρ(A) is a sub Γ̂-semihypergroup of S/ρ.

(2) Apr
ρ
(A) is, if it is non-empty, a sub Γ̂-semihypergroup of S/ρ.
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Theorem 6.3. Let ρ be a regular relation on a Γ-semihypergroup S. If A is an
(m, 0) Γ-hyperideal ((0, n) Γ-hyperideal) of S. Then,

(1) Aprρ(A) is an (m, 0) Γ̂-hyperideal ((0, n) Γ̂-hyperideal) of S/ρ.

(2) Apr
ρ
(A) is, if it is non-empty, an (m, 0) Γ̂-hyperideal ((0, n) Γ̂-hyperideal)

of S/ρ.

Proof. (1) Assume that A is a (0, n) Γ-hyperideal of S. Let [x]ρ and [s]ρ be any

elements of Aprρ(A) and S/ρ, respectively. Then, [x]ρ∩A ̸= ∅. Hence, x ∈ Aprρ(A).

Since A is a (0, n) Γ-hyperideal of S, by Theorem 10(1), Aprρ(A) is a (0, n) Γ-

hyperideal of S. So, for γ ∈ Γ, we have sγxn ⊆ Aprρ(A). Now, for every t ∈ sγxn,
we have [t]ρ ∩ A ̸= ∅. On the other hand, from t ∈ sγxn, we obtain [t]ρ ∈ [s]ργ̂[x]

n
ρ .

Therefore, [s]ργ̂[x]
n
ρ ⊆ Aprρ(A). This means that Aprρ(A) is a (0, n) Γ̂-hyperideal

of S/ρ.
(2) Let A be a (0, n) Γ-hyperideal of S. Let [x]ρ and [s]ρ be any elements of

Apr
ρ
(A) and S/ρ, respectively. Then, [x]ρ ⊆ A, which implies x ∈ Apr

ρ
(A). Since

A is a (0, n) Γ-hyperideal of S, by Theorem 10(2), Apr
ρ
(A) is a (0, n) Γ-hyperideal

of S. Thus, for every γ ∈ Γ, we have sγxn ⊆ Apr
ρ
(A). Now, for every t ∈ sγxn, we

have t ∈ Apr
ρ
(A), which implies that [t]ρ ⊆ A. Hence, [t]ρ ∈ Apr

ρ
(A). On the other

hand, from t ∈ sγxn, we have [t]ρ ∈ [s]ργ̂[x]
n
ρ . Therefore, [s]ργ̂[x]

n
ρ ⊆ Apr

ρ
(A). This

means that Apr
ρ
(A) is, if it is non-empty, a (0, n) Γ̂-hyperideal of S/ρ.

The other cases can be seen in a similar way. This completes the proof. �
Theorem 6.4. Let ρ be a regular relation on a Γ-semihypergroup S. If A is an
(m,n) bi-Γ-hyperideal of S. Then,

(1) Aprρ(A) is an (m,n) bi-Γ̂-hyperideal of S/ρ.

(2) Apr
ρ
(A) is, if it is non-empty, an (m,n) bi-Γ̂-hyperideal of S/ρ.

Proof. (1) Let [x]ρ and [y]ρ be any elements of Aprρ(A) and [s]ρ be any element of
S/ρ. Then,

[x]ρ ∩A ̸= ∅ and [y]ρ ∩A ̸= ∅.
Hence, x ∈ Aprρ(A) and y ∈ Aprρ(A). By Theorem 11, Aprρ(A) is an (m,n) bi-Γ̂-

hyperideal of S. So, for every α, β ∈ Γ, we have xmαsβyn ⊆ Aprρ(A). Now, for every

t ∈ xmαsβyn, we obtain [t]ρ ∈ [x]mρ α̂sβ̂[y]nρ . On the other hand, since t ∈ Aprρ(A),
we have [t]ρ ∩A ̸= ∅. Thus,

[x]mρ α̂sβ̂[y]nρ ⊆ Aprρ(A).

Therefore, Aprρ(A) is an (m,n) bi-Γ̂-hyperideal of S/ρ.
(2) Let [x]ρ and [y]ρ be any elements of Apr

ρ
(A) and [s]ρ be any element of

S/ρ. Then,
[x]ρ ⊆ A and [y]ρ ⊆ A.

Hence, x ∈ Apr
ρ
(A) and y ∈ Apr

ρ
(A). By Theorem 12, Apr

ρ
(A) is an (m,n) bi-

Γ̂-hyperideal of S. So, for every α, β ∈ Γ, we have xmαsβyn ⊆ Apr
ρ
(A). Then,
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for every t ∈ xmαsβyn, we obtain [t]ρ ∈ [x]mρ α̂aβ̂[y]nρ . On the other hand, since
t ∈ Apr

ρ
(A), we have [t]ρ ⊆ A. So,

[x]mρ α̂aβ̂[y]nρ ⊆ Apr
ρ
(A).

Therefore, Apr
ρ
(A) is, if it is non-empty, an (m,n) bi-Γ̂-hyperideal of S/ρ. This

completes the proof. �

7. Conclusion

The relations between rough sets and algebraic systems have been already
considered by many mathematicians. In this paper, the properties of (m,n) bi-Γ-
hyperideal in Γ-semihypergroup are investigated and hence the concept of rough set
theory is applied to (m,n) bi-Γ-hyperideals.
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