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A TECH-NEUTRAL MECHANISM FOR AVOIDING 

CLOUDBURST DDoS IN REAL-TIME TRANSACTION 

CLOUD SYSTEM 

Tao LI1,2, Zemin ZHANG3, Yingjun DU4* 

Incidents at Shanghai Stock Exchange and Alipay in 2024 highlighted 

cloudburst challenges in real-time trading. Contemporary systems rely on RTCS, 

prioritizing trade data consistency over high availability, resulting in cloudburst 

DDoS due to locked resources. Capacity expansion mitigates request surges but not 

lock-in issues. Killing locks resolves resource release but may cause unjust outcomes, 

akin to the ‘Trolley Dilemma’. We analyze cloudburst causes and technological 

injustices of scaling and killing locks. A proposed tech-neutral mechanism uses 

cognitive AI to manage high-frequency requests, analyzed via evolutionary game 

theory, considering costs, benefits, and information dynamics in trading and cloud 

services. 

Keywords: Cloudburst; Real-time Transaction Cloud-computing System; Tech-

Neutral Mechanism Design; Big Data Platform 

1. Introduction 

The development of 5G+ infrastructure has released the transmission 

bottleneck for cloud computing [1], however, it also brings the risk of cloudbursts 

[2]. 2024 SHSE (Shanghai Securities Exchange) as well as Alipay downtime events 

exposed the technical weaknesses of RTCS (Real-time Transaction Cloud-

computing System) against cloudbursts, which is a reminder for researchers and 

technologists. Modern systems for securities trading commonly utilize cloud 

architecture [3]. With high-frequency instructions from automated quantitative 

techniques, OB(order book) price-first and time-first match-making rules for 

ensuring service scaling and trading account consistency lead to resource lock-in 

competition at the expense of high availability [4], making them more vulnerable 
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to cloudburst attacks. In addition to the SHSE and Alipay incidents, cloudbursts 

have precedents in various stock exchanges across the globe, e.g., 2013 NASDAQ 

(New York), 2020 NZX (New Zealand), 2014 NSE (India), etc. 

A cloudburst in RTCS can lead to immeasurable financial losses for traders 

and a technological credibility crisis [5]. We reconstructed the timeline of the SHSE 

incident (Fig. 1.): market dealers and traders experienced delays in matchmaking at 

the market open, followed by downtime of the exchange servers both in the AM 

and PM. This case not only exposed the architectural limitations of trading systems 

in high-pressure environments but also heightened market panic about the 

technology stableness and triggered public concern about the RTCS reliability. 

 
Fig. 1. Timeline of SHSE Cloudburst in Sep 27th, 2024 

 

Architectural limitations are an inherent risk that makes it difficult for RTCS 

to withstand cloudbursts. The trading system and quotation system, as the core 

components of RTCS, rely on high-performance computing and data processing 

capabilities. The evolution of modern securities trading system architectures has 

resulted in subsystems such as trade matching, order communication, quote 

dissemination, and disaster recovery and backup working together in a distributed 

topology, with market dealers and traders accessing through data center LANs or 

WANs (Fig. 2.). The trading host cluster consists of two major platforms, BMP 

(Bid Matching Platform) and TP (Transaction platform). Wherein, TP includes 

ATP (Alternative Transaction Platform: trading services for diverse financial 

products), DTP (Derivatives Transaction Platform: trading options and derivatives), 

ITP (International Transaction Platform: cross-border securities trading services), 

XBTP (Extreme Bond Transaction Platform: trading and clearing services for 

newly issued bonds), FISP (Fixed Income Securities Platform), IITP (Internet 

Innovation Transaction Platform: online trading services). Taking SHSE as an 

example, it adopts streaming interface TDGW (trading gateway) with distributed 

architecture, a 100,000tps throughput, average latency less than 25 ms, high 

availability RPO (Recovery Point Objective) equals RTO (Recovery Time 

Objective) less than 30 seconds, with gateway level scalability, database polling for 
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order reporting, message middleware adopting HDFS, and OpenVMS+Linux based 

on x86 server. 

 
Fig. 2. RTCS Architecture 

 

The BMP system comprises a matchmaking server and a polling server. The 

matchmaking server is responsible for processing and executing trade orders. When 

investors submit bids or asks, the server matches them based on price and time 

priority. Once a transaction is completed, a result is generated and sent to the polling 

server to update its data cache, which then transmits the order information and 

account balances back to the trader. The matchmaking server employs locking 

mechanisms on trading varieties and account funds to ensure data consistency. 

However, high-frequency trading may lead to lock contention[6,7]. Improperly 

designed locking mechanisms can increase the risk of deadlocks, posing an inherent 

risk of system downtime. 

This study proposes a tech-neutral mechanism addressing RTCS 

cloudbursts by integrating market and cloud considerations to prevent high-

frequency trading risks, avoiding the ethical dilemmas like the "Trolley Dilemma" 

associated with purely technical solutions[8-13]. The paper is structured as follows: 
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research background and contributions; recent related work; an evolutionary game 

model examining ESS results and simulations; and a summary with limitations. 

2. Related Works 

Cloud computing is widely adopted in modern smart financial and trading 

systems due to its flexible scaling and high availability features[14,15]. The 

problem of cloudbursts, i.e., the surge in cloud computing demand but the server 

cannot respond in time, has received attention from scholars [16]. Studies have 

shown that open-source hybrid clouds such as Apache Mesos can effectively 

address this problem[17]. In addition, heuristic scheduling algorithms have been 

used to explore performance and cost optimization of clouds[18]. Our previous 

research integrates architectural variants and incorporates agility factors such as 

capacity availability and cost into a quantitative cloud burst analysis 

framework[19]. 

In real-time trading, HFT (high-frequency trading) is one of the factors of 

EPM (extreme price volatility). Studies have demonstrated that high-frequency 

trading (HFT) plays a role in providing liquidity during event-driven price 

movements (EPMs), irrespective of whether these movements result in eventual 

price reversals or permanent price changes [20]. Concurrently, it has been argued 

that HFT exhibits characteristics more akin to speculative behavior rather than 

traditional [21]. The technical difficulties of monitoring HFT create regulatory 

challenges [22]. As a result, there is a lack of a mechanism to govern real-time 

trading that goes beyond purely technological means for the full penetration of 

HFT. 

The rise in request concurrency necessitates addressing deadlocks, 

characterized by mutual exclusion, holding, no preemption, and loops [23]. 

Distributed database systems maintain consistency via concurrency control 

techniques like two-phase locking, timestamp ordering, and optimistic concurrency 

control [8]. These systems often balance key goals, trading off between consistency, 

availability, and fault tolerance [10]. Complex real-time relational databases can 

enhance query performance with similarity-based partitioning strategies [11]. The 

utilization of neutrosophic logic was proposed to enhance deadlock detection 

through the evaluation of transaction features and associated deadlines [9]. 

Furthermore, communication deadlocks were distinguished as a separate issue from 

resource deadlocks, with their identification being achieved through the 

implementation of multi-threaded testing methodologies [24]. 

Existing methods, such as performance simulation, were critiqued for their 

insufficient validation of schedulers, prompting the introduction of a novel 

methodology for scheduler description that specifically addresses deadlock 

fairness[13]. The complexity of deadlock identification was proposed to be reduced 
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through the application of macro-operations [25]. A parallel deadlock detection 

algorithm was developed for heterogeneous platforms to enhance detection 

efficiency[12]. Research was conducted to determine the optimal thread pool size, 

focusing on system performance optimization [26]. Despite the growing interest in 

AI, concerns regarding dataset bias and its potential impact on fairness were raised. 

Rescheduling in production systems was advocated as an effective approach to 

resolving deadlocks [27], while anti-deadlock strategies were specifically designed 

for fog computing environments to improve system reliability [28]. 

Research on extreme price volatility driven by panic trading has extensively 

explored financial market behavior, behavioral finance, and market microstructure. 

A behavioral finance theory was introduced to address market bubble collapses, 

with a particular emphasis on the role of psychological factors [29,30]. To stabilize 

volatility, trading meltdowns or limits halt trading, with effects lasting up to 30 days 

[31]. However, the effectiveness of trading meltdowns has been debated, as it was 

suggested that they might adversely influence trading behavior when the quality of 

available information is inadequate [32]. Additionally, it was found that trading 

meltdowns significantly alter market dynamics and investor welfare, with threshold 

levels creating a "magnet effect" that influences market behavior [33]. 

Multi-modal AI agents (MAA) for natural interactions in physical and 

virtual spaces, highlights the integration of multisensory input, external knowledge, 

and human feedback. This embodiment helps AI agents perceive and adapt to 

environments, reducing errors in large models. The incorporation of common 

human knowledge across five domains—function, physics, intent, causation, and 

utility (FPICU)—has been emphasized as a critical framework for improving AI 

capabilities [34]. These studies offer new approaches for cognitive AI (CAI) 

adoption, aiming to enhance the ability of CAI to manage complex market 

environments and suppress trading panic. 

To sum up, previous studies show justice issues with scheduling algorithms 

and AI enablement when RTCS experiences cloudbursting, and the meltdown 

mechanism is suspected of over-interfering with the market. Thus, the established 

approaches all affect investor welfare, and essentially, they rely on a single 

technology to try to solve complex system problems. This study thus attempts to 

fill that research gap by proposing a technology-neutral solution mechanism. In the 

following section, this study constructs a dynamic game of costs, benefits, and 

information on the market side and the cloud service side and employs evolutionary 

game theory and simulation to quantitatively discuss the systematic design of the 

mechanism. 
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3. The Mechanism and Game Analysis 

This section introduces a technology-neutral mechanism for addressing 

RTCS cloudburst issues and analyzes its stability using evolutionary game theory. 

Technological neutrality is shaped by inherent value systems and ethical values 

[35,36]. The proposed mechanism avoids favoring specific process scheduling 

algorithms or cloud solutions in mitigating DDoS risks from RTCS cloudbursts. It 

aims to maintain transaction fairness and effectiveness by screening and delaying 

high-frequency Ask/Bid queue-jumping requests, thus preventing market distortion, 

shutdowns, or limited innovation. The ethical value lies in preserving justice, 

fostering innovation, preventing distortions, and ensuring transparency to support 

sustainable technological development and market competition. 

Cloudbursts that lead to interruptions in service can bring about reputational 

damage and financial loss to traders, trigger failure contingency measures, 

compensation and regulatory penalties. The tech-neutral mechanism for preventing 

RTCS cloudburst takes into account the costs, benefits, and information 

asymmetries of considering both the market side and the cloud side (Fig 3).  

 
Fig. 3. Conceptual Framework of Tech-Neutral Mechanism 

 

The mechanism is a dynamic gaming system that includes, in addition to 

market-side HFT traders and retail investors, cloud-side participants, i.e., real-time 
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trading organizations, which provide infrastructure and services in terms of 

computational power, storage, and network resources, as well as brokerage firms, 

which provide Cognitive AI Agent (CAI) capabilities. Information sharing and 

signaling is a dynamic gaming process of the system, the market side submits 

pending orders and withdrawal signals, CAI monitors abnormal high-frequency 

pending orders and withdrawal signals and marks them and then transmits them to 

the cloud side, which assesses the risk of cloudbursts based on the received 

information and the current workload. If the risk of cloudbursts is high, the cloud 

side of the marked abnormal high-frequency pending orders and withdrawal signals 

for deferred polling and matchmaking. The cloud side thus avoids overload through 

dynamic strategies. 

The Cognitive AI agent (CAI) is goal-oriented, facilitating dynamic human 

and management interactions, and is capable of autonomously acquiring knowledge 

across platforms for world model training and executing massive tasks (Fig. 4).  

 
Fig. 4. Architecture of the Cognitive AI agent (CAI) 

 

The architecture of CAI comprises four modules. In memory module, short-

term memory is responsible for the big data memory of market volatility triggered 

by ad-hoc events, while long-term memory handles big data memory for 

(quasi-)periodic timeframes. Tool module includes knowledge graph, search engine, 

and code interpreter. Plan module encompasses task decomposition, the 

construction of logical chains, and the review of historical figures. Action module 
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is tasked with monitoring, labeling, and alerting regarding high-frequency trading 

instructions in the market. 

The technology-neutral mechanism we propose can avoid the Trolley 

Dilemma. The main ethical contradiction of the Trolley Dilemma lies in the 

empirical judgment based on utilitarianism, i.e., people choose to sacrifice the 

minority or the majority to solve the apparent problem, instead of preventing and 

solving the crisis by looking at the root cause of the problem. As a result, it raises 

controversies about rationality and fairness. For example, the difference in neural 

mechanisms between deontological and utilitarian judgments in moral dilemmas 

was revealed through the MERDJ neural computational model, but the 

oversimplified decision-making model (ignoring culture, experience, and 

situational dynamics) and the reliance on artificial simulation of dilemmas make it 

difficult to replicate real moral complexity [37]. Selfish or altruistic decisions are 

often influenced by the values that individuals in a dilemma place on the decision 

maker, and positive or negative emotions generated by facing moral dilemmas will 

distort moral judgments [38]. This suggests that relying on human subjective 

judgments or attempting to replicate moral judgments algorithmically is not 

appropriate in high-frequency problems. In the process of solving the RTCS 

cloudburst problem, we found that traditional technical approaches and algorithms, 

such as “kill locks”, can release resources but lead to unexpected termination. 

Existing algorithms are unable to self-verify their fairness and thus raise similar 

ethical dilemmas: sacrificing the interests of a few traders to ensure the overall 

operation of the system. 

The mechanism proposed in this study systematically circumvents the 

Trolley Dilemma through tech-neutrality and high-frequency trading monitoring. 

Tech-neutrality refrains from favoring specific process scheduling algorithms or 

cloud computing technical solutions, thereby preventing market distortions or 

unfairness arising from technological biases. This ensures the fairness and 

transparency of the mechanism and avoids ethical dilemmas induced by 

technological choices. High-frequency trading monitoring deploys CAI on both the 

market and cloud service sides to detect and flag abnormal high-frequency trading 

instructions. It dynamically assesses cloudburst risks and balances system load 

through deferred polling and matching, thereby safeguarding system stability while 

preserving transactional fairness. 

3.1 Model Assumptions 

Assumption 1: Traders are limited rational and act with the goal of 

maximizing short-term profits. The trader's strategy is {P - panic, H - hold} and the 

cloud strategy is {T - trigger, NT -not trigger}. The trader acts first and the cloud 

acts later. This dynamic game process is shown in Fig 5.  



A tech-neutral mechanism for avoiding cloudburst DDoS in real-time transaction cloud system 65 

A variety of factors can trigger traders to {P}, which manifests itself in OB 

volume fluctuations. The fluctuation is not only from off-exchange trades into the 

on-exchange, but also from OB orders that choose to withdraw and then update the 

price to enter the OB waiting to be filled in order to accelerate the transaction. Such 

fluctuations aggravate the resource-intensive operations of locking, writing, and 

releasing the traders' account balances during the polling of the cloud servers. 

Assumption 2: At time t, the proportion of traders choosing {P} is x ∈ [0,1]. 
The probability that the cloud takes {T} is 𝑦 ∈ [0,1]. 

Assumption 3: The proportion of high perception traders is denoted as θ and 

low perception as 1-θ. High perception traders prefer {P}. The public sentiment 

diffusion in the securities market prompts more traders to perceive the scarcity of 

trading opportunities, which in turn provokes a large number of traders to trade 

against the attempts to follow the OB price changes, which is the cause of 

cloudbursts. 

Assumption 4: A high perception trader chooses {P} and realizes that the 

likelihood of misjudge is x(1-θ). The likelihood that a low-perception trader {H} 

later realizes that he or she missed a gain opportunity is (1-x)θ. 

 

 
Fig. 5. The Dynamic Game Process 

3.2 Payoff Matrix and RDE 

We organize the symbols and descriptions related in the following section 

into Table 1. 
Table 1  

Related Symbols and Parameters 

Symbol Type Description 

1B  proportional 
Favorable impact of triggering the tech-neutral mechanism to maintain 

normal trading 
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1C  economical Cost of early warning cloudbursts 

2B  economical Benefits of tech-neutral mechanisms triggered to avoid cloudbursts 

3C  economical Regulatory penalties for the occurrence of cloudbursts 

4C  economical Remediation costs in the occurrence of cloudbursts 

5C  economical 
Reputational damage to the exchange as a result of the occurrence of 

cloudbursts 

p  economical Average OB price for panic trading 

v  economical Volume of orders accumulated at OB during panic trading 

Lm  economical Perceived value to OB by low perception traders 

Hm  economical Perceived value to OB by high perception traders 

  proportional 
The extent of market facilitation when triggering tech-neutral 

mechanism 

  proportional Proportion of high perception traders 

x  proportional The proportion of traders choosing {P - panic} 

y  probabilistic The probability of a tech-neutral mechanism {T - trigger} 

 

Based on preceding described game information, interactions between 

trader and cloud yield the following payoff matrix (Table 2). 
Table 2 

Payoff Matrix 

 

Cloud 

{T} 
y  

{NT} 

1 y−  

Trader 

High 

Perception 
  

{P} 
x  

1 1 HB C m pv + −  

2 1 4B C C− −  

Hm pv−  

4 3 5C C C− − −  

{H} 
1 x−  

1 1B C  

1C−  

0 

0 

Low 

Perception 
1 −  

{P} 
x  

1 1α LB C m pm+ −   

b c s− −  

Lm pm−  

4 3 5C C C− − −  

{H} 
1 x−  

1 1B C  

1C−  

0 

0 

The expected return under the trader's {P} action is denoted by πt1 = -pv +
yαB1C1 + θmH +mL-θmL. The expected return under the trader's {H} action is 

denoted by πt2 = yB1C1 . Hence, the trader's average expected return between 

actions {P} and {H} is denoted as π̄t = xπt1 + (1-x)πt2.  

The expected return under the cloud {T} action is denoted as πc1 = xB2 +
(-1 + x-xα)C1-xC4. The expected return under the cloud {NT} action is denoted as 
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πc2 = -x(C3 + C4 + C5). Hence, the average expected return of the cloud between 

{T} and {NT} actions is denoted as π̄c = yπc1 + (1-y)πc2. 

In the RTCS evolutionary game, the trader action probability and the cloud 

action probability are time-varying. Thus, derivatives to 𝑡 yields RDEs: 𝜑(𝑥) =
𝑑𝑥

𝑑𝑡
= 𝑥(𝜋𝑡1 − 𝜋̄𝑡) and 𝜙(𝑦) =

𝑑𝑦

𝑑𝑡
= 𝑦(𝜋𝑐1 − 𝜋̄𝑐). A further expansion as below. 

 ( ) ( ) ( ) ( )1 11 1 1H Lx x x pv y B C m m    = − + − − + − + − +   (1) 

 ( ) ( ) ( ) ( )2 1 3 51 1y y y xB x x C x C C  = − + − + − + +   (2) 

Let (1)=0 and (2)=0, respectively, to obtain five evolutionary equilibriums: 

( ) ( ) ( ) ( ) ( )* *0,0 , 0,1 , 1,0 , 1,1 , ,x y , in which, 𝑥∗ = −
𝐶1

−𝐵2−𝐶1+𝛼𝐶1−𝐶3−𝐶5
, and y* =

pv-θmH+(-1+θ)mL

(-1+α)B1C1
. 

The Jacobian Matrix obtained through partial derivatives as below.  

( ) ( )

( ) ( )

x x

x y
J

y y

x y

 

 

 

 
=
 

 

                                                      (3) 

The five evolutionary equilibriums were brought into (3), to obtain the 

eigenvalues. Use the Lyapunov method[39] for determination based on the 

eigenvalues of Table 3. 
Table 3 

Eigenvalues of Equilibrium Points 

Equilibriums 1λ  2λ  

( )1 0,0E  ( )1H Lpv m m − − −  2 1 3 5B C C C− + +  

( )2 0,1E  ( ) ( ) 1 11 1H Lpv m m B C   − − − − − −   1C  

( )3 1,0E  ( ) ( ) 1 11 1H Lpv m m B C  − − − + −  2 1 3 5B C C C− + − −  

( )4 1,1E  ( )1H Lpv m m − + + −  1C−  

( )* *
5 ,E x y  0 0 

3.3 ESS and Simulation 

The methodology in this section is grounded in evolutionary game theory 

and further implemented through simulation and data science visualization. 

Eigenvalues provide the determination of ESS (evolutionary stable strategies) and 

its fulfillment conditions. A random number generator iteratively produces arrays 

that satisfy the conditions of RDE (replicated dynamic equations) and ESS, and 

these simulated arrays, represented as vector field flows, are displayed in phase 
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plane vector field diagrams to analyze the formation of ESS. RDEs simulate the 

evolutionary behavior of the system, while the visualization of vector field flows is 

employed to identify points of convergence and divergence. 

By observing that the eigenvalues obtain a determination of the ESS (Table 

4), the emergence of ESS is divided into the following three theoretical scenarios. 

We employed vector field flow simulations to model the phase transitions of the 

ESS (Fig. 6). In the vector field flow, the horizontal and vertical axes represent the 

decision probability of the trader's {P} action and the activation probability of the 

tech-neutral mechanism {T}, respectively, both ranging within the interval [0,1]. 

The continuous game-theoretic interactions between the two participants are 

manifested as a dynamic convergence process within the vector field flow. The 

coordinate axes are displayed within the range of 0 to 1.2 to facilitate the 

observation of the vector field flow at the boundary points (0,1), (1,1), and (1,0). 

The flow of the vector field is depicted using arrowed curves. For instance, in Fig. 

6a, the vector field flow converges at (0,0), diverges at (0,1), diverges at (1,0), and 

diverges at (1,1), thereby intuitively indicating that the ESS corresponds to 𝐸1(0,0). 
The ESS observation method remains consistent across the remaining subfigures. 

The simulations in this section were conducted based on the following hardware 

and software configuration: CPU, 13th Gen Intel(R) Core(TM) i7-1360P 2.20 GHz; 

RAM, 16GB; Operating system, Windows 11 24H2; Architecture, 64bit; Python 

version, 3.11.10.  

In condition 1 and condition 3, 𝐸1(0,0) is the unique evolutionarily stable 

equilibrium (Fig 6a, Fig6d), in which {H, NT} is the normal state of market trading 

and no need for a triggered mechanism. Condition 2 yields two evolutionarily stable 

equilibrium points, E3(1,0) and E4(1,1), i.e., strategies combinations of {P ⨯ NT} 

and {P ⨯ T} (Fig 6b, Fig 6c).  
Table 4 

Determination of ESS 

Equilibriums Condition 1 Condition 2 Condition 3 

 1λ  2λ  result 1λ  2λ  result 1λ  2λ  result 

( )1 0,0E  neg neg ESS pos pos S neg neg ESS 

( )2 0,1E  pos pos S pos pos S neg pos N 

( )3 1,0E  pos neg N neg neg ESS pos pos S 

( )4 1,1E  pos pos S neg neg ESS pos neg S 

( )* *
5 ,E x y  0 0 N 0 0 N 0 0 N 
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(6a) ESS E1(0,0) under condition 1 

 
(6b) ESS E3(1,0) under condition 2 

 
(6c) ESS E4(1,1) under condition 2 

 
(6d) ESS E1(0,0) under condition 3 

Fig 6 Phase Plane Vector Field Flow 

 

Along the “benefit→cost→market facilitation” sequence, we conduct 

sensitivity analysis of the ESSs shift, from {P ⨯ NT} to {P ⨯ T}, in condition 2 

using stepwise control variable method. 

(1) Start point: {P ⨯ NT}. Simulation (Fig 7) shows the ESS appears to be 

E3(1,0) when the benefit is low (B1, B2 = 0.1). While the benefit is high, the 

system is in an unstable state, thus control variables for further analysis are imposed 

in below steps (2) ~ (5). 

(2) Given a low benefit level (B1, B2 = 0.1), observe the ESS convergence 

at various cost level 𝐶1, 𝐶3, 𝐶5 = 0.1,0.3,0.5,0.7,0.9 . Simulations show the 

mechanism hardly triggered (Fig 8).  

(3) Tune to high benefit level (B1, B2 = 0.9) and observe the convergence 

of ESS at various level of the cost parameter (Fig 9). Simulations show traders tend 

to {P} action while the mechanism {T} action is unstable. 

(4) Based on above simulation results, given high benefits and low costs, 

with various extent of market facilitation 𝛼 = 0.1,0.3,0.5,0.7,0.9, the simulation 

shows the mechanism tends to {T} faster under higher market facilitation (Fig 10).  

(5) The stability of the ESS {P ⨯ T} obtained in the fourth step is verified 

by tuning the control variables to high benefit and high cost, when the mechanism 

is triggered with various extent of market facilitation (Fig 11). The simulation 

shows when the cost of the mechanism being triggered is elevated, the decrease in 
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net returns implies an increase in the difficulty of the mechanism chooses action 

{T}, which is public knowledge, and thus higher market facilitation stimulates 

traders to {P} action instead, at which point we find that the right subfigure of Fig. 

11 shows the mechanism {T} state is unstable.  

To summarize, the five-step control variable simulation described above 

shows that the high benefit and low cost of the mechanism facilitates the generation 

of {T} strategies, and that higher market facilitation allows the mechanism to be 

triggered more quickly, contributing to the stabilization of the system at a 

combination of {P ⨯ T}. 

 
Fig 7 Impact of changes in benefit parameters on ESS 

 

Fig 8 Impact of changes in cost parameters on ESS given low benefit 

 

Fig 9 Impact of changes in cost parameters on ESS given high benefit 
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Fig 10 Impact of market facilitation on ESS given high benefit and low cost 

 

Fig 11 Impact of market facilitation on ESS given high benefit and high cost 

4. Conclusion 

With the development of 5G+ infrastructure and the enhancement of 

programmatic trading technology, it will become increasingly common for Real-

time Trading Cloud-computing System (RTCS) to encounter cloudbursts. There are 

precedents from various stock exchanges across the globe, and the recent SHSE 

downtime and Alipay downtime during the “Double Eleven” e-commerce shopping 

festival continue to warn of the risk of cloudbursts. We point out the complex 

systemic causes of cloudbursts occurring at RTCS: 

High-frequency pending and withdrawing requests send commands to the 

polling server through the trading terminal, and the matchmaking server matches 

orders based on price and time priority. While the cloud service is processing these 

high-frequency requests, the high-frequency requests in the queue are still 

undergoing withdrawals and pending order changes, which in turn leads to resource 

lock competition triggering deadlocks, which in turn triggers cloudbursts. 

Through reviewing related studies, we find that the established process 

scheduling algorithms lead to the “Trolley Dilemma”, resulting in false kills and 

injustice, and the elastic scaling technique is only a passive technical strategy to 

cope with the problem. The fairness problem is still not solved. 
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Based on this, this study proposes a tech-neutral mechanism that suggests 

the introduction of cognitive AI agent (CAI) proactive defense to screen high-

frequency requests located in the OB and deferred by the cloud-side polling and 

matchmaking servers, thus preventing cloudbursts while taking fairness into 

account. CAI has an important role in the tech-neutral mechanism of suppressing 

trading panic. Through multimodal perception and analysis, real-time monitoring 

and early warning, intelligent decision support, emotion management and 

psychological intervention, multimodal interaction and user experience, continuous 

learning and self-optimization and other multifaceted technological means, CAI can 

better cope with market fluctuations and reduce the occurrence of trading panic. 
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