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INJECTIVITY AND PROJECTIVITY OF SOME CLASSES OF

FRÉCHET ALGEBRAS

Esmaeil Feizi1, Javad Soleymani 2

In this paper for a locally compact group G and a decreasing sequence

of weight functions {ωn} on it with ωn > 1 (n ∈ N), we show that Fréchet algebra

∩n∈NL∞(G, ω−1
n ) is projective if and only if G is finite and Fréchet algebra ∩n∈NC0(G,

ω−1
n ) is projective (injective) if and only if G is compact (finite). Similar result will be

shown for Fréchet algebra ∩n∈NL∞0 (G,ω−1
n ).
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1. Introduction and Preliminaries

Injectivity and projectivity properties in the context of Fréchet algebras out of Banach

algebra’s category first was considered by Taylor[13] as an interesting field which we can find

some examples that there is no symmetric relationship between these two type of properties

on non-normable Fréchet algebras at all. Pirkovskii found these examples [10], in fact he

introduced some examples of non-zero Fréchet algebras for which there is no any injective

module over them, while we know in general there are enough projective modules over

Fréchet algebras (see for example [6] and [13]). The main problem in this way is that

the study of injectivity on Fréchet modules depends on B(A, X), the space of all bounded

operator from A to X, where both of them are non-normable Fréchet algebra and Fréchet

module respectively, there is no any reasonable topology on B(A, X) making it Fréchet

space; however it can be seen in the proposition 1.1 that in the special case when A is

Banach algebra then B(A, X) is in the category of Fréchet spaces; in this situation we take

a look at these properties on some examples of Fréchet modules which are constructed by

a class of Banach modules through projective limit. Foundation of this paper based on the

work of Dales and Polayakov[4].

A Fréchet space is a topological vector space whose topology can be given by an

increasing sequence of semi-norms. A Fréchet space A is called Fréchet algebra, when these

semi-norms are sub-multiplicative. For a Fréchet algebra A, a Fréchet space X is called

Fréchet left A-module (in abbreviation A-mod) if it is an algebraic left module over A and
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in addition the multiplication m : A × X → X is jointly continuous. Similarly right A-

module will be defined. Let A be a Banach algebra and X be a Fréchet space then we

denote B(A, X) as the space of all continuous morphisms, that is:

B(A, X) = {T : A→ X : Pn(Tx) ≤ Cn‖x‖, n ∈ N, x ∈ A and some Cn ∈ R}

where {Pn} is a family of semi-norms on X that generates its topology.

Proposition 1.1. The space B(A, X) is a Fréchet space with respect to semi-norms

Qn(T ) = sup
‖x‖≤1

Pn(Tx), T ∈ B(A, X) and n ∈ N.

Proof. Since the strong topology on B(A, X) actually will be generated by the semi-norms

RB,n(T ) = supx∈B Pn(Tx), for T ∈ B(A, X) and n ∈ N, where B runs over all bounded

subsets of A, (see for example [12, P. 81]) and B(A, X) with this topology is complete [14,

Corollary 2 P. 344] and since {Qn}n∈N is a subset of {RB,n}, so the topology on B(A, X)

that is generated by {Qn}n∈N is coarsest than the strong topology, so it is enough to prove

that it is also finer. Consider fix bounded subset B0 of A and n0 ∈ N, since B0 is bounded

there exists a constant c > 0 such that ‖x‖ ≤ c, for all x ∈ B0 hence for T ∈ B(A, X):

RB0,n0
(T ) = sup

x∈B0

Pn0
(Tx) ≤ sup

‖x‖≤c
Pn0

(Tx) = c sup
‖x‖≤1

Pn0
(Tx) = cQn0

(T ),

and therefore the open neighbourhood that is generated by Qn0
is a subset of that is gener-

ated by RB0,n0 and the result follows. �

When E is Banach algebra and E is Fréchet right A-module B(E,F ) is also a Fréchet

A-mod by the action a · T (x) = T (x · a), a ∈ A and x ∈ E. For left Fréchet A-modules E

and F we denote all continuous module morphisms from E to F by AB(E,F ).

Let G be a locally compact group and ω a weight on it, that is a positive continuous

function with ω(xy) ≤ ω(x)ω(y) for all x, y ∈ G and ω(eG) = 1 where eG is the identity of

group G, then as in [3] and [8] the spaces L∞(G,ω−1) and L1(G,ω) will be defined by:

L∞(G,ω−1) = {f Borel measurable : ess sup
x∈G

|f(x)|
ω(x)

<∞}

and

L1(G,ω) = {f Borel measurable :

∫
G

|f(x)|ω(x)dm(x) <∞}

by additional hypothesis that f and g in L∞(G,ω−1) are equal if they are equal locally

almost every where with respect to the left Haar measure m on G and they are equal in

L1(G,ω) if they are equal almost every where. L∞(G,ω−1) and L1(G,ω) respectively with

the norms:

‖f‖∞,ω = ess sup
x∈G

|f(x)|
ω(x)

and ‖f‖ω =

∫
G

|f(x)|ω(x)dm(x)

are Banach spaces. L1(G,ω) with convolution product,

f ? g(x) =

∫
G

f(y)g(y−1x)dm(y)

is a Banach algebra [8, P. 20].
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Lemma 1.1. L1(G,ω) is right L1(G)-module with the following product,

f · g = f ?
g

ω
, f ∈ L1(G,ω) and g ∈ L1(G).

Proof. Since for all x, y ∈ G we have ω(x) ≤ ω(y)ω(y−1x), so for f ∈ L1(G,ω) and g ∈
L1(G): ∫

G
|f ? g

ω (x)|ω(x)dm(x) =
∫
G
|
∫
G
f(y) g(y

−1x)
ω(y−1x)ω(x)dm(y)|dm(x)

≤
∫
G
|
∫
G
f(y) g(y

−1x)
ω(y−1x)ω(y)ω(y−1x)dm(y)|dm(x)

≤
∫
G

∫
G
|f(y)g(y−1x)|ω(y)dm(y)dm(x),

by Fubini’s theorem and substitution yx instead of x and this fact that the Haar measure

is left invariant we have:∫
G

∫
G
|f(y)g(y−1x)|ω(y)dm(x)dm(y) =

∫
G

∫
G
|f(y)g(x)|ω(y)dm(x)dm(y)

=
∫
G
|f(y)|ω(y)dm(y)

∫
G
|g(x)|dm(x)

= ‖f‖ω‖g‖1 <∞,

so f · g ∈ L1(G,ω). �

Likewise L∞(G,ω−1) with product f · g = g ∗ f̃ is a Banach L1(G,ω)-mod where

f̃(x) = f(x−1) for all x ∈ G. L∞(G, 1
ω ) is dual space of L1(G,ω) that is defined by:

〈f, g〉 =

∫
G

f(x)g(x)dm(x) f ∈ L1(G,ω), g ∈ L∞(G,
1

ω
)

In the other hand similarly to [3, Proposition 7.17] when ω(x) ≥ 1 for all x ∈ G we have:

L1(G,ω) · L∞(G,ω−1) = LUC(G,ω−1),

where:

LUC(G,ω−1) = {f ∈ L∞(G,ω−1) :
f

ω
∈ LUC(G)},

and LUC(G) is the set of left uniformly continuous functions. Similarly C0(G,ω−1) will be

defined by C0(G,ω−1) = {f ∈ L∞(G,ω−1) : f
ω ∈ C0(G)} where C0(G) is the space of all

continuous functions f that vanish at infinity that is for ε > 0 there is a compact subset K

of G for which |f(x)| < ε for all x in the complement of K. C0(G,ω−1) is a closed subspace

of L∞(G,ω−1) that is a Banach L1(G,ω)-mod.

Similarly to the [1] we define L∞0 (G,ω−1) as closed subspace of L∞(G,ω−1) consisting

of all functions that vanish at infinity.

Lemma 1.2. Let f ∈ L1(G,ω) and g ∈ L∞0 (G,ω−1) then f · g ∈ L∞0 (G,ω−1) furthermore

if ω(x) ≥ 1 for all x ∈ G then f · g ∈ C0(G,ω−1)
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Proof. Since |fω| ∈ L1(G) and | gω | ∈ L∞0 (G) clearly | gω | ∗ |f̃ω| ∈ L∞0 (G). Now because
1

ω(x) ≤
ω(x−1y)
ω(y) so:

|g ∗ f̃(x)

ω(x)
| = |

∫
G

g(y)f̃(y−1x)

ω(x)
dm(y)| = |

∫
G

g(y)f(x−1y)

ω(x)
dm(y)|

≤
∫
G

| g(y)

ω(y)
f(x−1y)ω(x−1y)|dm(y) = | g

ω
| ∗ |f̃ω|(x)

and therefore g ∗ f̃ ∈ L∞0 (G,ω−1). Furthermore when f ∈ L1(G,ω), g ∈ L∞0 (G,ω−1) and

ω(x) ≥ 1 for all x ∈ G then g ∗ f̃ ∈ LUC(G,ω−1) so in this situation f · g ∈ C0(G,ω−1). �

Now consider {Eα}α∈Λ as a family of Fréchet algebras over a directed set Λ and

{fαβ}α,β∈Λ a family of morphism from Eβ into Eα with fαα = idEα and fαγ = fαβ ◦ fβγ for

any α, β, γ in Λ, with α ≤ β ≤ γ, where idEα is the identity map on Eα, then {(Eα, fαβ)}
is called a projective system of Fréchet algebras. With respect to this system, the closed

subalgebra E of F = Πα∈ΛEα will be defined by E = {x = (xα) ∈ F : xα = fαβ(xβ), ifα ≤
β}. This algebra is called projective limit of projective system of {(Eα, fαβ)} that we

denote it by E = lim
←−

(Eα, fαβ). If fα is the restriction map of projection map πα on E then

fα = fαβ ◦ fβ for all α ≤ β that induce projective topology on E (For further information

see [9]).

In the special case when {En}n∈N is a sequence of Banach algebras with En ⊇ En+1

for all n ∈ N, then by fnm : Em → En, (n ≤ m) as inclusion maps, {(En, fnm)} is projective

system and E = lim
←−

(En, fnm) is a Fréchet algebra [9, P. 84]. It can be easily seen that E is

isomorphic to ∩n∈NEn.

Proposition 1.2. Let A be a Fréchet algebra and let {(En, fnm)} be projective system of

Fréchet algebra such that En is Fréchet A-mod for all n ∈ N, then by pointwise product

E = lim
←−

(En, fnm) is Fréchet A-mod.

Proof. Since for all m ∈ N, a ∈ A and x = (xn) ∈ E we have fm(a · x) = fm((a · xn)) =

a · fm(x) = a · xm by [12, Theorem 5.2] the module product is continuous. �

Corollary 1.1. Let A be a Banach algebra and let {En}n∈N be a family of decreasing Banach

A-mod then ∩n∈NEn is Fréchet A-mod.

Suppose that {ωn}n∈N is a decreasing sequence of weight functions with ωn(x) > 1 for

all x ∈ G and n ∈ N, similarly to the Lemma 1.2 we can show that L∞(G,ω−1
n ), L∞0 (G,ω−1

n )

and C0(G,ω−1
n ) are L1(G,ω1)-mod for all n ∈ N, so by Corollary 1.1 Fréchte spaces

∩n∈NL∞(G,ω−1
n ),∩n∈NL∞0 (G,ω−1

n ) and ∩n∈NC0(G,ω−1
n ) as constructed above are L1(G,ω)-

mod.

2. Projectivity

Let A be a Banach algebra and X a Fréchet A-mod then for A], the unit linked of

Banach algebra A we can consider X as Fréchet A]-mod by the action (a, λ) ·x := a ·x+λx,

a ∈ A, x ∈ X and λ ∈ C.
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Definition 2.1. Let A be a Banach algebra then a Fréchet A-mod X is called projective if

the product map πX : A]⊗̂X → X which is defined by πX(a ⊗ x) = a · x, (a ∈ A], x ∈ X)

has right inverse A-module morphism.

Next proposition and its proof is similar to [6, Proposition IV. 4.4].

Proposition 2.1. Let A be a Banach algebra and let X be a projective Fréchet A-mod and

at least one of the spaces A, X have the approximation property then for any 0 6= x ∈ X

there exists a left A-module morphism ψ : X → A] such that ψ(x) 6= 0.

Proof. Let ρ : X → A]⊗̂X be as in the above definition, so πX ◦ ρ = idX and consider the

map idA] ⊗ f : A]⊗̂X → A]⊗̂C, for a functional f on X. Since x 6= 0 then πX ◦ ρ(x) 6= 0,

so ρ(x) 6= 0. Because of approximation property A or X by [10, Lemma 1.11] there are f

and g in the dual space of X and A] respectively with respect to the strong topology such

that (g ⊗ f)(ρ(x)) 6= 0, so (idA] ⊗ f)ρ(x) 6= 0. Let ψ = (idA] ⊗ f)ρ : X → A]⊗̂C, therefore

ψ(x) 6= 0. it is easy to see that ψ is left A-module morphism and by applying A]⊗̂C ∼= A],

we get the result. �

Theorem 2.1. Let G be locally compact group and E be projective Fréchet L1(G,ω)-mod

which satisfy Cc(G) ⊆ E then G is compact.

Proof. Toward to the second part of the proof [4, Theorem 3.1] we can find a f ∈ Cc(G)

such that 0 6= f · f , so by the above proposition there exists an A-module morphism from E

into A] such that 0 6= T (f · f), hence by following the exactly method that has been used

in the proof of [4, Theorem 3.1] the result follows. �

Corollary 2.1. Let G be a locally compact group, then ∩n∈NC0(G,ω−1
n ) is projective as

L1(G,ω1)-mod if and only if G is compact.

Proof. Suppose that ∩n∈NC0(G,ω−1
n ) is projective then by the above theorem G is compact.

Now let G be compact since in this situation ∩n∈NC0(G,ω−1
n ) = C0(G) so by [4, Theorem

3.1] ∩n∈NC0(G,ω−1
n ) is projective. �

Corollary 2.2. Let G be a locally compact group, then ∩n∈NL∞(G,ω−1
n ) is projective as

L1(G,ω1)-mod if and only if G is finite.

Proof. Let G be finite then for n ∈ N, L∞(G,ω−1
n ) = L∞(G) so ∩n∈NL∞(G,ω−1

n ) is projec-

tive by [4, Theorem 3.3].

Suppose that ∩n∈NL∞(G,ω−1
n ) is projective then by Theorem 2.1 G is compact, so

for n ∈ N, L∞(G,ω−1
n ) = L∞(G) and therefore ∩n∈NL∞(G,ω−1

n ) = L∞(G) so L∞(G) is

projective and by [4, Theorem 3.3] G is finite. �

Since when G is compact then ∩n∈NL∞0 (G,ω−1
n ) = ∩n∈NL∞(G,ω−1

n ), so the above

theorem by the same argument is also true for ∩n∈NL∞0 (G,ω−1
n ).

Proposition 2.2. Let G be a locally compact group and ω(x) ≥ 1 for all x ∈ G then

L1(G,ω) is projective right L1(G,ω)-module.

Proof. By [7, Proposition 1.2] L1(G,ω)⊗̂L1(G,ω) is isometric isomorphic to L1(G×G,ω×ω)

and the rest of proof is similar to the proof of [2, Theorem 3.3.32]. �
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3. Injectivity

Definition 3.1. For Fréchet spaces X and Y , a morphism ϕ : X → Y is said to be

admissible if its kernel complemented in X and its image is closed and complemented in Y .

Definition 3.2. Suppose that A is a Banach algebra, a Fréchet A-mod J is said to be

injective if for any admissible monomorphism ρ : X → Y and any morphism ϕ : X → J

there exists a morphism ψ : Y → J such that the diagram

X
ρ //

ϕ

��

Y

ψ~~
J

is commutative. Where in the above all spaces are Fréchet A-mod and morphisms are

module morphisms.

Theorem 3.1. Let A be a Banach algebra and let E be projective limit of a family of

injective Banach A-mod En(n ∈ N), then E is injective Fréchet A-mod.

Proof. Consider Fréchet A-mod X,Y , admissible module monomorphism ρ : X → Y , mod-

ule morphism ϕ : X → E and suppose that fn : E → En is the n’th restriction of the projec-

tion map of Πn∈NEn on projective limit. Since En is injective module, for fn ◦ϕ : X → En,

there exists a morphism ψn : Y → En such that ψn ◦ ρ = fn ◦ ϕ. As ρ is monomorphism

so there exists a module morphism ρ′ such that ρ′ ◦ ρ(x) = x, for all x ∈ X and since it is

admissible so Y = Imρ⊕Kerρ′, where Imρ is the image of ρ and Kerρ′ is the kernel of ρ′,

hence we can define ψ : Y → E by ψ(y) = (ψn(γ)), where y = γ + z for some γ ∈ Imρ and

z ∈ Kerρ′, obviously ψ is a module morphism and

ψ ◦ ρ(x) = (ψn(ρ(x))) = (fn(ϕ(x))) = ϕ(x),

for x ∈ E, so E is injective for all n ∈ N. �

Corollary 3.1. Let G be a locally compact group then ∩n∈NL∞(G,ω−1
n ) is injective as

L1(G,ω1)-mod

Proof. Since for all n ∈ N dual of L1(G,ωn) is L∞(G,ω−1
n ) and by Proposition 2.2 L1(G,ωn)

is projective so by [11, Example 5.3.7(b)] L∞(G,ω−1
n ) is injective and hence by above theo-

rem the result follows. �

For Banach algebra A and Fréchet A-mod X, consider the embedding map Π : X →
AB(A], X), that is defined by Π(x)(a) = a · x for all a ∈ A] and x ∈ X. We know that this

map has no left inverse module morphism in the category of non-normable Fréchet modules,

but by [5, Lemma 2.1] in the special case when A is Banach algebra and X is Fréchet space

it has left inverse, so by regarding to this fact we can prove the following result.

Theorem 3.2. Let G be a locally compact group then ∩n∈NC0(G,ω−1
n ) as an L1(G,ω1)-mod

is injective if and only if G is finite.
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Proof. Since when G is finite then ∩n∈NC0(G,ω−1
n ) = C0(G) so ∩n∈NC0(G,ω−1

n ) is clearly

injective by [4, Theorem 3.8].

Conversely let A = L1(G,ω1) and suppose that ∩n∈NC0(G,ω−1
n ) is injective so the

canonical embedding

Π1 : ∩n∈NC0(G,ω−1
n )→ AB(A],∩n∈NC0(G,ω−1

n ))

has a left inverse morphism ρ1 : AB(A],∩n∈NC0(G,ω−1
n ))→ ∩n∈NC0(G,ω−1

n ) by [5, Lemma

2.1]. Now Since A] ⊆ L1(G)] and C0(G) ⊆ ∩n∈NC0(G,ω−1
n ), we can define restriction map:

α : L1(G)B(L1(G)], C0(G)) //
AB(A],∩n∈NC0(G,ω−1

n ))

T // T∣∣
A]

.

This map by Lemma 1.1 is a module morphism, so the following diagram commutes:

∩n∈NC0(G,ω−1
n )

id

uu∩n∈NC0(G,ω−1
n )

Π1 //
AB(A],∩n∈NC0(G,ω−1

n ))

ρ1

OO

C0(G)

id

OO

Π2

//
L1(G)B(L1(G)], C0(G))

α

OO

where Π2 is embedding map. If we define ρ2 = ρ1 ◦ α then we have:

ρ2 ◦Π2(x) = ρ1 ◦ α ◦Π2(x) = ρ1 ◦Π1(x) = x,

for all x ∈ C0(G), so C0(G) is injective and consequently by [4, Theorem 3.8] G is finite. �

Similarly to the last statement in the above proof if we consider L0(G) and ∩n∈NL∞0 (G,

ω−1
n ) instead of C0(G) and ∩n∈NC0(G,ω−1

n ) respectively and this fact that when G is com-

pact then ∩n∈NL∞0 (G,ω−1
n ) = L∞(G), by [1, Theorem 3.4] we can conclude the following

result.

Theorem 3.3. Let G be a locally compact group then ∩n∈NL∞0 (G,ω−1
n ) is an injective

L1(G,ω1)-mod if and only if G is compact.
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