

ON ROUGH (m, n) BI- Γ -HYPERIDEALS IN Γ -SEMIHYPERGROUPS

Naveed Yaqoob¹, Muhammad Aslam¹, Bijan Davvaz², Arsham Borumand Saeid³

In this paper, we introduced the concept of (m, n) bi- Γ -hyperideals and rough (m, n) bi- Γ -hyperideals in Γ -semihypergroups and some properties of (m, n) bi- Γ -hyperideals in Γ -semihypergroups are presented.

Keywords: Γ -semihypergroups, Rough sets, Rough (m, n) bi- Γ -hyperideals.

MSC2010: 20N20, 20M17.

1. Introduction

The notion of (m, n) -ideals of semigroups was introduced by Lajos [13, 14]. Later (m, n) quasi-ideals and (m, n) bi-ideals and generalized (m, n) bi-ideals were studied in various algebraic structures.

The notion of a rough set was originally proposed by Pawlak [16] as a formal tool for modeling and processing incomplete information in information systems. Some authors have studied the algebraic properties of rough sets. Kuroki, in [12], introduced the notion of a rough ideal in a semigroup. Anvariyeh et al. [3], introduced Pawlak's approximations in Γ -semihypergroups. Abdullah et al. [1], introduced the notion of M -hypersystem and N -hypersystem in Γ -semihypergroups and Aslam et al. [6], studied rough M -hypersystems and fuzzy M -hypersystems in Γ -semihypergroups, also see [4, 5, 19]. Yaqoob et al. [18], Applied rough set theory to Γ -hyperideals in left almost Γ -semihypergroups.

The algebraic hyperstructure notion was introduced in 1934 by a French mathematician Marty [15], at the 8th Congress of Scandinavian Mathematicians. He published some notes on hypergroups, using them in different contexts: algebraic functions, rational fractions, non commutative groups.

In 1986, Sen and Saha [17], defined the notion of a Γ -semigroup as a generalization of a semigroup. One can see that Γ -semigroups are generalizations of semigroups. Many classical notions of semigroups have been extended to Γ -semigroups and a lot of results on Γ -semigroups are published by a lot of mathematicians, for instance, Chattopadhyay [7], Chinram and Jirojkul [8], Chinram and Siammai [9], Hila [11]. Then, in [2, 10], Davvaz et al. introduced the notion of Γ -semihypergroup

¹Corresponding author: Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan., E-mail: nayaqoob@ymail.com

²Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.

³Department of Mathematics, Yazd University, Yazd, Iran.

⁴Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

as a generalization of a semigroup, a generalization of a semihypergroup and a generalization of a Γ -semigroup. They presented many interesting examples and obtained a several characterizations of Γ -semihypergroups.

In this paper, we have introduced the notion of (m, n) bi- Γ -hyperideals and we have applied the concept of rough set theory to (m, n) bi- Γ -hyperideals, which is a generalization of (m, n) bi- Γ -hyperideals of Γ -semihypergroups.

2. Preliminaries

In this section, we recall certain definitions and results needed for our purpose.

Definition 2.1. *A map $\circ : S \times S \rightarrow \mathcal{P}^*(S)$ is called hyperoperation or join operation on the set S , where S is a non-empty set and $\mathcal{P}^*(S)$ denotes the set of all non-empty subsets of S . A hypergroupoid is a set S with together a (binary) hyperoperation. A hypergroupoid (S, \circ) , which is associative, that is $x \circ (y \circ z) = (x \circ y) \circ z$, $\forall x, y, z \in S$, is called a semihypergroup.*

Let A and B be two non-empty subsets of S . Then, we define

$$A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$

Let (S, \circ) be a semihypergroup and let $\Gamma = \{\circ\}$. Then, S is a Γ -semihypergroup. So, every semihypergroup is Γ -semihypergroup.

Let S be a Γ -semihypergroup and $\gamma \in \Gamma$. A non-empty subset A of S is called a sub Γ -semihypergroup of S if $x\gamma y \subseteq A$ for every $x, y \in A$. A Γ -semihypergroup S is called *commutative* if for all $x, y \in S$ and $\gamma \in \Gamma$, we have $x\gamma y = y\gamma x$.

Example 2.1. [2] Let $S = [0, 1]$ and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$, we define $\gamma : S \times S \rightarrow \wp^*(S)$ by $x\gamma y = \left[0, \frac{xy}{\gamma}\right]$. Then, γ is hyperoperation. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have $(x\alpha y)\beta z = \left[0, \frac{xyz}{\alpha\beta}\right] = x\alpha(y\beta z)$. This means that S is Γ -semihypergroup.

Example 2.2. [2] Let (S, \circ) be a semihypergroup and Γ be a non-empty subset of S . We define $x\gamma y = x \circ y$ for every $x, y \in S$ and $\gamma \in \Gamma$. Then, S is a Γ -semihypergroup.

Definition 2.2. [2] A non-empty subset A of a Γ -semihypergroup S is a right (left) Γ -hyperideal of S if $A\Gamma S \subseteq A$ ($S\Gamma A \subseteq A$), and is a Γ -hyperideal of S if it is both a right and a left Γ -hyperideal.

Definition 2.3. [2] A sub Γ -semihypergroup B of a Γ -semihypergroup S is called a bi- Γ -hyperideal of S if $B\Gamma S\Gamma B \subseteq B$.

A bi- Γ -hyperideal B of a Γ -semihypergroup S is proper if $B \neq S$.

Lemma 2.1. In a Γ -semihypergroup S , $(A\Gamma B)^m = A^m\Gamma B^m$ holds if $A\Gamma B = B\Gamma A$ for all $A, B \in S$ and m is a positive integer.

Proof. We prove the result $(A\Gamma B)^m = A^m\Gamma B^m$ by induction on m . For $m = 1$, $A\Gamma B = A\Gamma B$, which is true. For $m = 2$, $(A\Gamma B)^2 = (A\Gamma B)\Gamma(A\Gamma B) = A\Gamma(B\Gamma A)\Gamma B =$

$A^2\Gamma B^2$. Suppose that the result is true for $m = k$. That is, $(A\Gamma B)^k = A^k\Gamma B^k$. Now for $m = k + 1$, we have

$$\begin{aligned}(A\Gamma B)^{k+1} &= (A\Gamma B)^k\Gamma(A\Gamma B) = (A^k\Gamma B^k)\Gamma(A\Gamma B) = A^k\Gamma(B^k\Gamma A)\Gamma B \\ &= (A^k\Gamma A)\Gamma(B^k\Gamma B) = A^{k+1}\Gamma B^{k+1}.\end{aligned}$$

Thus, the result is true for $m = k + 1$. By induction hypothesis the result $(A\Gamma B)^m = A^m\Gamma B^m$ is true for all positive integers m . \square

3. (m, n) Bi- Γ -hyperideals in Γ -semihypergroups

From [14], a subsemigroup A of a semigroup S is called an (m, n) -ideal of S if $A^m S A^n \subseteq A$.

A subset A of a Γ -semihypergroup S is called an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) if $A^m \Gamma S \subseteq A$ ($S \Gamma A^n \subseteq A$). A sub Γ -semihypergroup A of a Γ -semihypergroup S is called (m, n) bi- Γ -hyperideal of S , if A satisfies the condition

$$A^m \Gamma S \Gamma A^n \subseteq A,$$

where m, n are non-negative integers (A^m is suppressed if $m = 0$). Here if $m = n = 1$ then A is called bi- Γ -hyperideal of S . By a proper (m, n) bi- Γ -hyperideal we mean an (m, n) bi- Γ -hyperideal, which is a proper subset of S .

Example 3.1. Let (S, \circ) be a semihypergroup and Γ be a non-empty subset of S . Define a mapping $S \times \Gamma \times S \rightarrow \mathcal{P}^*(S)$ by $x\gamma y = x \circ y$ for every $x, y \in S$ and $\gamma \in \Gamma$. By Example 2.2, we know that S is a Γ -semihypergroup. Let B be an (m, n) bi- Γ -hyperideal of the semihypergroup S . Then, $B^m \circ S \circ B^n \subseteq B$. So, $B^m \Gamma S \Gamma B^n = B^m \circ S \circ B^n \subseteq B$. Hence, B is an (m, n) bi- Γ -hyperideal of S .

Example 3.2. Let $S = [0, 1]$ and $\Gamma = \mathbb{N}$. Then, S together with the hyperoperation $x\gamma y = \left[0, \frac{xy}{\gamma}\right]$ is a Γ -semihypergroup. Let $t \in [0, 1]$ and set $T = [0, t]$. Then, clearly it can be seen that T is a sub Γ -semihypergroup of S . Since $T^m \Gamma S = [0, t^m] \subseteq [0, t] = T$ ($S \Gamma T^n = [0, t^n] \subseteq [0, t] = T$), so T is an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S . Since $T^m \Gamma S \Gamma T^n = [0, t^{m+n}] \subseteq [0, t] = T$, then T is an (m, n) bi- Γ -hyperideal of Γ -semihypergroup S .

Example 3.3. Let $S = [-1, 0]$ and $\Gamma = \{-1, -2, -3, \dots\}$. Define the hyperoperation $x\gamma y = \left[\frac{xy}{\gamma}, 0\right]$ for all $x, y \in S$ and $\gamma \in \Gamma$. Then, clearly S is a Γ -semihypergroup. Let $\lambda \in [-1, 0]$ and the set $B = [\lambda, 0]$. Then, clearly B is a sub Γ -semihypergroup of S . Since $B^m \Gamma S = [\lambda^{2m+1}, 0] \subseteq [\lambda, 0] = B$ ($S \Gamma B^n = [\lambda^{2n+1}, 0] \subseteq [\lambda, 0] = B$), so B is an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S . Since $B^m \Gamma S \Gamma B^n = [\lambda^{2(m+n)+1}, 0] \subseteq [\lambda, 0] = B$, then B is an (m, n) bi- Γ -hyperideal of Γ -semihypergroup S .

Proposition 3.1. Let S be a Γ -semihypergroup, B be a sub Γ -semihypergroup of S and let A be an (m, n) bi- Γ -hyperideal of S . Then, the intersection $A \cap B$ is an (m, n) bi- Γ -hyperideal of Γ -semihypergroup B .

Proof. The intersection $A \cap B$ evidently is a sub Γ -semihypergroup of S . We show that $A \cap B$ is an (m, n) bi- Γ -hyperideal of B , for this

$$(A \cap B)^m \Gamma B \Gamma (A \cap B)^n \subseteq A^m \Gamma S \Gamma A^n \subseteq A, \quad (1)$$

because of A is an (m, n) bi- Γ -hyperideal of S . Secondly

$$(A \cap B)^m \Gamma B \Gamma (A \cap B)^n \subseteq B^m \Gamma B \Gamma B^n \subseteq B. \quad (2)$$

Therefore, (1) and (2) imply that $(A \cap B)^m \Gamma B \Gamma (A \cap B)^n \subseteq A \cap B$, that is, the intersection $A \cap B$ is an (m, n) bi- Γ -hyperideal of B . \square

Theorem 3.1. *Suppose that $\{A_i : i \in I\}$ be a family of (m, n) bi- Γ -hyperideals of a Γ -semihypergroup S . Then, the intersection $\bigcap_{i \in I} A_i \neq \emptyset$ is an (m, n) bi- Γ -hyperideal of S .*

Proof. Let $\{A_i : i \in I\}$ be a family of (m, n) bi- Γ -hyperideals in a Γ -semihypergroup S . We know that the intersection of sub Γ -semihypergroups is a sub Γ -semihypergroup. Let $B = \bigcap_{i \in I} A_i$. Now we have to show that $B = \bigcap_{i \in I} A_i$ is an (m, n) bi- Γ -hyperideal of S . Here we need only to show that $B^m \Gamma S \Gamma B^n \subseteq B$. Let $x \in B^m \Gamma S \Gamma B^n$. Then, $x = a_1^m \alpha s \beta a_2^n$ for some $a_1^m, a_2^n \subseteq B$, $s \in S$ and $\alpha, \beta \in \Gamma$. Thus, for any arbitrary $i \in I$ as $a_1^m, a_2^n \subseteq B_i$. So, $x \in B_i^m \Gamma S \Gamma B_i^n$. Since B_i is an (m, n) bi- Γ -hyperideal so $B_i^m \Gamma S \Gamma B_i^n \subseteq B_i$ and therefore $x \in B_i$. Since i was chosen arbitrarily so $x \in B_i$ for all $i \in I$ and hence $x \in B$. So, $B^m \Gamma S \Gamma B^n \subseteq B$ and hence $B = \bigcap_{i \in I} A_i$ is an (m, n) bi- Γ -hyperideal of S . \square

It is obvious that the intersection of two or more $(m, 0)$ Γ -hyperideals ($(0, n)$ Γ -hyperideals) is an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal). Similarly, the union of two or more $(m, 0)$ Γ -hyperideals ($(0, n)$ Γ -hyperideals) is an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal).

Theorem 3.2. *Let S be a Γ -semihypergroup. If A is an $(m, 0)$ Γ -hyperideal and also $(0, n)$ Γ -hyperideal of S , then A is an (m, n) bi- Γ -hyperideal of S .*

Proof. Suppose that A is an $(m, 0)$ Γ -hyperideal and also $(0, n)$ Γ -hyperideal of S . Then,

$$A^m \Gamma S \Gamma A^n \subseteq A \Gamma A^n \subseteq S \Gamma A^n \subseteq A,$$

which implies that A is an (m, n) bi- Γ -hyperideal of S . \square

Theorem 3.3. *Let m, n be arbitrary positive integers. Let S be a Γ -semihypergroup, B be an (m, n) bi- Γ -hyperideal of S and A be a sub Γ -semihypergroup of S . Suppose that $A \Gamma B = B \Gamma A$. Then,*

- (1) $B \Gamma A$ is an (m, n) bi- Γ -hyperideal of S .
- (2) $A \Gamma B$ is an (m, n) bi- Γ -hyperideal of S .

Proof. (1) The suppositions of the theorem imply that

$$(B \Gamma A) \Gamma (B \Gamma A) = (B \Gamma A \Gamma B) \Gamma A = B \Gamma A.$$

This shows that $B \Gamma A$ is a sub Γ -semihypergroup of S . On the other hand, as B is an (m, n) bi- Γ -hyperideal of S , so

$$(B \Gamma A)^m \Gamma S \Gamma (B \Gamma A)^n = (B^m \Gamma A^m \Gamma S \Gamma B^n) \Gamma A^n \subseteq B \Gamma A^n \subseteq B \Gamma A.$$

Hence, the product $B \Gamma A$ is an (m, n) bi- Γ -hyperideal of S .

- (2) The proof is similar to (1). \square

Theorem 3.4. *Let S be a Γ -semihypergroup and for a positive integer n , B_1, B_2, \dots, B_n be (m, n) bi- Γ -hyperideals of S . Then, $B_1\Gamma B_2\Gamma \dots \Gamma B_n$ is an (m, n) bi- Γ -hyperideal of S .*

Proof. We prove the theorem by induction. By Theorem 3.3, $B_1\Gamma B_2$ is an (m, n) bi- Γ -hyperideal of S . Next, for $k \leq n$, suppose that $B_1\Gamma B_2\Gamma \dots \Gamma B_k$ is an (m, n) bi- Γ -hyperideal of S . Then, $B_1\Gamma B_2\Gamma \dots \Gamma B_k\Gamma B_{k+1} = (B_1\Gamma B_2\Gamma \dots \Gamma B_k)\Gamma B_{k+1}$ is an (m, n) bi- Γ -hyperideal of S by Theorem 3.3. \square

Theorem 3.5. *Let S be a Γ -semihypergroup, A be an (m, n) bi- Γ -hyperideal of S , and B be an (m, n) bi- Γ -hyperideal of the Γ -semihypergroup A such that $B^2 = B\Gamma B = B$. Then, B is an (m, n) bi- Γ -hyperideal of S .*

Proof. It is trivial that B is a sub Γ -semihypergroup of S . Secondly, since $A^m\Gamma STA^n \subseteq A$ and $B^m\Gamma A\Gamma B^n \subseteq B$, we have

$$B^m\Gamma STA^n = B^m\Gamma(B^m\Gamma STA^n)\Gamma B^n \subseteq B^m\Gamma(A^m\Gamma STA^n)\Gamma B^n \subseteq B^m\Gamma A\Gamma B^n \subseteq B.$$

Therefore, B is an (m, n) bi- Γ -hyperideal of S . \square

4. Lower and Upper Approximations in Γ -semihypergroups

In what follows, let S denote a Γ -semihypergroup unless otherwise specified.

Definition 4.1. *Let S be a Γ -semihypergroup. An equivalence relation ρ on S is called regular on S if*

$$(a, b) \in \rho \text{ implies } (a\gamma x, b\gamma x) \in \rho \text{ and } (x\gamma a, x\gamma b) \in \rho,$$

for all $x \in S$ and $\gamma \in \Gamma$.

If ρ is a regular relation on S , then, for every $x \in S$, $[x]_\rho$ stands for the class of x with the represent ρ . A regular relation ρ on S is called complete if $[a]_\rho\gamma[b]_\rho = [a\gamma b]_\rho$ for all $a, b \in S$ and $\gamma \in \Gamma$. In addition, ρ on S is called congruence if, for every $(a, b) \in S$ and $\gamma \in \Gamma$, we have $c \in [a]_\rho\gamma[b]_\rho \implies [c]_\rho \subseteq [a]_\rho\gamma[b]_\rho$.

Let A be a non-empty subset of a Γ -semihypergroup S and ρ be a regular relation on S . Then, the sets

$$\underline{Apr}_\rho(A) = \left\{ x \in S : [x]_\rho \subseteq A \right\} \text{ and } \overline{Apr}_\rho(A) = \left\{ x \in S : [x]_\rho \cap A \neq \emptyset \right\}$$

are called ρ -lower and ρ -upper approximations of A , respectively. For a non-empty subset A of S , $\underline{Apr}_\rho(A) = (\underline{Apr}_\rho(A), \overline{Apr}_\rho(A))$ is called a rough set with respect to ρ if $\underline{Apr}_\rho(A) \neq \overline{Apr}_\rho(A)$.

Theorem 4.1. [3] *Let ρ be a regular relation on a Γ -semihypergroup S and let A and B be non-empty subsets of S . Then,*

- (1) $\overline{Apr}_\rho(A)\Gamma\overline{Apr}_\rho(B) \subseteq \overline{Apr}_\rho(A\Gamma B)$;
- (2) *If ρ is complete, then $\underline{Apr}_\rho(A)\Gamma\underline{Apr}_\rho(B) \subseteq \underline{Apr}_\rho(A\Gamma B)$.*

Theorem 4.2. [3] *Let ρ be a regular relation on a Γ -semihypergroup S . Then,*

(1) *Every sub Γ -semihypergroup of S is a ρ -upper rough sub Γ -semihypergroup of S .*

(2) *Every right (left) Γ -hyperideal of S is a ρ -upper rough right (left) Γ -hyperideal of S .*

Theorem 4.3. [3] Let $\emptyset \neq A \subseteq S$ and let ρ be a complete regular relation on S such that the ρ -lower approximation of A is non-empty. Then,

- (1) If A is a sub Γ -semihypergroup of S , then A is a ρ -lower rough sub Γ -semihypergroup of S .
- (2) If A is a right (left) Γ -hyperideal of S , then A is a ρ -lower rough right (left) Γ -hyperideal of S .

A subset A of a Γ -semihypergroup S is called a ρ -upper [ρ -lower] rough bi- Γ -hyperideal of S if $\overline{Apr}_\rho(A)[\underline{Apr}_\rho(A)]$ is a bi- Γ -hyperideal of S .

Theorem 4.4. [3] Let ρ be a regular relation on S and A be a bi- Γ -hyperideal of S . Then,

- (1) A is a ρ -upper rough bi- Γ -hyperideal of S .
- (2) If ρ is complete such that the ρ -lower approximation of A is non-empty, then A is a ρ -lower rough bi- Γ -hyperideal of S .

Lemma 4.1. Let ρ be a regular relation on a Γ -semihypergroup S . Then, for a non-empty subset A of S

- (1) $(\overline{Apr}_\rho(A))^n \subseteq \overline{Apr}_\rho(A^n)$ for all $n \in \mathbb{N}$.
- (2) If ρ is complete, then $(\underline{Apr}_\rho(A))^n \subseteq \underline{Apr}_\rho(A^n)$ for all $n \in \mathbb{N}$.

Proof. (1) Let A be a non-empty subset of S , then for $n = 2$, and by Theorem 4.1(1), we get

$$(\overline{Apr}_\rho(A))^2 = \overline{Apr}_\rho(A)\Gamma\overline{Apr}_\rho(A) \subseteq \overline{Apr}_\rho(A\Gamma A) = \overline{Apr}_\rho(A^2).$$

Now for $n = 3$, we get

$$\begin{aligned} (\overline{Apr}_\rho(A))^3 &= \overline{Apr}_\rho(A)\Gamma(\overline{Apr}_\rho(A))^2 \subseteq \overline{Apr}_\rho(A)\Gamma\overline{Apr}_\rho(A^2) \\ &\subseteq \overline{Apr}_\rho(A\Gamma A^2) = \overline{Apr}_\rho(A^3). \end{aligned}$$

Suppose that the result is true for $n = k - 1$, such that $(\overline{Apr}_\rho(A))^{k-1} \subseteq \overline{Apr}_\rho(A^{k-1})$, then for $n = k$, we get

$$\begin{aligned} (\overline{Apr}_\rho(A))^k &= \overline{Apr}_\rho(A)\Gamma(\overline{Apr}_\rho(A))^{k-1} \subseteq \overline{Apr}_\rho(A)\Gamma\overline{Apr}_\rho(A^{k-1}) \\ &\subseteq \overline{Apr}_\rho(A\Gamma A^{k-1}) = \overline{Apr}_\rho(A^k). \end{aligned}$$

Hence, this shows that $(\overline{Apr}_\rho(A))^k \subseteq \overline{Apr}_\rho(A^k)$. This implies that $(\overline{Apr}_\rho(A))^n \subseteq \overline{Apr}_\rho(A^n)$ is true for all $n \in \mathbb{N}$. By using Theorem 4.1(2), the proof of (2) can be seen in a similar way. This completes the proof. \square

5. Rough (m, n) Bi- Γ -hyperideals in Γ -semihypergroups

Let ρ be a regular relation on a Γ -semihypergroup S . A subset A of S is called a ρ -upper rough $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S if $\overline{Apr}_\rho(A)$ is an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S . Similarly, a subset A of a Γ -semihypergroup S is called a ρ -lower rough $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S if $\underline{Apr}_\rho(A)$ is an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S .

Theorem 5.1. Let ρ be a regular relation on a Γ -semihypergroup S and A be an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S . Then,

- (1) $\overline{Apr}_\rho(A)$ is an $(m, 0)$ Γ -hyperideal ($(0, n)$ Γ -hyperideal) of S .

(2) If ρ is complete, then $\overline{\underline{Apr}}_\rho(A)$ is, if it is non-empty, an $(m, 0)$ Γ -hyperideal $((0, n)$ Γ -hyperideal) of S .

Proof. (1) Let A be an $(m, 0)$ Γ -hyperideal of S , that is, $A^m\Gamma S \subseteq A$. Note that $\overline{\underline{Apr}}_\rho(S) = S$. Then, by Theorem 4.1(1) and Lemma 4.1(1), we have

$$\begin{aligned} (\overline{\underline{Apr}}_\rho(A))^m \Gamma S &= (\overline{\underline{Apr}}_\rho(A))^m \Gamma \overline{\underline{Apr}}_\rho(S) \subseteq \overline{\underline{Apr}}_\rho(A^m) \Gamma \overline{\underline{Apr}}_\rho(S) \\ &\subseteq \overline{\underline{Apr}}_\rho(A^m \Gamma S) \subseteq \overline{\underline{Apr}}_\rho(A). \end{aligned}$$

This shows that $\overline{\underline{Apr}}_\rho(A)$ is an $(m, 0)$ Γ -hyperideal of S , that is, A is a ρ -upper rough $(m, 0)$ Γ -hyperideal of S . Similarly, we can show that the ρ -upper approximation of a $(0, n)$ Γ -hyperideal is a $(0, n)$ Γ -hyperideal of S .

(2) Let A be an $(m, 0)$ Γ -hyperideal of S , that is, $A^m\Gamma S \subseteq A$. Note that $\underline{Apr}_\rho(S) = S$. Then, by Theorem 4.1(2) and Lemma 4.1(2), we have

$$\begin{aligned} (\underline{Apr}_\rho(A))^m \Gamma S &= (\underline{Apr}_\rho(A))^m \Gamma \underline{Apr}_\rho(S) \subseteq \underline{Apr}_\rho(A^m) \Gamma \underline{Apr}_\rho(S) \\ &\subseteq \underline{Apr}_\rho(A^m \Gamma S) \subseteq \underline{Apr}_\rho(A). \end{aligned}$$

This shows that $\underline{Apr}_\rho(A)$ is an $(m, 0)$ Γ -hyperideal of S , that is, A is a ρ -lower rough $(m, 0)$ Γ -hyperideal of S . Similarly, we can show that the ρ -lower approximation of a $(0, n)$ Γ -hyperideal is a $(0, n)$ Γ -hyperideal of S . This completes the proof. \square

A subset A of a Γ -semihypergroup S is called a ρ -upper [ρ -lower] rough (m, n) bi- Γ -hyperideal of S if $\overline{\underline{Apr}}_\rho(A)$ [$\underline{Apr}_\rho(A)$] is an (m, n) bi- Γ -hyperideal of S .

Theorem 5.2. Let ρ be a regular relation on a Γ -semihypergroup S . If A is an (m, n) bi- Γ -hyperideal of S , then it is a ρ -upper rough (m, n) bi- Γ -hyperideal of S .

Proof. Let A be an (m, n) bi- Γ -hyperideal of S . Then, by Theorem 4.1(1) and Lemma 4.1(1), we have

$$\begin{aligned} (\overline{\underline{Apr}}_\rho(A))^m \Gamma S \Gamma (\overline{\underline{Apr}}_\rho(A))^n &= (\overline{\underline{Apr}}_\rho(A))^m \Gamma \overline{\underline{Apr}}_\rho(S) \Gamma (\overline{\underline{Apr}}_\rho(A))^n \\ &\subseteq \overline{\underline{Apr}}_\rho(A^m) \Gamma \overline{\underline{Apr}}_\rho(S) \Gamma \overline{\underline{Apr}}_\rho(A^n) \\ &\subseteq \overline{\underline{Apr}}_\rho(A^m \Gamma S) \Gamma \overline{\underline{Apr}}_\rho(A^n) \\ &\subseteq \overline{\underline{Apr}}_\rho(A^m \Gamma S \Gamma A^n) \subseteq \overline{\underline{Apr}}_\rho(A). \end{aligned}$$

From this and Theorem 4.2(1), we obtain that $\overline{\underline{Apr}}_\rho(A)$ is an (m, n) bi- Γ -hyperideal of S , that is, A is a ρ -upper rough (m, n) bi- Γ -hyperideal of S . This completes the proof. \square

Theorem 5.3. Let ρ be a complete regular relation on a Γ -semihypergroup S . If A is an (m, n) bi- Γ -hyperideal of S , then $\underline{Apr}_\rho(A)$ is, if it is non-empty, an (m, n) bi- Γ -hyperideal of S .

Proof. Let A be an (m, n) bi- Γ -hyperideal of S . Then, by Theorem 4.1(2) and Lemma 4.1(2), we have

$$\begin{aligned} (\underline{\text{Apr}}_{\rho}(A))^m \Gamma \text{ST} (\underline{\text{Apr}}_{\rho}(A))^n &= (\underline{\text{Apr}}_{\rho}(A))^m \Gamma \underline{\text{Apr}}_{\rho}(S) \Gamma (\underline{\text{Apr}}_{\rho}(A))^n \\ &\subseteq \underline{\text{Apr}}_{\rho}(A^m) \Gamma \underline{\text{Apr}}_{\rho}(S) \Gamma \underline{\text{Apr}}_{\rho}(A^n) \\ &\subseteq \underline{\text{Apr}}_{\rho}(A^m \Gamma S) \Gamma \underline{\text{Apr}}_{\rho}(A^n) \\ &\subseteq \underline{\text{Apr}}_{\rho}(A^m \Gamma \text{STA}^n) \subseteq \underline{\text{Apr}}_{\rho}(A). \end{aligned}$$

From this and Theorem 4.3(1), we obtain that $\underline{\text{Apr}}_{\rho}(A)$ is, if it is non-empty, an (m, n) bi- Γ -hyperideal of S . This completes the proof. \square

The following example shows that the converse of Theorem 5.2 and Theorem 5.3 does not hold.

Example 5.1. Let $S = \{x, y, z\}$ and $\Gamma = \{\beta, \gamma\}$ be the sets of binary hyperoperations defined below:

β	x	y	z	γ	x	y	z
x	x	$\{x, y\}$	z	x	$\{x, y\}$	$\{x, y\}$	z
y	$\{x, y\}$	$\{x, y\}$	z	y	$\{x, y\}$	y	z
z	z	z	z	z	z	z	z

Clearly S is a Γ -semihypergroup. Let ρ be a complete regular relation on S such that the ρ -regular classes are the subsets $\{x, y\}$, $\{z\}$. Now for $A = \{x, z\} \subseteq S$, $\overline{\text{Apr}}_{\rho}(A) = \{x, y, z\}$ and $\underline{\text{Apr}}_{\rho}(A) = \{z\}$. It is clear that $\overline{\text{Apr}}_{\rho}(A)$ and $\underline{\text{Apr}}_{\rho}(A)$ are (m, n) bi- Γ -hyperideals of S , but A is not an (m, n) bi- Γ -hyperideal of S . Because $A^m \Gamma \text{STA}^n = S \not\subseteq A$.

6. Rough (m, n) Bi- Γ -hyperideals in the Quotient Γ -semihypergroups

Let ρ be a regular relation on a Γ -semihypergroup S . We put $\widehat{\Gamma} = \{\widehat{\gamma} : \gamma \in \Gamma\}$. For every $[a]_{\rho}, [b]_{\rho} \in S/\rho$, we define $[a]_{\rho} \widehat{\gamma} [b]_{\rho} = \{[z]_{\rho} : z \in a\gamma b\}$.

Theorem 6.1. ([3, Theorem 4.1]) If S is a Γ -semihypergroup, then S/ρ is a $\widehat{\Gamma}$ -semihypergroup.

Definition 6.1. Let ρ be a regular relation on a Γ -semihypergroup S . The ρ -lower approximation and ρ -upper approximation of a non-empty subset A of S can be presented in an equivalent form as shown below:

$$\underline{\underline{\text{Apr}}}_{\rho}(A) = \left\{ [x]_{\rho} \in S/\rho : [x]_{\rho} \subseteq A \right\} \quad \text{and} \quad \overline{\overline{\text{Apr}}}_{\rho}(A) = \left\{ [x]_{\rho} \in S/\rho : [x]_{\rho} \cap A \neq \emptyset \right\},$$

respectively.

Theorem 6.2. ([3, Theorems 4.3, 4.4]) Let ρ be a regular relation on a Γ -semihypergroup S . If A is a sub Γ -semihypergroup of S . Then,

- (1) $\overline{\overline{\text{Apr}}}_{\rho}(A)$ is a sub $\widehat{\Gamma}$ -semihypergroup of S/ρ .
- (2) $\underline{\underline{\text{Apr}}}_{\rho}(A)$ is, if it is non-empty, a sub $\widehat{\Gamma}$ -semihypergroup of S/ρ .

Theorem 6.3. *Let ρ be a regular relation on a Γ -semihypergroup S . If A is an $(m, 0)$ Γ -hyperideal $((0, n) \Gamma\text{-hyperideal})$ of S . Then,*

- (1) $\overline{\overline{\overline{Apr}}}_\rho(A)$ is an $(m, 0)$ $\widehat{\Gamma}$ -hyperideal $((0, n) \widehat{\Gamma}\text{-hyperideal})$ of S/ρ .
- (2) $\overline{\overline{Apr}}_\rho(A)$ is, if it is non-empty, an $(m, 0)$ $\widehat{\Gamma}$ -hyperideal $((0, n) \widehat{\Gamma}\text{-hyperideal})$ of S/ρ .

Proof. (1) Assume that A is a $(0, n)$ Γ -hyperideal of S . Let $[x]_\rho$ and $[s]_\rho$ be any elements of $\overline{\overline{Apr}}_\rho(A)$ and S/ρ , respectively. Then, $[x]_\rho \cap A \neq \emptyset$. Hence, $x \in \overline{Apr}_\rho(A)$. Since A is a $(0, n)$ Γ -hyperideal of S , by Theorem 10(1), $\overline{Apr}_\rho(A)$ is a $(0, n)$ Γ -hyperideal of S . So, for $\gamma \in \Gamma$, we have $s\gamma x^n \subseteq \overline{Apr}_\rho(A)$. Now, for every $t \in s\gamma x^n$, we have $[t]_\rho \cap A \neq \emptyset$. On the other hand, from $t \in s\gamma x^n$, we obtain $[t]_\rho \in [s]_\rho \widehat{\gamma} [x]_\rho^n$. Therefore, $[s]_\rho \widehat{\gamma} [x]_\rho^n \subseteq \overline{Apr}_\rho(A)$. This means that $\overline{\overline{Apr}}_\rho(A)$ is a $(0, n)$ $\widehat{\Gamma}$ -hyperideal of S/ρ .

(2) Let A be a $(0, n)$ Γ -hyperideal of S . Let $[x]_\rho$ and $[s]_\rho$ be any elements of $\overline{\overline{Apr}}_\rho(A)$ and S/ρ , respectively. Then, $[x]_\rho \subseteq A$, which implies $x \in \overline{Apr}_\rho(A)$. Since A is a $(0, n)$ Γ -hyperideal of S , by Theorem 10(2), $\overline{Apr}_\rho(A)$ is a $(0, n)$ Γ -hyperideal of S . Thus, for every $\gamma \in \Gamma$, we have $s\gamma x^n \subseteq \overline{Apr}_\rho(A)$. Now, for every $t \in s\gamma x^n$, we have $t \in \overline{Apr}_\rho(A)$, which implies that $[t]_\rho \subseteq A$. Hence, $[t]_\rho \in \overline{\overline{Apr}}_\rho(A)$. On the other hand, from $t \in s\gamma x^n$, we have $[t]_\rho \in [s]_\rho \widehat{\gamma} [x]_\rho^n$. Therefore, $[s]_\rho \widehat{\gamma} [x]_\rho^n \subseteq \overline{Apr}_\rho(A)$. This means that $\overline{\overline{Apr}}_\rho(A)$ is, if it is non-empty, a $(0, n)$ $\widehat{\Gamma}$ -hyperideal of S/ρ .

The other cases can be seen in a similar way. This completes the proof. \square

Theorem 6.4. *Let ρ be a regular relation on a Γ -semihypergroup S . If A is an (m, n) bi- Γ -hyperideal of S . Then,*

- (1) $\overline{\overline{Apr}}_\rho(A)$ is an (m, n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ .
- (2) $\overline{\overline{Apr}}_\rho(A)$ is, if it is non-empty, an (m, n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ .

Proof. (1) Let $[x]_\rho$ and $[y]_\rho$ be any elements of $\overline{\overline{Apr}}_\rho(A)$ and $[s]_\rho$ be any element of S/ρ . Then,

$$[x]_\rho \cap A \neq \emptyset \quad \text{and} \quad [y]_\rho \cap A \neq \emptyset.$$

Hence, $x \in \overline{Apr}_\rho(A)$ and $y \in \overline{Apr}_\rho(A)$. By Theorem 11, $\overline{Apr}_\rho(A)$ is an (m, n) bi- $\widehat{\Gamma}$ -hyperideal of S . So, for every $\alpha, \beta \in \Gamma$, we have $x^m \alpha s \beta y^n \subseteq \overline{Apr}_\rho(A)$. Now, for every $t \in x^m \alpha s \beta y^n$, we obtain $[t]_\rho \in [x]_\rho^m \widehat{\alpha} s \widehat{\beta} [y]_\rho^n$. On the other hand, since $t \in \overline{Apr}_\rho(A)$, we have $[t]_\rho \cap A \neq \emptyset$. Thus,

$$[x]_\rho^m \widehat{\alpha} s \widehat{\beta} [y]_\rho^n \subseteq \overline{\overline{Apr}}_\rho(A).$$

Therefore, $\overline{\overline{Apr}}_\rho(A)$ is an (m, n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ .

(2) Let $[x]_\rho$ and $[y]_\rho$ be any elements of $\overline{\overline{Apr}}_\rho(A)$ and $[s]_\rho$ be any element of S/ρ . Then,

$$[x]_\rho \subseteq A \quad \text{and} \quad [y]_\rho \subseteq A.$$

Hence, $x \in \overline{Apr}_\rho(A)$ and $y \in \overline{Apr}_\rho(A)$. By Theorem 12, $\overline{Apr}_\rho(A)$ is an (m, n) bi- $\widehat{\Gamma}$ -hyperideal of S . So, for every $\alpha, \beta \in \Gamma$, we have $x^m \alpha s \beta y^n \subseteq \overline{Apr}_\rho(A)$. Then,

for every $t \in x^m \alpha s \beta y^n$, we obtain $[t]_\rho \in [x]_\rho^m \widehat{\alpha} a \widehat{\beta} [y]_\rho^n$. On the other hand, since $t \in \underline{\underline{\underline{Apr}}}_\rho(A)$, we have $[t]_\rho \subseteq A$. So,

$$[x]_\rho^m \widehat{\alpha} a \widehat{\beta} [y]_\rho^n \subseteq \underline{\underline{\underline{Apr}}}_\rho(A).$$

Therefore, $\underline{\underline{\underline{Apr}}}_\rho(A)$ is, if it is non-empty, an (m, n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ . This completes the proof. \square

7. Conclusion

The relations between rough sets and algebraic systems have been already considered by many mathematicians. In this paper, the properties of (m, n) bi- Γ -hyperideal in Γ -semihypergroup are investigated and hence the concept of rough set theory is applied to (m, n) bi- Γ -hyperideals.

Acknowledgements. The authors are highly grateful to referees for their valuable comments and suggestions which were helpful in improving this paper.

REFERENCES

- [1] *S. Abdullah, M. Aslam and T. Anwar*, A note on M -hypersystems and N -hypersystems in Γ -semihypergroups, *Quasigroups Relat. Syst.* **19**(2) (2011) 169–172.
- [2] *S.M. Anvariyeh, S. Mirvakili and B. Davvaz*, On Γ -hyperideals in Γ -semihypergroups, *Carpathian J. Math.* **26**(1) (2010) 11–23.
- [3] *S.M. Anvariyeh, S. Mirvakili and B. Davvaz*, Pawlak's approximations in Γ -semihypergroups, *Comput. Math. Applic.* **60** (2010) 45–53.
- [4] *M. Aslam, M. Shabir and N. Yaqoob*, Roughness in left almost semigroups, *J. Adv. Res. Pure Math.* **3**(3) (2011) 70–88.
- [5] *M. Aslam, M. Shabir, N. Yaqoob and A. Shabir*, On rough (m, n) -bi-ideals and generalized rough (m, n) -bi-ideals in semigroups, *Ann. Fuzzy Math. Inform.* **2**(2) (2011) 141–150.
- [6] *M. Aslam, S. Abdullah, B. Davvaz and N. Yaqoob*, Rough M -hypersystems and fuzzy M -hypersystems in Γ -semihypergroups, Accepted in *Neural Comput. Applic.*, doi: 10.1007/s00521-012-0812-x.
- [7] *S. Chattopadhyay*, Right inverse Γ -semigroup, *Bull. Cal. Math. Soc.* **93** (2001) 435–442.
- [8] *R. Chinram and C. Jirojkul*, On bi- Γ -ideals in Γ -semigroups, *Songklanakarin J. Sci. Technol.* **29** (2007) 231–234.
- [9] *R. Chinram and P. Siammai*, On Green's relations for Γ -semigroups and reductive Γ -semigroups, *Int. J. Algebra.* **2** (2008) 187–195.
- [10] *D. Heidari, S.O. Dehkordi and B. Davvaz*, Γ -semihypergroups and their properties, *U.P.B. Sci. Bull., Series A.* **72** (2010) 197–210.
- [11] *K. Hila*, On regular, semiprime and quasi-reflexive Γ -semigroup and minimal quasi-ideals, *Lobachevskian J. Math.* **29** (2008) 141–152.
- [12] *N. Kuroki*, Rough ideals in semigroups, *Inform. Sci.* **100** (1997) 139–163.
- [13] *S. Lajos*, Generalized ideals in semigroups, *Acta Sci. Math.* **22** (1961) 217–222.
- [14] *S. Lajos*, Notes on (m, n) -ideals I, *Proc. Japan Acad.* **39** (1963) 419–421.
- [15] *F. Marty*, Sur une generalization de la notion de groupe, 8iem congrès Math. Scandinaves, Stockholm, 1934, 45–49.
- [16] *Z. Pawlak*, Rough sets, *Int. J. Comput. Inform. Sci.* **11** (1982) 341–356.
- [17] *M.K. Sen and N.K. Saha*, On Γ -semigroup I, *Bull. Cal. Math. Soc.* **78** (1986) 180–186.
- [18] *N. Yaqoob*, Applications of rough sets to Γ -hyperideals in left almost Γ -semihypergroups, Accepted in *Neural Comp. Applic.*, doi: 10.1007/s00521-012-0809-5.
- [19] *N. Yaqoob, M. Aslam and R. Chinram*, Rough prime bi-ideals and rough fuzzy prime bi-ideals in semigroups, *Ann. Fuzzy Math. Inform.* **3**(2) (2012) 203–211.