U.P.B. Sci. Bull,, Series C, Vol. 83, Iss. 3, 2021 ISSN 2286-3540

ON THE DEVELOPMENT OF AUTONOMOUS AGENTS USING DEEP
REINFORCEMENT LEARNING

Clara Barbu' and Stefan Alexandru Mocanu?

This paper presents a study on the general concept of autonomous agents,
with an accent on the development of such agents using deep reinforcement learn-
ing. This is combined with the domain of autonomous vehicles, as illustrated by a
practical application: having a vehicle agent learn how to navigate and park by
itself on a designated spot, in a virtual parking lot environment created in Unity.
The reinforcement learning method Deep Q—Learning is implemented, with the
addition of a few improvements such as Double Deep Q—Learning and Experience
Replay.

Keywords: reinforcement learning, Q-learning, autonomous agent, autonomous
vehicle, Deep Learning, Experience Replay, Unity3D

1. Introduction

Autonomous agents are software programs developed to react independently
to different situations and events, with the purpose of achieving a specific objective.
They can be used to solve problems from various fields such as robotics, economics,
medicine or games.

Due to an exponential growth in computer hardware in the past few decades,
artificial intelligence has become increasingly popular — its applications being
present almost everywhere, from mobile phones to online stores. Moreover, there
has been a newfound interest in creating software agents capable of adapting to new
situations with little to no human intervention while also finding optimal solutions
to problems. Therefore, although coined around the 1980s, reinforcement learning
has only recently sparked an interest in the field of artificial intelligence.

Another area of great interest at the moment is the subject of autonomous
vehicles, multiple companies competing with each other using different methods
and technologies in order to become the first to create a fully autonomous vehicle.
A less popular approach to this topic, however, is using reinforcement learning.
This paper thus tackles this approach in order to study and compare the results to
the current state of the art.

IFaculty of Automatic Control and Computer Science, University “Politehnica” of Bucharest,
Romania, e-mail: clara.barbu@yahoo.ca

Faculty of Automatic Control and Computer Science, University “Politehnica” of Bucharesti,
Romania, e-mail: smocanu@rdslink.ro

97

98 Clara Barbu, Stefan Alexandru Mocanu

In theory, an agent is any object or being capable of perceiving its environ-
ment through sensors (such as eyes, ears or video cameras) and taking action inside
this environment using actuators (such as hands, voice or various motors). A ratio-
nal agent is an agent that will always select the action that is expected to maximize
its performance measure (through which the agent’s level of success is determined),
given the agent’s history of perceptions and former knowledge regarding the prob-
lem that is being solved. [14]

Finally, an autonomous agent can be viewed as a rational agent that can inter-
act independently with its environment, using sensors and actuators, by being able
to learn. The advantage that comes with this ability is that the agent can initially
operate in completely unknown environments and in time become more competent
than its initial knowledge may have permitted. More specifically, it is considered
that full autonomy is achieved by an agent if it is: adaptable to changes that take
place in its dynamic environment quickly and efficiently, robust by not suffering a
total collapse from minor changes to the properties of the environment, and factical
in order to maintain multiple objectives and balance their priorities depending on
the situation ([1]).

One of the fundamental components of a learning agent is machine learning.
This field of study seeks to answer the question “How do we create computer pro-
grams that improve with experience?” (Tom Mitchell, [10]). Generally, machine
learning is categorized into three methods of approaching a problem, depending on
the feedback that is being received by the program.

In supervised learning, the agent program is given input-output pairs in order
to learn from them and be able to then map future inputs to their corresponding
outputs. In this case, the inputs are the agent’s perceptions, the outputs are labels
which provide information about the inputs, and thus the feedback comes instantly.
On the other hand, in unsupervised learning the feedback is nonexistent and the
agent must learn patterns by itself, given a series of inputs. A common method is to
separate example inputs into groups called clusters and to categorize future inputs
into them. Lastly, in the case of reinforcement learning the feedback is present,
but delayed instead of instant. The agent learns from a series of reinforcements —
rewards or punishments.

Reinforcement learning is, by definition, the process of learning what needs to
be done (i.e. the mapping of situations to actions) with the purpose of maximizing
a numerical signal called a reward. Whilst learning, the agent is never told which
actions must be taken, but instead it must discover by itself which actions produce
greater rewards through trial and error. In some cases, actions can affect not only
the immediate reward, but also the subsequent states and thus affecting all future
rewards. These two characteristics — searching through trial and error, and delayed
rewards — are the most important aspects of reinforcement learning ([19], chapter

1).

On the Development of Autonomous Agents Using Deep Reinforcement Learning 99

Delving into the mathematical component of this subject, the most valuable
and most often used formula is the Bellman equation. It represents the most im-
portant step for all reinforcement learning algorithms, regardless of category (e.g.
value-based or policy—based methods). The equation expresses that a state’s utility
— a numerical signal which symbolizes the value of a specific situation, or state,
in which the agent can be found at a given moment — can be calculated by adding
the current state’s immediate reward to the discounted utility of the next state, as-
suming that the agent selects the optimal action. In the equation, s represents the
current state, s is the next state, U is the utility function, R is the reward function, y
is the discount factor, A is the action space, and P is the probability distribution of
reaching state s’ from state s by executing action a.

U(s)=R(s)+7 mjl(X)ZP(sﬂs,a)U(s/) (1)
acA(s) "3

Reinforcement learning algorithms can be classified into two categories, the
first being model-based methods in which the agent has access to a complete model
of its environment which contains the transitions between states and the rewards as-
sociated to those states, facilitating the search for an optimal strategy by being able
to plan ahead efficiently. The second category is known as model—free methods,
in which the agents bases its decisions on its own experience by learning utilities
and/or strategies and gaining an optimal behavior through iterations. The two terms
previously mentioned, value—based methods and policy—based methods, both fall
in the second category and are approaches that are currently used in algorithms.
The value—based method decides upon the optimal action for each state through a
process of repeatedly calculating the utilities for all possible states using the afore-
mentioned Bellman equation and then selecting the actions which return the highest
utilities. On the other hand, the policy—based method begins by selecting an initial
strategy and then repeatedly evaluating and improving the current strategy until no
further improvements can be made.

2. State of the Art

The field of artificial intelligence has recently blown up, with many manual
processes (which previously would have been handled by human experts) being
automated. This has resulted in many advancements in the field of autonomous
cars.

In the development and operation of such vehicles it is considered that the
driving agent goes through three phases (repeatedly), each using different technolo-
gies and processes. The first is called the sensory phase — in which a combination
of cameras, radars and LiDAR (Light Detection and Ranging) sensors are used to
detect objects around the vehicle, such as other vehicles, pedestrians, obstacles,
road signs or car lanes. Cameras are used for detecting and recognizing the shape
of objects around the car, radars are used for discerning the speed and location of
the objects, while LiDAR sensors are used to create a 3D representation of the en-
vironment for an extra boost in (long distance) accuracy. In the processing phase

100 Clara Barbu, Stefan Alexandru Mocanu

the information detected in the previous phase is interpreted in real time using Deep
Learning for Computer Vision for tasks such as image segmentation, image classifi-
cation or object detection. Lastly, the control phase entails further processing of the
information in order to guide the vehicle — calculating the optimal route using GPS
and correctly adjusting the car’s mechanisms while following the rules of traffic.

One of the current leading manufacturers of autonomous vehicles is Tesla,
Inc. Its methods are distinguished by the fact that Tesla cars do not use LiDAR
technology, instead making use of eight cameras, one frontally positioned radar and
short distance ultrasonic sensors. The recorded information from all sensors is then
used to train a multi-headed Convolutional Neural Network. Because of this, a
strong point of Tesla cars is the automated system that continuously improves the
cars’ software programs — every day the cars gather new information, which is then
used to retrain the networks; once retrained, the software programs are updated with
the improved networks, thus taking place a constant increase in the quality of the
artificial intelligence used to control the cars. Among Tesla’s competitors is Waymo
(a subsidiary of Google) whose strength comes from manufacturing all of its com-
ponents — such as the cameras, radars, LiDAR sensors and chips — allowing for
considerable optimization. The most crucial sensor is its LIDAR, which is currently
capable of detecting objects at a distance of 300 meters with high accuracy [3], giv-
ing the Waymo cars an edge over Tesla. In the future, the number of self-driving
cars in use will increase considerably, as other companies such as Uber and Lyft
are already testing fully autonomous vehicles in select regions in North America.
Despite being tested in the presence of a safety driver, the final objective is using
the cars for taxi purposes without a driver.

In the past decade reinforcement learning has gained the attention of numer-
ous researchers, with successes in various fields and one field in particular standing
out — games. For instance, AlphaGo [2] (developed by DeepMind) was the first
software program capable of defeating a professional player and even the world
champion at Go, eventually being considered the strongest Go player in history. Go
— a two—player strategy board game originating in China — has a total of 10!70
possible board combinations, making it a very complex game. The agent program
uses two neural networks which receive as input information about the board: the
first network decides the agent’s next move and the second network predicts the
current match’s winner. Initially, the agent began its training by learning basic
strategies from amateur Go players, but then started playing thousands of matches
against itself. In this second step, reinforcement learning was used in order for the
agent to learn from its own mistakes. After being defeated by AlphaGo in 2016,
Lee Sedol, who is considered the best player in the past decade, even stated that the
agent was ‘“‘creative”.

While AlphaGo makes use of a model-based approach by having a perfect
model of the environment, the following two papers use a model-free approach.
OpenAl Five [12] is a team of five neural networks (created by OpenAl) which
was able to defeat an amateur team at the video game called Dota 2 — a real-time

On the Development of Autonomous Agents Using Deep Reinforcement Learning 101

strategy game in which two teams of five players compete against each other by
controlling a character called a “hero”. The program trains against itself for 180
years worth of gameplay everyday, on 256 GPUs and 128.000 cores. As opposed
to the problem of Go in which the action space (the number of possible actions per
agent state) is discrete and the states are observable, in the case of Dota 2 the state
and action spaces are continuous. For this reason, the model—free reinforcement
learning method called Proximal Policy Optimization [15] is used to train the agent.

Another important paper is [11]. It describes a reinforcement learning agent
which is trained to play Atari games; tested on seven games, the agent managed
to defeat human experts at three of them. The program receives only the pixels
on the screen as input and the current score as a reward in order to take in—game
decisions. A remarkable aspect about this agent is that when switching to a different
Atari game there are no modifications made to the contents or parameters of the
software program. Considering the fact that in Atari games the action space is
discrete, and also that the state space is enormous (each state is a frame taken from
the game screen) the chosen algorithm for training the agent is Deep Q—Learning
— as opposed to O—Learning in which the state space must be small enough to be
stored in a table. This method is further described in the following sections.

Alongside the value-based method Deep Q-Learning and the policy—based
method Proximal Policy Optimization, other model—free methods include Asyn-
chronous Advantage Actor-Critic (A3C) and Policy Gradient (PG). Among those
that are based on a model of the environment are AlphaZero [16] — a successor of
AlphaGo trained to play chess, shogi and Go, and World Models [4] — in which the
agent learns a model of the environment from its own “dreams”.

Although still mostly researched at a theoretical level, a first step has been
made for reinforcement learning towards a more practical field — that of autonomous
vehicles. In 2018 the company Wayve described in [7] the development of the first
reinforcement learning algorithm (which is based on the Actor Critic method) at-
tached to a real car. Using only a series of stills taken in real time as input, the
agent learns how to follow a curved road in just 20 minutes, or about 11 episodes.
An episode begins by manually positioning the vehicle in the center of the road and
switching on the autonomous control until human intervention is needed. At that
moment the current episode of exploration is stopped, a reward quantified as the
number of meters traveled is given to the agent, and the car is repositioned in order
to begin a new episode. The authors of the paper have stated the belief that their
method represents an improvement over current algorithms used in autonomous ve-
hicles, as it is inspired by the human trait of adaptability.

Another advancement in the field of autonomous driving is [18], which suc-
cessfully resolves traffic conflicts and congestion problems. The techniques used
include a Deep Q—Network and the Double Q-Learning scheme. The aim is to pro-
vide optimal driving policies for multiple vehicles, such that they navigate safely
and rapidly to their destinations, avoiding collisions. An approach based on deep

102 Clara Barbu, Stefan Alexandru Mocanu

convolutional neural networks is [13]. Using only raw pixels, the agent learns diffi-
cult control policies in the OpenAl Gym CarRacing self—driving environment. The
authors successfully optimize the Deep Q—Network architecture, surpassing even
the base Double Deep Q-Network architecture.

Finally, the initial source of inspiration for this paper’s application is the
Youtube video [21]. In the video, the agent has a very similar task, and the author
also uses Unity ML—Agents [6] for the learning agent. The differences lie in the
level of environment generality in the testing phases, and also in the reinforcement
learning architecture used. While our architecture uses Double Deep Q-Learning,
the author uses the Proximal Policy Optimization algorithm instead.

3. Case Study

The case study of this paper is that of a software agent with a specific objective
situated in a simulated environment. The agent is represented by a vehicle, the
environment is a virtual parking lot and the objective is to park on a specific parking
space.

The vehicle can be controlled simultaneously in two manners: back—and—
forth acceleration and braking on the x axis, and direction control by rotating the
front wheels on the y axis. The agent’s movements are similar to those of a real car
and respect the basic laws of physics such as gravity and friction.

Additionally, the vehicle is equipped with eight proximity sensors situated in
the front, back, two laterals and four diagonals. The sensors have different sens-
ing distances, with the front and back sensors being the longest, followed by the
diagonal and then the lateral sensors.

The virtual environment is ideal because of the lack of bumps on the ground,
the lack of wind and any other disruptive elements. The parking lot is thus com-
prised of: a horizontal floor, eighteen parking spaces, eleven static cars that are
already parked (resulting in seven free parking spaces), two entrances to the park-
ing lot from which the agent could start, and a set of (invisible) walls placed around
the parking lot in order to keep the agent from wandering outside. The final com-
ponent of the environment is the target parking space, represented visually by a red
rectangle on the ground. The main objective of the agent is to learn how to park on
this space.

Training the agent takes place through a series of episodes, and the termina-
tion of an episode is triggered by: parking successfully (i.e. navigating to the target
spot and slowing down the vehicle), bumping into another car or a wall, or finish-
ing a maximum number of steps per episode (with each step being a single action
taken). With every new episode the environment is reset by repositioning the agent
at its starting point in order to try again.

Through the use of rewards, the agent is able to discover its objective, which
is to navigate through the parking lot while avoiding all obstacles and park on the
target spot, at a faster or slower pace. For this reason it is important that the rewards

On the Development of Autonomous Agents Using Deep Reinforcement Learning 103

are chosen accordingly, as they can even be used to encourage a more correct park-
ing position — the more parallel the agent parks to the parking stripes, the bigger
the reward is. It is considered that the agent has parked when it is close enough to
the center of the spot and its velocity is under a certain speed. The rewards have the
following values:

e + r_step points for each step in which the episode hasn’t ended. The value of

r_step is calculated using the following equation:
—1 1
r_step(d) = (50061—1— 10) 1, vd >0, (2)

where d is the current distance between the agent and the target spot. Excepting
the last term (—1), the function is linear with a negative slope in order to offer
the agent a higher reward for being closer to the target. The last term is used as
an adjustment, ensuring that r_step(d) < 0,Vd > 0 so as to motivate the agent
to hurry in reaching its objective.

e — 500 points for colliding with an obstacle.

e + 1000 points for parking on the target spot correctly, at an angle of 0° between
the vehicle’s x axis and the parking stripes.

e + 200 points for parking on the target spot, but incorrectly, at an angle of 90°
between the vehicle’s x axis and the parking stripes.

e + r_park points for parking on the target spot at an angle between 0° and 90°.
The value of r_park is calculated using the following equation:

80 (90 — o
r_park(a) = % +200, Yo € (0°,90°), 3)
where « is the angle between the vehicle’s x axis and the parking stripes on the

ground.

4. Proposed Solution

The proposed solution to the above issue is to separate it into basic reinforce-
ment learning elements (i.e. inputs, outputs, feedback) and to then apply the Deep
Q-Learning method with a few tweaks in order to train the agent.

The implemented algorithm uses the agent’s current state as input, returns the
output in the form of the agent’s next action, and receives rewards as feedback. The
current state consists of: the agent’s position (x and z coordinates), the target spot’s
position (x and z coordinates), the agent’s velocity (x and z coordinates) and the
distances detected by the eight proximity sensors. The actions that the agent can
make at each time step are represented by an (x,y) vector, where x is the back—and—
forth motion (0 = nothing, 1 = forward acceleration, -1 = backward acceleration, 2 =
brake), and y is the direction control, or rotation of the wheels (-4 = —45° rotation,
-3 = —30° rotation, -2 = —20° rotation, -1 = —10° rotation, O = 0° rotation, 1 =
10° rotation, 2 = 20° rotation, 3 = 30° rotation, 4 = 45° rotation). All possible
combinations of x and y compose the agent’s action space.

104 Clara Barbu, Stefan Alexandru Mocanu

4.1. Creating the Environment in Unity

The game engine Unity [22] was used to create the visual component of the
application, along with the physics of the environment and the movement of the
agent. The agent’s behavior and ability to learn are implemented separately in
Python. In order for the Unity environment to be used to train the agent devel-
oped in Python, Unity ML-Agents Toolkit [6] was used. It contains numerous ma-
chine learning algorithms which have already been implemented to train agents,
but also features a Python API (Application Programming Interface) which offers
the freedom of developing new or personalized algorithms for learning from the
environment.

Specifically, the environment was created using a set of “assets” chosen by
aesthetics and functionality from the online Unity Asset Store. The assets in this
paper’s application are from the package called “Polygon City” [20]. The following
components were added to the agent’s car model asset: Rigid Body — which gives
an object mass in order to respond to fundamental forces such as gravity, Mesh Col-
lider — an invisible layer around the object which can detect collisions with other
colliders, and Wheel Collider — similar to Mesh Collider, except for being used ex-
clusively on vehicle wheels and allows for realistic movement through specialized
functions. Additionally, a C# script is attached to the agent object, whose contents
are described in the following paragraphs. The finalized agent and environment can
be viewed in figure 3.

Each training episode begins by initializing the agent and environment, which
is implemented in the method onEpisodeBegin () from the Agent class (from the
ML-Agents Toolkit). It is called automatically and is overridden to reset the agent’s
position and rotation to the starting point (at the entrance of the parking lot), as well
as zeroing the velocity. Similarly, any changes to the environment can be done in
this method.

During an episode, at each time step, the agent collects a set of information re-
garding its current state using the method collectObservations () from the Agent
class. This method then sends the agent’s state to the Python component in order to
store and process the information. While details such as the agent’s position or ve-
locity can be accessed directly (using specialized Unity functions), a method called
Sensors () was implemented in order to collect the sensor data. In it, the sensors
are individually generated using an element called Raycast: a laser-like line used
to detect collision distances which is defined by a starting position (relative to the
agent vehicle object), an angle which describes its direction, and a maximum detec-
tion distance. Whenever an object is detected by one of the sensors, the distance to
the object is saved and sent back to CollectObservations ().

The agent’s movement in the environment takes place by choosing a specific
action at each time step on the Python side, sending it to Unity, and calling the
method onActionReceived () fromthe agent class, which receives the (x,y) action
vector described earlier as input. The two elements from the action vector are then
attributed to the following Wheel Collider variables: motorTorque or brakeTorque

On the Development of Autonomous Agents Using Deep Reinforcement Learning 105

for the back—and—forth movement from x, and steerangle for the direction control
from y.

Ending an episode takes place only if at least one of the ending conditions is
met. When this happens, the method setReward () — which receives the reward
value as input — is called, followed by EndEpisode (). Both methods have al-
ready been implemented in the agent class. Failure through collision with another
object is detected with the Unity function onTriggerEnter (), followed by nega-
tively rewarding the agent and ending the episode. Successful parking is detected
by continuously calculating the distance between the agent and the target spot. If
this distance is under a specific threshold and the velocity is also small enough, the
vehicle’s rotation relative to the target spot is used to calculate the given reward
(formula 3), followed by the episode end. Besides the above two cases, rewards are
given at each time step in OnActionReceived () (formula 2).

4.2. Deep Q-Learning and Additional Concepts

Implementing Deep Q-Learning necessitates the action space to be discrete,
as it was previously described. The fundamental algorithm on which this method is
based is called Q—Learning, a model—free value-based algorithm.

The basic principle is to search for the utility values, or Q—values, of all state—
action pairs and to save them into a table called the Q—table (where Q stands for
quality). The utility values are calculated using a derived form of the Bellman
equation:

Onew(s,a) = Q(s,a) + ot [r+ ymax 0(s,d) — 0(s,a)], 4)

where « is the learning rate which determines the speed at which the agent abandons
the current Q—value for the new value, ¥ is the discount factor which is multiplied by
the maximum value among the possible actions from state s, and r is the immediate
reward from state s. Once the table is complete, the agent then has the possibility
of choosing what action to take in which state depending on the maximum action
utility value from that state’s row [17]. However, when a problem has an extremely
large state space, as is the case of this paper (multiple unique states per second lead-
ing to millions of states), using an immense table is too inefficient. For this reason,
a neural network is used to predict the Q—-values of all possible actions, given a
specific state. Thus, the neural network’s input nodes are the set of characteristics
which describe the agent’s state, and the output nodes are the Q-values for each
action. A more in—depth description of the implemented algorithm can be found
further down in this section.

On top of the fundamental Deep Q-Learning algorithm, a few other tech-
niques have been added in order to improve the performance and robustness of the
agent. Firstly, Experience Replay [9] is an important method inspired by biology
which uses an element called a Replay Buffer to store the agent’s experiences. An
experience is defined as a set containing the agent’s current state, its chosen action,
the new state that action lead to, and a variable which tells if the episode has ended

106 Clara Barbu, Stefan Alexandru Mocanu

or not. The technique says that an agent should not learn from its current experi-
ences at every time step, but instead learn from a random batch of experiences from
the Replay Buffer every few time steps. The main advantage of using Experience
Replay is that the agent’s experiences aren’t thrown away, but are used multiple
times to train the agent; this aspect is important if the agent sometimes finds itself
in rare situations. Furthermore, the agent can tend to forget older experiences as
time passes, and using this method helps to remember and relearn from them. A
final aspect is that in an environment, consecutive states are usually correlated; us-
ing a set of random experiences from different moments eliminates the correlations
between states and assures a more robust training of the agent.

In the paper [5] on Double Deep Q—Learning, the authors demonstrate the
fact that using a single estimator can lead to overestimating the Q—values, resulting
in weaker performances from the agent. The paper thus proposes using two separate
estimators (in this case an estimator being a neural network): one which selects the
appropriate action given the current state, and one which estimates the Q—values
inserted into the derived Bellman equation in the learning phase. This technique
assures that adjusting a neural network’s weights is not done in order to predict
something that it also generates. In this paper’s practical application, the neural
network that chooses the action has been named the local network and the latter
network is called the target network.

Soft Target Network Update was introduced in [8] and suggests updating the
target network’s weights gradually every time Experience Replay is used. Before,
the target network weights would be adjusted by matching their values to those of
the local network every few time steps, but it has been observed that the adjustments
were being made too drastically and were causing a lack of learning stability from
the agent. In order to assure a slower and more stable weight adjustment, equation
5 (where 0 represents a network’s weights or parameters, and T < 1) is used for the
target network parameters.

Gtarget = etarget * (1 - 7:) + elocal *T (5)

Finally, an epsilon—greedy strategy has been applied to the agent’s decision
process. To give context, when implementing an algorithm which selects an agent’s
next action depending on some value (in this case Q-values), the agent begins to
always choose the best suited action based on the information it currently has. This
behavior is called adopting a greedy strategy. Unfortunately the problem which
arises from this is that if the agent always chooses the same actions, it never has
the chance to find out if other actions might be better, and thus must be encour-
aged to explore. To solve this problem, the concept of an epsilon—greedy strategy
was introduced, which forces the agent to select a random action with a chance of
€ (exploring new possibilities) and to choose the greedy action with a chance of
1 — € (exploiting gathered knowledge). Generally, the value of € starts off higher
and decreases as the episodes pass (also referred to as the decaying epsilon—greedy
strategy).

On the Development of Autonomous Agents Using Deep Reinforcement Learning 107

4.3. Creating and Training the Agent in Python

This subsection is structured as the main algorithm of the Python component.
The numbered events are detailed in chronological order. The schematic represen-
tation of the algorithm is in figures 1 and 2.

1. The Unity environment is initialized together with the application hyper-
parameters. The environment is opened in an executable file or directly in Unity
by using the function UnityEnvironment (), from ML-Agents, and saving it in the
variable env. The next step is to reset the environment using env.reset () in order
to obtain the agent’s Behavior Name and ID (in order to identify the agent), the
Action Size, and the State Size directly from Unity where they have been set.

2. The agent is created, which can be trained or untrained. A trained agent
receives parameters in order to be observed, but does not do any learning in the
next steps. The agent is an instance of the agent Python class (different from
the one in ML—Agents), which contains the parameters: local network and tar-
get _network — instances of the oNetwork Python class described further down,
optimizer — to adjust the neural network parameters using the optimization al-
gorithm torch.optim.adam from PyTorch, replay buffer — an instance of the
ReplayBuffer Python class also described further down, and t ime_step — a vari-
able which keeps track of the current time step.

The onetwork class is a subclass of torch.nn.Module which belongs to
PyTorch. The neural network architecture is comprised of 14 input nodes (the
components of a state), 36 output nodes (all possible combinations of actions)
and 3 hidden layers with 64 nodes each. The layers are fully connected using
torch.nn.Linear (), and the chosen activation function for each layer is ReLU
(Rectified Linear Unit: ReLU (x) = max(0,x)).

3. For each episode, repeat the next steps until the maximum number of
episodes is reached:

3.1. The environment is reset and the episode’s first state is observed. After
resetting the environment again (which calls onEpisodeBegin () described earlier),
the agent’s current state is observed with env.get_steps () and saved in the vari-
able state. It contains the collected observations from Unity.

3.2. For each time step, repeat the next steps until the max number is reached
or an exit condition is met:

3.2.1. The agent’s next action is selected. To do so, the method act () is
called, which belongs to the agent Python class. It receives the agent’s state and
the value of € as input. Then, using the local neural network, the actions’ Q—values

108 Clara Barbu, Stefan Alexandru Mocanu

are predicted and the agent’s next action is selected using the epsilon—greedy strat-
egy (either the action with the highest Q—value with a chance of €%, or a random
action otherwise). The value of € is higher at the beginning of training and de-
creases gradually in order to move from exploration to exploitation.

3.2.2. The agent’s reward is observed together with the new state. The pre-
viously chosen action is sent to the environment using env.set_actions (), fol-
lowed by env.step () in order to advance the agent to the next time step and gen-
erate a new state. Once the agent enters this new state, it is saved in the variable
next_state (again using env.get_steps ()). Additionally, because choosing an
action has triggered the receipt of a reward before moving on to the next state, this
reward is saved in the variable reward to be used in the learning phase.

3.2.3. The learning phase. By calling step () (a member function of the
agent Python class) with the newly collected information as input, the agent begins
the process of learning and updating its parameters. Firstly, the new experience
is added to the agent’s replay buffer. This is an object which is defined by an
experience — a namedtuple under the form of which the information is stored, a
buffer — a chronologically ordered list containing all of the agent’s experiences,
and a batch_size — the number of random experiences sampled from the buffer
at each learning phase. As such, the ReplayBuffer class’s method add () is used to
add the agent’s state, action, reward, new state and whether the episode is finished
or not, to the buffer as an experience. Next, the time_step is incremented and
checked if it is a multiple of four. If so, get_sample () (from ReplayBuffer) is
called to extract a batch of experiences from the buffer, which is further used as
input for the method 1earn () (from Agent). The idea of learning only at every four
time steps was implemented through trial and error in order to increase stability
by learning slower and avoiding a sudden increase in performance by the agent,
followed by an immediate collapse.

In 1earn(), the batch of experiences is first separated into lists: states,
actions, rewards, next_states, and dones (Which are equal to 1 if the respec-
tive episode is finished and O otherwise). So as to update the parameters of the
local_network, the loss function is calculated between the lists o_targets and
Q_values. The first term is computed using the following formula, which is the
Bellman equation [19] implemented in Python:

QO_targets = rewards + (gamma * Q_next * (1 - dones)), (6)

where gamma is the discount factor and ¢_next is the list of maximum Q-values
for the new states, max, Q(s’,a’). In order to obtain this list, the target network is
used to predict all of the Q—values for each state from next_states, and then the
maximum value is selected from each set of actions per state. The last component
of the formula is multiplied by (1 - dones) because a terminated episode does not
contain a next_state, and so this bit would not be needed in that case.

On the Development of Autonomous Agents Using Deep Reinforcement Learning 109

For computing the second term, 0_values, the local network is used to predict
the Q—values of all state—action pairs from the sampled batch (i.e. for each element
from states, the Q—value of the corresponding element from actions).

Basically, the loss function is calculated between the “real” Q—values obtained
from the Bellman equation and the target network (Q_targets) and the current Q—
values of the previously chosen actions predicted by the local network (0_values).
The selected loss function is the Mean Squared Error Loss. After backpropagating
the loss, the local network’s parameters are adjusted using the Adam optimization
algorithm. Lastly, the parameters of the target network are also updated using the
method soft_update () (from agent) which applies equation 5.

3.2.4. state + next_state

3.2.5. Verify exit conditions. If the agent has collided with an obstacle from
the environment or has successfully parked on the target spot, the current episode
ends and the algorithm breaks from this loop.

3.3. The value of € is decreased.

4. The local network’s parameters are saved to be used in the future. This is
done with torch.save (), which saves the parameters file to disk. It allows for the
file to be later used to observe the behavior of the trained agent at a normal envi-
ronment speed, by calling load_state_dict (torch.load()) with the file name as
input.

Initialize: / \
» Environment o Observe o Select .| Observe
« Agent A state s action a state s*
» MNeural networks
Save parameters
s : Observe
enerate ; Y
> ovaluss reward r
Apply)
—» . Maximum
_ c-greedy / episode
number

reached

F

Add experience to
Replay Buffer

h 4

Learning phase

Verify exit
conditions

Repeat for every fime step (5 — ")

Repesat for every episode

Fig. 1. Schematic representation of the main algorithm described in sub-
section 4.3. The learning phase is represented in more detail in figure 2.

110 Clara Barbu, Stefan Alexandru Mocanu

-
Bellman Equation
+ Target Network

Compute Q_targets

Update Local Network
Extract batch from . 3| Compute loss > N
Replay Buffer F E—— Soft Update Target
Local Network Network

Compute Q_values
N/

Fig. 2. Schematic representation of the learning phase segment from the
main algorithm.

4.4. Hyperparameters

The algorithm makes use of a set of hyperparameters whose values can highly
influence the agent’s behavior. The process of choosing the values implied studying
similar applications and also making multiple adjustments until the desired behavior
was obtained. This subsection presents each hyperparameter’s chosen value and
usage.

e Number of episodes = 8.000. This determines how much time the agent has to
develop its behavior.

e Maximum time steps per episode = 500. So as to avoid the agent getting stuck,
this hyperparameter represents the maximum number of actions per episode.

e v=0.99. The discount factor from the Bellman equation (1). It influences the
importance of future states when calculating the Q—values for the current state.
In this paper’s case, consecutive states are strongly correlated, resulting in a
value that is very close to 1 (the maximum value).

e o = 0.0005. The learning rate from the derived Q-learning Bellman equation
(4). It determines how quickly the agent abandons the current Q—value in ex-
change for the new value (or in other words, how much the neural network
learns at each iteration).

e Batch size = 64. The number of experiences that are sampled from the Replay
Buffer at each learning step.

e 7 =10.001. The parameter from equation 5. It represents the percentage with
which the target network’s parameters are updated, from the local network.

® Eiitial = 0.1, €gecay = 0.995, €imir = 0.01. The hyperparameters which deter-
mine the value of € when applying the epsilon—greedy strategy. The first is the
starting value, the second is the rate of decay (the current value is multiplied
by this parameter every episode), and the last is the lower limit under which it
stops decaying.

On the Development of Autonomous Agents Using Deep Reinforcement Learning 111

5. Results and Discussion

While developing the practical application for this paper, a simplified envi-
ronment was created prior to the one described in the previous section. This envi-
ronment contains a 3D ball whose objective is to touch a cube by rolling around
on a small flat platform and trying not to fall off the edge. The level of simplicity
meant quicker testing times (10—-15 minutes vs. 1-3 days for the vehicle environ-
ment), permitting more attention to be given to the development and adjustment of
the reinforcement learning algorithm, as well as studying the effects of the hyper-
parameters on the agent.

For instance, multiple neural network architectures were considered for the
agent. While experimenting, it was observed that although it may seem that adding
more layers and nodes leads to better results, this was not the case: an architecture of
3 hidden layers with 32 nodes each obtained much worse results than an architecture
of 2 hidden layers with 32 nodes each. In the end, an architecture of 3 hidden layers
with 64 nodes each was chosen for both the simple and complex environments (with
differences only in the number of nodes in the input and output layers).

The use of Double Deep Q-Learning was also compared. It was observed
that the agent’s average score increased more chaotically (and barely stabilized on
a good score) when not using the technique, as opposed to a stable increase (and
maintaining a near perfect score) toward the end of training.

Moving on to the main environment, testing the agent was done in three
phases which differ from each other by the level of environment generality. While
the main objective of this paper had already been reached in the first phase, the fol-
lowing phases were created to push and test the limits of the agent’s capabilities.
Figure 3 shows the agent and the environment in different phases.

In the first phase, the environment is exactly the one described in section 3.
Before remaining with the current reward system, multiple adjustments had to be
made: The initial system positively rewarded the agent for moving closer to the
target even slightly, and negatively rewarded it for the opposite. Unfortunately, this
method led to the agent staying still and occasionally moving a bit toward the target
so as to not lose any points (without any intent of parking). After adding a nega-
tive reward for not moving at all, it was observed that the system was unbalanced:
the agent could obtain a higher score by continuously and slowly moving toward
the target than by actually parking correctly. Following further adjustments to the
values for balance, the method described earlier was dropped and replaced with
equation 2, which constantly rewards the agent negatively for lost time and does it
more drastically the further away the agent is from the target.

Figure 4a displays the agent’s results in this first phase. The value shown is the
average score (summarized rewards) over a span of 100 episodes. At the beginning
of training the agent’s behavior is random, crashing often into obstacles, but slowly
starting to move toward the target as the episodes pass. The behavior then visibly
begins stabilizing at the half of training, parking more and more frequently on the
target spot. In the final couple thousand episodes the agent is able to continuously

112 Clara Barbu, Stefan Alexandru Mocanu

Fig. 3. The agent (blue car) and its environment created in Unity. The
left sides are zoomed out versions of the right sides, in which the agent’s
sensors are visible. In the first set of stills, the agent is in the process of
parking on the target spot of the first phase of testing. In the second set, the
agent is in the third phase of testing in which the static cars are arranged
randomly in the parking lot. This is the spot that the agent has learned best
to park on.

park correctly without mistakes, the only differences in score being made by the
angle of parking.

This successful result demonstrated that the reward system had been chosen
correctly, and so a second, more difficult to solve, phase was created. In order to
generalize the environment, an additional feature was added to onEpisodeBegin ():
at the beginning of each episode, the agent has a 50% chance of spawning at each
entrance to the parking lot (as opposed to always starting from the same spot). Alas,
it had not been predicted that occasionally spawning at a much higher distance from
the target could pose a problem for the agent. For this reason, the results turned out
to be inferior to the previous ones (figure 4b). After approximately 10.000 episodes
the agent had already learned to park when starting from the closer entrance, but
decided it would be wiser to stay still when beginning from the opposing entrance.

On the Development of Autonomous Agents Using Deep Reinforcement Learning 113

Average score at every 100 episodes Average score at every 100 episodes

800 200

600 - 100
o 40 o
8)
2 S —100
o 200 E
E‘.D 2 —2007
< = —300

—200 4 <

—400 -
—400 4 —500
—600 L, . § ; . ; . ; . —600 4
0 1 20 30 40 0 60 70 80 o 25 50 75 10 125 150 175 200
Episode number / 100 Episode number / 100

(a) Results obtained by the agent in the (b) Results obtained by the agent in the
first phase, in 8.000 episodes, in approx- second phase, in 20.000 episodes, in ap-
imately 4 hours. proximately 27 hours.

Average score at every 100 episodes

—300 1

—350 1

—400 4

—450 4

Average score

—500 +

—550 4

’ ” Episodelzfumber/ ifg{) .
(c) Results obtained by the agent in the
third phase, in 22.000 episodes, in ap-
proximately 3 days.

Fig. 4. The agent’s average score at every 100 episodes, in the first (A),
second (B) and third (C) phase.

Presumably, the agent preferred the score obtained for not moving the entire episode
(or moving slowly and surely toward the target) rather than risking a traversal of the
parking lot followed by a massive negative reward for colliding with an obstacle.
In an effort to bring the target spot physically closer to the agent’s starting
position at every episode, but also to generalize the environment even more and
test the agent’s limits, a third phase was created; this brought a few more changes
to OnEpisodeBegin (). Besides randomly interchanging the agent’s starting point
like in the previous phase, the static cars’ positions in the parking lot are randomly
mixed each episode, generating a multitude of unique parking lot configurations
that the agent can learn from and adding complexity to the scene. Furthermore, the
agent’s target spot is dynamically calculated for each configuration as the closest
available parking spot to the starting position, and is maintained for the entirety of

114 Clara Barbu, Stefan Alexandru Mocanu

the episode. The obtained results are displayed in figure 4c. It can be observed
that the agent had a few spikes of good behavior around the half point of training,
but dropped to average scores between —550 and —500 afterward; scores in this
interval indicate that the agent generally ended the episode by colliding with an ob-
stacle. Because of the complexity of this environment, I believe that the agent could
have achieved better results (and even learned to park) had it trained for at least a
triple amount of episodes. Unfortunately, the training had to be interrupted after 3
days of training due to lack of hardware processing power. This was caused by the
vast amount of accumulated experiences stored in a vector which is processed mul-
tiple times per second. On the other hand, because the neural network parameters
are saved to disk every thousand episodes, it was possible to observe the agent’s
best behavior from the training. Running the application with the parameters from
episode 12.000, the agent was able to park correctly in 15 —25% of the episodes
and acquired an average score between —200 and —250. Behaviorwise, the agent
had clearly learned to park on a specific spot (whenever it was available) and in
other cases it tended to slowly move toward the target while avoiding obstacles, but
without finalizing the parking.

6. Conclusions

To sum up, this paper’s intention is to realize a study on the concept of au-
tonomous agents and their creation using artificial intelligence, diving deeper into
the method of reinforcement learning. To illustrate, a practical application was im-
plemented, whose main objective is to prove that an autonomous vehicle can learn
to park by itself on a designated spot in a simulated environment.

Compared to the results in Arzt’s paper mentioned as a source of inspiration
for our work: Performance-wise, the agent from the video learned how to park in
310.000 episodes, while this paper’s agent only needed 6.000 episodes in a less
general environment and showed signs of improvement after 20.000 episodes in a
similarly general environment.

Further improvements can surely be made to the application. The hyperpa-
rameters can be adjusted even more by testing out various combinations, and the
code or algorithm itself could be optimized further so as to allow for a higher num-
ber of training episodes. Using a more powerful unit is also an option, as well as
Google’s Cloud TPU (Tensor Processing Unit) which was created specifically for
neural network machine learning. Another possible improvement could be shifting
to policy—based Actor Critic methods, which would allow continuous spectrums for
the agent vehicle acceleration, as well as the wheel rotations. This would lift the
current limitations of the agent movement, which may have caused the agent to be
more imprecise when driving. An idea could be to implement the already successful
algorithm Proximal Policy Optimization. A different direction could be swapping
the vehicle’s proximity sensors with a front facing camera, or even gathering input
from both. This would imply the use of Convolutional Neural Networks for the task
of image processing.

On the Development of Autonomous Agents Using Deep Reinforcement Learning 115

In closing, the concept of a vehicle agent learning how to park on a specific
spot could potentially lead to solving even more complicated tasks, as reinforcement
learning is continuously proving to be more and more powerful. It can be used to
optimize problems not only in the automotive industry, but also in a multitude of
different domains such as robotics, games or medicine.

REFERENCES

[1] R. A. Brooks. Intelligence without representation. Artificial Intelligence, volume 47 (1-3):pages
139-159, 1991.

[2] DeepMind Technologies. AlphaGo. accessed 2020.

URL https://deepmind.com/research/case-studies/alphago-the-story-so-far

[3] M. della Cava. Waymo CEO Krafcik has ’a lot of confidence’ his tech would have avoided
deadly Uber accident. USA Today, 2019, accessed 2020.

URL https://eu.usatoday.com/story/tech/2018/03/25/waymo-ceo-krafcik-
has-lot-confident-his-tech-would-have-avoided-deadly-uber-accident/
456819002/

[4] D. Ha and J. Schmidhuber. World Models. arXiv preprint arXiv:1803.10122, 2018.

[5] H. V. Hasselt. Double Q-learning. In J. D. Lafferty, C. K. 1. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages
2613-2621. Curran Associates, Inc., 2010.

[6] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao, H. Henry,
M. Mattar, and D. Lange. Unity: A General Platform for Intelligent Agents. arXiv preprint
arXiv:1809.02627, 2020.

[7]1 A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and
A. Shah. Learning to Drive in a Day. arXiv:1807.00412v2 [cs.LG], 2018.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous Control with Deep Reinforcement Learning. arXiv:1509.02971v6, 2019. Published
as a conference paper at ICLR 2016.

[9] L.-J. Lin. Reinforcement Learning for Robots Using Neural Networks (CMU-CS-93-103).
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[10] T. M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, 1997. ISBN-13:
9780070428072.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602, 2013.

[12] J. Pachocki, G. Brockman, J. Raiman, S. Zhang, H. Pondé, J. Tang, F. Wolski, C. Dennison,
R. Jozefowicz, P. Debiak, et al. OpenAl Five. https://blog.openai.com/openai-five, 2018, ac-
cessed 2020.

[13] P. Rodrigues and S. Vieira. Optimizing Agent Training with Deep Q-Learning on a Self-Driving
Reinforcement Learning Environment. In 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 745-752. IEEE, 2020.

[14] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Third Edition. Pearson
Education, 2010. ISBN-13: 9780136042594.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. arXiv preprint arXiv:1707.06347, 2017.

[16] D. Silver, T. Hubert, J. Schrittwieser, 1. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, volume 362 (6419):pages 1140-1144, 2018.

[17] T. Simonini. Diving Deeper into Reinforcement Learning with Q-Learning. freeCodeCamp,
2018, accessed 2020.

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://eu.usatoday.com/story/tech/2018/03/25/waymo-ceo-krafcik-has-lot-confident-his-tech-would-have-avoided-deadly-uber-accident/456819002/
https://eu.usatoday.com/story/tech/2018/03/25/waymo-ceo-krafcik-has-lot-confident-his-tech-would-have-avoided-deadly-uber-accident/456819002/
https://eu.usatoday.com/story/tech/2018/03/25/waymo-ceo-krafcik-has-lot-confident-his-tech-would-have-avoided-deadly-uber-accident/456819002/

116 Clara Barbu, Stefan Alexandru Mocanu

URL https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-
learning-with-q-learning-c18d0db58efe/

[18] C. Spatharis and K. Blekas. Double deep multiagent reinforcement learning for autonomous
driving in traffic maps with road segments and unsignaled intersections. In 2020 IEEE 23rd In-
ternational Conference on Intelligent Transportation Systems (ITSC), pages 1-6. IEEE, 2020.

[19] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Second Edition. MIT
press, 2018. ISBN-13: 9780262039246.

[20] Synty Studios. POLYGON - City Pack, accessed 2020.

URL https://assetstore.unity.com/packages/3d/environments/urban/polygon-
city-pack-95214

[21] Samuel Arzt. Al Learns to Park - Deep Reinforcement Learning, 2019, accessed 2020.

URL https://wuw.youtube.com/watch?v=VMp6pq6_QjI&t=230s

[22] Unity Technologies. Unity3D Documentation, accessed 2020.

URL https://docs.unity3d.com/Manual/index.html

https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe/
https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe/
https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-pack-95214
https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-pack-95214
https://www.youtube.com/watch?v=VMp6pq6_QjI&t=230s
https://docs.unity3d.com/Manual/index.html

	1. Introduction
	2. State of the Art
	3. Case Study
	4. Proposed Solution
	4.1. Creating the Environment in Unity
	4.2. Deep Q–Learning and Additional Concepts
	4.3. Creating and Training the Agent in Python
	4.4. Hyperparameters

	5. Results and Discussion
	6. Conclusions
	REFERENCES

